JPH0541602A - Primary radiator in common use with circularly polarized wave and linearly polarized wave - Google Patents

Primary radiator in common use with circularly polarized wave and linearly polarized wave

Info

Publication number
JPH0541602A
JPH0541602A JP19647691A JP19647691A JPH0541602A JP H0541602 A JPH0541602 A JP H0541602A JP 19647691 A JP19647691 A JP 19647691A JP 19647691 A JP19647691 A JP 19647691A JP H0541602 A JPH0541602 A JP H0541602A
Authority
JP
Japan
Prior art keywords
circular waveguide
circular
phase circuit
phase
polarized wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19647691A
Other languages
Japanese (ja)
Inventor
Katsuaki Kaminakada
勝明 上中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP19647691A priority Critical patent/JPH0541602A/en
Publication of JPH0541602A publication Critical patent/JPH0541602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To realize the primary radiator in common use with a circularly polarized wave and a linearly polarized wave able to receive both radio waves from a satellite employing the circularly polarized wave and the linearly polarized wave. CONSTITUTION:When a circularly polarized wave is received by providing a 1st phase circuit (metal lumps 3, 4) and a 2nd rotary phase circuit (dielectric plate 7) and a square waveguide 9 in this order from an opening 1 using one end of a circular waveguide 2 toward a termination face 5 being the other end of the waveguide 2, the 1st phase circuit converts the wave into a linearly polarized wave, the dielectric plate 7 is directed in a way that the phase between two polarized wave components of the linearly polarized wave is unchanged, the square waveguide 9 outputs a signal, and when a linearly polarized wave is received, the phase difference generated in the 1st phase circuit with respect to the two polarized wave components of the linearly polarized wave is brought into in-phase by turning the dielectric plate 7, one of the vertical polarized waves is outputted from the square waveguide 9 and the dielectric plate 7 is turned so that the phase difference is nearly 180 deg. and the other signal of the linearly polarized wave is outputted from the square waveguide 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円偏波を使用している
衛星放送(BS)と、直線偏波を使用している通信衛星
(CS)とを、共に受信可能とした円偏波及び直線偏波
共用一次放射器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a circularly polarized wave capable of receiving both satellite broadcasting (BS) using circularly polarized wave and communication satellite (CS) using linearly polarized wave. And a linear radiator for both linearly polarized waves.

【0002】[0002]

【従来の技術】従来のBS及びCS共用アンテナは図1
1(A)に示すように、同一リフレクタ20にBS用の
一次放射器21とCS用の一次放射器22を並べて取り
付け、リフレクタ20の焦点をずらせて、リフレクタ2
0の一端の焦点にBS用の一次放射器21が位置するよ
うにし、リフレクタ20の他端の焦点にCS用の一次放
射器22が位置するようにして、リフレクタ20の向き
を各々の衛星の向きにして、BSの電波及びCSの電波
を受信するようにしていた。
2. Description of the Related Art A conventional BS and CS shared antenna is shown in FIG.
As shown in FIG. 1 (A), a BS primary radiator 21 and a CS primary radiator 22 are attached to the same reflector 20 side by side, and the reflector 20 is defocused to make the reflector 2
The primary radiator 21 for BS is located at the focal point of one end of 0, and the primary radiator 22 for CS is located at the focal point of the other end of the reflector 20, so that the orientation of the reflector 20 is different from that of each satellite. It was oriented so that it could receive BS radio waves and CS radio waves.

【0003】[0003]

【発明が解決しようとする課題】従って、リフレクタの
焦点がずらせてあるため各々の一次放射器で得られる利
得が低下するといった問題点があり、また、同一リフレ
クタに2個の一次放射器を取り付けているため、構造が
複雑となるといった問題点もあった。本発明は、BSと
CS用に共用できる一次放射器とし、図11(B)に示
すように一次放射器24をリフレクタ23の焦点に配置
して、BSを受信するときにはリフレクタ23を放送衛
星の方向に向け、CSを受信するときにはリフレクタ2
3を通信衛星の方向に向けて、BSの電波とCSの電波
が同一の一次放射器24で受信できるようにすることに
より、構造が簡単で価格の安い、経済的な受信システム
を提供することを目的とする。
Therefore, there is a problem in that the gain obtained by each primary radiator is lowered because the reflectors are defocused, and two primary radiators are attached to the same reflector. Therefore, there is a problem that the structure becomes complicated. The present invention provides a primary radiator that can be used for both BS and CS. As shown in FIG. 11 (B), the primary radiator 24 is arranged at the focal point of the reflector 23 so that when the BS is received, the reflector 23 serves as a broadcasting satellite. Reflector 2 when facing the direction and receiving CS
To provide an economical receiving system having a simple structure and a low price by allowing BS 3 and CS to be received by the same primary radiator 24 by directing 3 toward the communication satellite. With the goal.

【0004】[0004]

【課題を解決するための手段】図1は、本発明の一実施
例を示す円偏波及び直線偏波共用一次放射器の一部切欠
き斜視図であり、同図に示すように、一端を電磁波が導
入し得る開口部1とし、他端に終端面5を設けた円形導
波管2において、同円形導波管2の内部の開口部1側か
ら終端面5に向かって順に、固定式の第1位相回路(図
1においては、金属塊3及び4)と、回転式の第2位相
回路(図1においては、誘電体板7)とを設け、前記第
2位相回路と前記終端面5の間に円形導波管の内部に導
入された電磁波の出力手段(図1においては、方形導波
管9)を設けて、円偏波の電磁波が導入された場合は、
前記第1位相回路で直線偏波に変換し、前記第2位相回
路を回転させて前記直線偏波の直交する2つの偏波成分
間の位相が変化しない向きとして、前記出力手段から信
号を取り出し、直線偏波が導入された場合は、水平及び
垂直偏波の内どちらか一方に対しては、同直線偏波の直
交する2つの偏波成分間に対して前記第1位相回路で発
生させた位相差を、前記第2位相回路を回転させて同相
となる向きとして、前記出力手段から信号を取り出し、
直線偏波の他方に対しては、前記位相差が、前記第1位
相回路と前記第2位相回路とで約180度となるよう
に、前記第2位相回路を回転させて、前記出力手段から
信号を取り出すようにしている。
FIG. 1 is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, showing an embodiment of the present invention. As shown in FIG. Is an opening 1 through which electromagnetic waves can be introduced, and a circular waveguide 2 having a terminating surface 5 at the other end is fixed in order from the opening 1 side inside the circular waveguide 2 toward the terminating surface 5. 1st phase circuit (metal masses 3 and 4 in FIG. 1) and a rotary 2nd phase circuit (dielectric plate 7 in FIG. 1) are provided, and the 2nd phase circuit and the termination are provided. When circularly polarized electromagnetic waves are introduced by providing an output means (a rectangular waveguide 9 in FIG. 1) for the electromagnetic waves introduced inside the circular waveguide between the surfaces 5,
A signal is taken out from the output means so that the first phase circuit converts the linearly polarized wave and the second phase circuit is rotated so that the phase between two orthogonal polarization components of the linearly polarized wave does not change. When linearly polarized waves are introduced, for either one of the horizontal and vertical polarized waves, it is generated by the first phase circuit between two orthogonal polarization components of the same linearly polarized wave. The phase difference is set as a direction in which the second phase circuit is rotated to be in phase, and a signal is taken out from the output means,
With respect to the other of the linearly polarized waves, the second phase circuit is rotated so that the phase difference becomes about 180 degrees between the first phase circuit and the second phase circuit, and the phase difference is output from the output means. I try to take out the signal.

【0005】[0005]

【作用】本発明は上記した構成により、円偏波を使用し
ている放送衛星(BS)と、直線偏波を使用している通
信衛星(CS)の電波とを円偏波及び直線偏波共用一次
放射器で受けて受信するようにしている。図1は本発明
の一実施例を示す円偏波及び直線偏波共用一次放射器の
一部切欠き斜視図であり、同図において、管軸から上部
方向に向かう軸をY軸とし、管軸から左部方向に向かう
軸をX軸とし、各々反対方向に向かう軸を−Y軸と−X
軸(図示せず)とする(以下、図2〜図10において同
じ)。放送衛星と通信衛星は静止軌道が異なるため、受
信時は各々の衛星の向きにアンテナを向けるため、円偏
波と直線偏波の電波は同時に円偏波及び直線偏波共用一
次放射器に入ってくることはない。
According to the present invention, with the above-mentioned configuration, the broadcasting satellite (BS) using circular polarization and the radio waves of the communication satellite (CS) using linear polarization are circularly polarized and linearly polarized. The shared primary radiator is used to receive and receive. FIG. 1 is a partially cutaway perspective view of a circularly-polarized and linearly-polarized primary radiator showing an embodiment of the present invention. In FIG. 1, the axis extending upward from the tube axis is the Y-axis, and the tube The axis extending leftward from the axis is the X axis, and the axes extending in opposite directions are -Y axis and -X.
A shaft (not shown) (hereinafter, the same in FIGS. 2 to 10). Broadcast satellites and communication satellites have different geostationary orbits, so the antennas are directed to the respective satellites at the time of reception, so that circularly polarized waves and linearly polarized waves enter the primary radiators for both circularly polarized waves and linearly polarized waves at the same time. It never comes.

【0006】従って、先ずCS受信時の作用について次
に説明する。位相器としては、図1に示すように、第1
位相回路(図1においては、金属塊3及び4)と、第2
位相回路(図1においては、誘電体板7)を円形導波管
2の内部の開口部1側から終端面5に向かって順に設け
ており、図4は、円形導波管2に導入された、水平偏波
と垂直偏波の電界分布を示す説明図であり、同図に示す
ように、X軸とY軸を2分する向きに水平偏波Ehが導入
され、また、−X軸とY軸を2分する向きに垂直偏波Ev
が導入されたとする。
Therefore, first, the operation at the time of CS reception will be described below. As the phase shifter, as shown in FIG.
A phase circuit (in FIG. 1, metal masses 3 and 4) and a second
Phase circuits (dielectric plate 7 in FIG. 1) are provided in order from the opening 1 side inside the circular waveguide 2 toward the termination surface 5, and FIG. 4 is introduced into the circular waveguide 2. It is an explanatory view showing the electric field distribution of the horizontal polarized wave and the vertical polarized wave. As shown in the figure, the horizontal polarized wave Eh is introduced in a direction that bisects the X axis and the Y axis. And vertical polarization Ev in the direction that bisects the Y axis
Is introduced.

【0007】最初に、円形導波管2に導入された、水平
偏波Eh及び垂直偏波Evに対する信号の出力方法について
説明する。図5(A)〜(D)は、位相器の入出力端に
おける水平偏波Ehと、垂直偏波Evの電界ベクトルの分解
図であり、(A)は水平偏波Ehの位相器の入力端におけ
る電界ベクトル分解図、(B)は垂直偏波Evの位相器の
入力端における電界ベクトル分解図、(C)は水平偏波
Ehの電界ベクトルのY軸成分の位相を180度遅延させ
た、位相器の出力端における電界ベクトル分解図、
(D)は垂直偏波Evの電界ベクトルのY軸成分の位相を
180度遅延させた、位相器の出力端における電界ベク
トル分解図である。
First, a method of outputting signals to the horizontally polarized wave Eh and the vertically polarized wave Ev introduced into the circular waveguide 2 will be described. 5A to 5D are exploded views of the electric field vectors of the horizontal polarization Eh and the vertical polarization Ev at the input / output ends of the phase shifter, and FIG. 5A is the input of the phase shifter of the horizontal polarization Eh. Electric field vector decomposition diagram at the end, (B) is an electric field vector decomposition diagram at the input end of the phaser for vertical polarization Ev, and (C) is a horizontal polarization
An electric field vector decomposition diagram at the output end of the phaser in which the phase of the Y-axis component of the electric field vector of Eh is delayed by 180 degrees,
(D) is an electric field vector decomposition diagram at the output end of the phaser in which the phase of the Y-axis component of the electric field vector of the vertically polarized wave Ev is delayed by 180 degrees.

【0008】位相器の入力端における水平偏波Ehの電界
ベクトルの分解図は、(A)図に示すように、導入され
た水平偏波の電界ベクトルをEhとすると、同電界ベクト
ルEhは、X軸方向にベクトル成分Ehx を有し、Y軸方向
にベクトル成分Ehy を有する電磁波に分解することがで
き、また、垂直偏波Evの電界ベクトルの分解図は、
(B)図に示すように、導入された垂直偏波の電界ベク
トルをEvとすると、−X軸方向にベクトル成分Evx を有
し、Y軸方向にベクトル成分Evy を有する電磁波に分解
することができる。(A)図に示す水平偏波Ehと、
(B)図に示す垂直偏波Evに対して位相器を使用して、
電界ベクトルのY軸成分の位相を180度遅延させた場
合は、水平偏波Ehの電界ベクトルは(C)図に示すよう
に、X軸方向にベクトル成分Ehx を有し、−Y軸方向に
ベクトル成分−Ehy を有する電磁波にすることができ、
また、垂直偏波Evの電界ベクトルは(D)図に示すよう
に、X軸方向にベクトル成分Evxを有し、−Y軸方向に
ベクトル成分−Evy を有する電磁波にすることができ
る。
An exploded view of the electric field vector of the horizontally polarized wave Eh at the input end of the phase shifter is, as shown in FIG. It can be decomposed into an electromagnetic wave having a vector component Ehx in the X-axis direction and a vector component Ehy in the Y-axis direction, and an exploded view of the electric field vector of the vertically polarized wave Ev is
As shown in the figure (B), when the electric field vector of the introduced vertically polarized wave is Ev, it can be decomposed into an electromagnetic wave having a vector component Evx in the −X axis direction and a vector component Evy in the Y axis direction. it can. Horizontally polarized wave Eh shown in FIG.
Using a phase shifter for vertically polarized Ev shown in (B),
When the phase of the Y-axis component of the electric field vector is delayed by 180 degrees, the electric field vector of the horizontal polarization Eh has a vector component Ehx in the X-axis direction and a −Y-axis direction as shown in FIG. Can be an electromagnetic wave having a vector component −Ehy,
The electric field vector of the vertically polarized wave Ev can be an electromagnetic wave having a vector component Evx in the X axis direction and a vector component -Evy in the -Y axis direction, as shown in FIG.

【0009】位相器を通り抜けた電磁波の出力手段とし
て、図1に示すように円形導波管2の終端面5側の側面
に方形導波管9を接合し、図4に示すように、円形導波
管2の開口部からみた方形導波管9の円形導波管2の管
軸方向に向かう中心線(図示せず)がY軸と−X軸を2
分する向きに配置すれば、(A)図に示す水平偏波Eh
は、位相器で位相が変わらないようにし(位相差零)、
(B)図に示す垂直偏波Evは、位相器でY軸成分の位相
を180度遅延させて、(D)図に示すような電界分布
にすることにより、方形導波管9で水平偏波Eh、あるい
は垂直偏波Evの信号を取り出すことができる。
As a means for outputting electromagnetic waves that have passed through the phase shifter, a rectangular waveguide 9 is joined to the side surface of the circular waveguide 2 on the side of the terminal surface 5 as shown in FIG. 1, and as shown in FIG. The center line (not shown) of the rectangular waveguide 9 in the tube axis direction of the rectangular waveguide 9 viewed from the opening of the waveguide 2 has two Y-axis and -X axis.
If the horizontal polarization Eh shown in FIG.
Prevents the phase from changing in the phase shifter (zero phase difference),
The vertically polarized wave Ev shown in (B) is delayed horizontally by the phase shifter by 180 degrees to make the electric field distribution as shown in (D). The signal of the wave Eh or the vertically polarized wave Ev can be taken out.

【0010】次に位相器の作用について説明する。図6
(A)〜(D)は、直線偏波に対する位相器の作用につ
いての説明図であり、(A)及び(B)図は、第1位相
回路に使用する金属塊の配置を示しており、(A)図
は、円形導波管2の上下方向に金属塊3及び4を配置し
ており、(B)図は、円形導波管2の左右方向に金属塊
11及び12を配置した構造としている。(C)及び
(D)図は、第2位相回路に使用する円形導波管2の管
軸を中心として回転可能とした誘電体板7を回転させた
位置を示しており、(C)図は垂直の向きとし、(D)
図は水平の向きにしている。この位相回路に、図5
(A)及び(B)に示す、水平偏波Ehと、垂直偏波Evの
電磁波が導入されると、X軸方向のベクトル成分とY軸
方向のベクトル成分の位相速度は、 (A)図の場合、Ehy よりEhx の位相速度が速く、Evy
よりEvx の位相速度が速い。 (B)図の場合、Ehy がEhx より位相速度が速く、Evy
がEvx より位相速度が速い。 (C)図の場合、Ehy よりEhx の位相速度が速く、Evy
よりEvx の位相速度が速い。 (D)図の場合、Ehy がEhx より位相速度が速く、Evy
がEvx より位相速度が速い。
Next, the operation of the phase shifter will be described. Figure 6
(A)-(D) is explanatory drawing about the effect | action of the phase shifter with respect to linearly polarized wave, (A) and (B) figure has shown arrangement | positioning of the metal mass used for a 1st phase circuit, In the figure (A), the metal masses 3 and 4 are arranged in the vertical direction of the circular waveguide 2, and in the figure (B), the metal masses 11 and 12 are arranged in the horizontal direction of the circular waveguide 2. I am trying. Figures (C) and (D) show the rotated position of the dielectric plate 7 which is rotatable around the tube axis of the circular waveguide 2 used for the second phase circuit. Is the vertical orientation, and (D)
The illustration is oriented horizontally. In this phase circuit,
When the electromagnetic waves of horizontal polarization Eh and vertical polarization Ev shown in (A) and (B) are introduced, the phase velocities of the vector component in the X-axis direction and the vector component in the Y-axis direction are , The phase velocity of Ehx is faster than that of Ehy, and Evy
The phase velocity of Evx is faster than that of Evx. In the case of (B), Ehy has a higher phase velocity than Ehx,
Has a faster phase velocity than Evx. In the case of (C), the phase velocity of Ehx is faster than that of Ehy,
The phase velocity of Evx is faster than that of Evx. In the case of (D), Ehy has a faster phase velocity than Ehx, and Evy
Has a faster phase velocity than Evx.

【0011】従って、金属塊の形状及び長さを選択し、 (A)図の場合、Ehy がEhx に対して90度遅れになる
ように設定すると、EvyもEvx に対して90度遅れにな
る。 (B)図の場合、Ehy がEhx に対して90度進むように
設定すると、Evy もEvxに対して90度進む。 また、誘電体板7の形状及び長さを選択し、 (C)図の場合、Ehy がEhx に対して90度遅れになる
ように設定すると、EvyもEvx に対して90度遅れにな
る。 (D)図の場合、Ehy がEhx に対して90度進むように
設定すると、Evy もEvxに対して90度進む。 (A)〜(D)図において、円形導波管2の開口部1側
からみた方形導波管9の管軸の中心線が、−X軸とY軸
を2分する向きにして、円形導波管2に方形導波管9を
接合しており、方形導波管9に出力される信号は次の通
りとなる。
Therefore, if the shape and the length of the metal lump are selected and Ehy is set to be delayed by 90 degrees with respect to Ehx in the case of (A), Evy is also delayed by 90 degrees with respect to Evx. .. In the case of the diagram (B), if Ehy is set to advance 90 degrees with respect to Ehx, Evy also advances 90 degrees with respect to Evx. If the shape and length of the dielectric plate 7 are selected and Ehy is set to be delayed by 90 degrees with respect to Ehx in the case of (C), Evy is also delayed by 90 degrees with respect to Evx. In the case of the diagram (D), if Ehy is set to advance 90 degrees with respect to Ehx, Evy also advances 90 degrees with respect to Evx. In Figures (A) to (D), the center line of the tube axis of the rectangular waveguide 9 viewed from the side of the opening 1 of the circular waveguide 2 has a circular shape with the −X axis and the Y axis being bisected. The rectangular waveguide 9 is joined to the waveguide 2, and the signals output to the rectangular waveguide 9 are as follows.

【0012】第1位相回路が(A)図で、第2位相回路
が(C)図の状態の場合、
In the case where the first phase circuit is in the state of (A) and the second phase circuit is in the state of (C),

【表1】 [Table 1]

【0013】第1位相回路が(A)図で、第2位相回路
が(D)図の状態の場合、
In the case where the first phase circuit is in the state of (A) and the second phase circuit is in the state of (D),

【表2】 [Table 2]

【0014】第1位相回路が(B)図で、第2位相回路
が(C)図の状態の場合、
In the case where the first phase circuit is in the state of (B) and the second phase circuit is in the state of (C),

【表3】 [Table 3]

【0015】第1位相回路が(B)図で、第2位相回路
が(D)図の状態の場合、
In the case where the first phase circuit is in the state of (B) and the second phase circuit is in the state of (D),

【表4】 従って、第1位相回路の金属塊の配置は、図(A)及
び図(B)の2通りあるが、CSの受信に関しては、誘
電体板7の回転により、水平偏波と垂直偏波を切り換え
て、方形導波管9から出力することができる。
[Table 4] Therefore, although there are two ways of disposing the metal block of the first phase circuit, as shown in FIGS. (A) and (B), regarding the reception of CS, the horizontal polarization and the vertical polarization are generated by the rotation of the dielectric plate 7. It is possible to switch and output from the rectangular waveguide 9.

【0016】次にBS受信時の作用について、以下に説
明する。図7(A)〜(E)は、円偏波に対する位相器
の作用についての説明図であり、円偏波は、2つの直交
した直線偏波の合成とみなすことができ、この2つの直
交した直線偏波の振幅が等しく、位相が90度ずれてい
る場合に円偏波となる。(A)図に示す円は、円偏波の
電界ベクトルの軌跡を示しており、X軸とY軸を2分す
る向きに電界ベクトルEを有する円偏波が円形導波管2
に導入されたとすると、円偏波はX軸方向に直線偏波成
分Exを有し、Y軸方向に直線偏波成分Eyとを有する電磁
波として表すことができる。直線偏波成分Exが、直線偏
波成分Eyより位相が遅れている場合、円偏波の電界ベク
トルEは、矢印bの向きに回転し左旋円偏波となり、直
線偏波成分Eyが、直線偏波成分Exより位相が遅れている
場合、円偏波の電界ベクトルEは、矢印aの向きに回転
し右旋円偏波となる。
Next, the operation at the time of BS reception will be described below. 7 (A) to 7 (E) are explanatory views of the action of the phase shifter on the circularly polarized waves, and the circularly polarized waves can be regarded as a combination of two orthogonal linearly polarized waves. The circularly polarized waves are circular when the amplitudes of the linearly polarized waves are equal and the phases thereof are deviated by 90 degrees. The circle shown in (A) shows the locus of the electric field vector of the circularly polarized wave, and the circularly polarized wave having the electric field vector E in the direction that bisects the X axis and the Y axis is a circular waveguide 2.
, The circularly polarized wave can be represented as an electromagnetic wave having a linearly polarized wave component Ex in the X-axis direction and a linearly polarized wave component Ey in the Y-axis direction. When the linearly polarized wave component Ex lags behind the linearly polarized wave component Ey in phase, the electric field vector E of the circularly polarized wave rotates in the direction of the arrow b to become a left-handed circularly polarized wave, and the linearly polarized wave component Ey becomes a straight line. When the phase lags the polarization component Ex, the circularly polarized electric field vector E rotates in the direction of the arrow a and becomes right circularly polarized wave.

【0017】(B)及び(C)図は、第1位相回路に使
用する金属塊の配置を示しており、(B)図は円形導波
管2の上下方向に金属塊3及び4を配置しており、
(C)図は円形導波管2の左右方向に金属塊11及び1
2を配置した構造としている。(D)及び(E)図は、
第2位相回路に使用する円形導波管2の管軸を中心とし
て回転可能とした誘電体板7を回転させた位置を示して
おり、(D)図は、誘電体板7の端面の長手方向の中心
線がX軸とY軸を2分する向きとし、(E)図は、誘電
体板7の端面の長手方向の中心線が−X軸とY軸を2分
する向きとしている。円偏波の2つの直交した直線偏波
成分は、いずれも誘電体板7と平行した伝播状態とはな
らないため、誘電体板7による位相変化は発生しない。
従って、第1位相回路の作用のみを考慮すれば良い。
FIGS. 3B and 3C show the arrangement of metal ingots used in the first phase circuit, and FIG. 3B shows the arrangement of metal ingots 3 and 4 in the vertical direction of the circular waveguide 2. And
(C) The figure shows metal blocks 11 and 1 in the left-right direction of the circular waveguide 2.
2 is arranged. Figures (D) and (E) show
It shows a position in which the dielectric plate 7 that is rotatable around the tube axis of the circular waveguide 2 used for the second phase circuit is rotated, and FIG. The center line of the direction is in a direction that bisects the X axis and the Y axis, and in (E), the center line in the longitudinal direction of the end surface of the dielectric plate 7 is in a direction that bisects the -X axis and the Y axis. Since neither of the two orthogonally polarized linearly polarized components of the circularly polarized wave is in the propagation state parallel to the dielectric plate 7, the phase change due to the dielectric plate 7 does not occur.
Therefore, it suffices to consider only the operation of the first phase circuit.

【0018】第1位相回路が(B)図で、第2位相回路
が、(D)か(E)図の状態の場合、
In the case where the first phase circuit is in the state of (B) and the second phase circuit is in the state of (D) or (E),

【表5】 [Table 5]

【0019】第1位相回路が(C)図で、第2位相回路
が、(D)か(E)図の状態の場合、
When the first phase circuit is in the state of (C) and the second phase circuit is in the state of (D) or (E),

【表6】 [Table 6]

【0020】従って、円偏波の偏波面が左旋回か、右旋
回かによって、第1位相回路が(B)図のものか、ある
いは(C)図のものかを使い分けを行い、左旋円偏波に
対しては、(B)図のものを選択し、右旋円偏波に対し
ては、(C)図のものを選択することにより、円偏波を
直線偏波に変換することができ、方形導波管9から前記
直線偏波に変換された信号を出力することができる。従
って、円偏波を使用した衛星放送電波と、直線偏波を使
用した通信衛星電波とを、同一の一次放射器で受けて、
方形導波管9から信号を取り出してコンバータに入力
し、コンバータで局部発信周波数を変化させて選局する
ことにより衛星放送、あるいは通信衛星の電波を受信す
ることが可能となる。
Therefore, depending on whether the plane of polarization of the circularly polarized wave is left-handed or right-handed, the first phase circuit is selectively used depending on whether it is as shown in FIG. (B) or (C). Converting circular polarization to linear polarization by selecting the polarization in Figure (B) and selecting the right polarization in Figure (C). The rectangular waveguide 9 can output the signal converted into the linearly polarized wave. Therefore, receiving satellite broadcast radio waves using circular polarization and communication satellite radio waves using linear polarization with the same primary radiator,
By extracting a signal from the rectangular waveguide 9 and inputting it to a converter, and changing the local oscillation frequency by the converter to select a channel, it becomes possible to receive a satellite broadcast or a radio wave of a communication satellite.

【0021】[0021]

【実施例】図1は、本発明の一実施例を示す円偏波及び
直線偏波共用一次放射器の一部切欠き斜視図であり、円
形導波管2の一端をホーン形状として電磁波を効率良く
円形導波管2に導入し得る開口部1とし、円形導波管2
の他端を導入された電磁波を反射せしめる終端面5と
し、開口部1側から終端面5に向かって順に、円形導波
管2の内部に固定式の第1位相回路と、回転式の第2位
相回路を設けている。図1の実施例では第1位相回路と
して金属塊3及び4で構成された90度位相器を使用し
ており、円形導波管2の内部の円形表面の上部及び下部
の対向する円弧が平面になるように金属塊3及び4を取
り付け、円形導波管2の管軸方向に沿った金属塊3及び
4の長さを、円形導波管2の内部を伝播する電磁波のT
E11モードの直交する2つの偏波成分間の位相差を9
0度にできる長さとしている。前記金属塊3及び4は、
どちらか一方のみを使用するようにしても良いが、この
場合は、90度位相器とするため金属塊の円形導波管2
の管軸方向に向かう長さを長くする必要がある。
FIG. 1 is a partially cutaway perspective view of a primary radiator for circular polarization and linear polarization, showing an embodiment of the present invention. The circular waveguide 2 has an opening 1 that can be efficiently introduced into the circular waveguide 2.
The other end of which is used as a terminating surface 5 for reflecting the introduced electromagnetic wave, and a fixed first phase circuit and a rotating first phase circuit are sequentially provided inside the circular waveguide 2 from the opening 1 side toward the terminating surface 5. A two-phase circuit is provided. In the embodiment of FIG. 1, a 90-degree phaser composed of metal lumps 3 and 4 is used as the first phase circuit, and the opposing arcs of the upper and lower circular surfaces inside the circular waveguide 2 are flat. The metal lumps 3 and 4 are attached so that the length of the metal lumps 3 and 4 along the tube axis direction of the circular waveguide 2 becomes T of the electromagnetic wave propagating inside the circular waveguide 2.
The phase difference between two orthogonal polarization components of E11 mode is 9
The length is set to 0 degrees. The metal blocks 3 and 4 are
Only one of them may be used, but in this case, since it is a 90-degree phase shifter, the circular waveguide 2 of a metal block is used.
It is necessary to increase the length of the pipe in the tube axis direction.

【0022】金属塊3及び4の表面は略平面状としてい
るが、円形導波管2の内部を伝播する電磁波のTE11
モードの直交する2つの偏波成分間に位相差を発生させ
るためには、X軸方向とY軸方向との内径差を設ければ
良く、金属塊3及び4の表面を平面状とする代わりに、
表面を盛り上げて円形導波管2の開口部1からみた形を
円弧状にしても良く、加工のしやすさによって選択が可
能である。図1の実施例では、第2位相回路として誘電
体板7で構成された90度位相器を使用しており、円形
導波管2の管軸を中心とし誘電体板7を回転させること
ができるようにし、誘電体板7の長手方向の長さを円形
導波管2の内部を伝播する電磁波のTE11モードの直
交する2つの偏波成分間の位相差を90度にできる長さ
としている。
The surfaces of the metal ingots 3 and 4 are substantially flat, but the TE 11 of the electromagnetic wave propagating inside the circular waveguide 2 is formed.
In order to generate a phase difference between two polarization components orthogonal to each other, it is sufficient to provide an inner diameter difference between the X-axis direction and the Y-axis direction. Instead of making the surfaces of the metal ingots 3 and 4 flat. To
The surface may be raised so that the shape of the circular waveguide 2 seen from the opening 1 may be an arc shape, and the shape can be selected depending on the ease of processing. In the embodiment shown in FIG. 1, a 90-degree phaser composed of a dielectric plate 7 is used as the second phase circuit, and the dielectric plate 7 can be rotated about the tube axis of the circular waveguide 2. In this case, the length of the dielectric plate 7 in the longitudinal direction is set so that the phase difference between two orthogonal polarization components of the TE11 mode of the electromagnetic wave propagating in the circular waveguide 2 can be 90 degrees. ..

【0023】誘電体板7の回転機構としては、円形導波
管2の終端面5の外側に駆動部6を設け、駆動部6とし
ては例えばモータ等を使用し、同モータの回転と連動し
て回転する回転軸8を設けて、誘電体板7の短辺方向の
中心に取り付け、誘電体板7を円形導波管2の管軸を中
心として回転できるようにしている。誘電体板7の短辺
方向の端面の形状は、略V字形の形状としているが、位
相回路としての整合がとれるようであれば、他の形状に
しても良い。また、駆動部6を使用する代わりに、手動
で誘電体板7を回転させるようにしても良い。円形導波
管2の内部に導入された電磁波の出力手段として、第2
位相回路と終端面5の間の円形導波管2の側面に方形導
波管9を接合しており、図2は、図1の正面図であり、
同図に示すように、円形導波管2の開口部1からみた金
属塊3及び4の管軸方向に向かう中心線(図示せず)と
方形導波管9の円形導波管2の管軸方向に向かう中心線
(図示せず)とが約45度の角度をなすように方形導波
管9を接合している。
As a rotating mechanism of the dielectric plate 7, a drive unit 6 is provided outside the end surface 5 of the circular waveguide 2, and a motor or the like is used as the drive unit 6, and it is interlocked with the rotation of the motor. A rotating shaft 8 for rotating is provided at the center of the dielectric plate 7 in the short side direction so that the dielectric plate 7 can rotate about the tube axis of the circular waveguide 2. The shape of the end surface of the dielectric plate 7 in the short side direction is substantially V-shaped, but other shapes may be used as long as they can be matched as a phase circuit. Further, instead of using the drive unit 6, the dielectric plate 7 may be manually rotated. As a means for outputting the electromagnetic wave introduced into the circular waveguide 2, the second
A rectangular waveguide 9 is joined to the side surface of the circular waveguide 2 between the phase circuit and the termination surface 5, and FIG. 2 is a front view of FIG.
As shown in the figure, the center line (not shown) of the metal lumps 3 and 4 directed from the opening 1 of the circular waveguide 2 toward the tube axis direction and the rectangular waveguide 9 of the circular waveguide 2. The rectangular waveguide 9 is joined so that the center line (not shown) extending in the axial direction forms an angle of about 45 degrees.

【0024】図3(A)は、本発明のその他の実施例を
示す円偏波及び直線偏波共用一次放射器の一部切欠き斜
視図であり、図1に示す実施例との相違は、第1位相回
路として金属塊10及び11で構成された90度位相器
を使用しており、円形導波管の内部の円形表面の左部及
び右部の対向する円弧が平面になるようにして、金属塊
10及び11を取り付けた点であり、その他の部分の構
成は図1の実施例と同様にしている。図3(B)は、図
3(A)の正面図であり、円形導波管2の開口部1から
みた金属塊10及び11の管軸方向に向かう中心線(図
示せず)と方形導波管9の円形導波管2の管軸方向に向
かう中心線(図示せず)とが約45度の角度をなすよう
に方形導波管9を接合している。
FIG. 3A is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization showing another embodiment of the present invention, which is different from the embodiment shown in FIG. , A 90-degree phaser composed of metal lumps 10 and 11 is used as the first phase circuit, and the arcs on the left and right sides of the circular surface inside the circular waveguide are arranged to be flat. The metal lumps 10 and 11 are attached, and the configuration of the other portions is the same as that of the embodiment of FIG. 3 (B) is a front view of FIG. 3 (A), showing center lines (not shown) of the metal lumps 10 and 11 as seen from the opening 1 of the circular waveguide 2 in the tube axis direction and a rectangular guide. The rectangular waveguides 9 are joined so that the center line (not shown) of the wave guide 9 extending in the tube axis direction of the circular waveguide 2 forms an angle of about 45 degrees.

【0025】図8(A)は、本発明の他の実施例を示
す、円偏波及び直線偏波共用一次放射器の一部切欠き斜
視図であり、図8(B)は同上の正面図である。図1及
び図2に示す方形導波管9の代わりに、励振プローブ1
2を信号取り出し手段として用いている。プローブ12
は、方形導波管9を使用する場合と同様に、第2位相回
路と終端面5の間の円形導波管2の側面に取り付けるよ
うにし、図8(B)に示すように、円形導波管2の開口
部1からみた金属塊3及び4の円形導波管2の管軸方向
に向かう中心線(図示せず)と、プローブ12の円形導
波管2の管軸方向に向かう各々の中心線(図示せず)と
が約45度の角度をなすように円形導波管2に取り付け
ている。プローブ12の円形導波管2の管軸方向に向か
う中心線は、X軸とY軸を2分する向きとしており、X
軸とY軸を2分する向きに平行な電界を有する直線偏波
を電気信号に変換して出力することができ、方形導波管
9を用いた場合と同様に、円形導波管2に導入された電
磁波から信号を取り出すことができる。
FIG. 8 (A) is a partially cutaway perspective view of a primary radiator for circular polarization and linear polarization, showing another embodiment of the present invention, and FIG. 8 (B) is a front view of the same. It is a figure. Instead of the rectangular waveguide 9 shown in FIGS. 1 and 2, the excitation probe 1
2 is used as a signal extracting means. Probe 12
Is attached to the side surface of the circular waveguide 2 between the second phase circuit and the termination surface 5 as in the case of using the rectangular waveguide 9, and as shown in FIG. A center line (not shown) of the metal lumps 3 and 4 viewed from the opening 1 of the wave tube 2 in the tube axis direction of the circular waveguide 2 and a center line of the probe 12 in the tube direction of the circular waveguide 2 respectively. Is attached to the circular waveguide 2 so as to form an angle of about 45 degrees with the center line (not shown). The center line of the probe 12 in the direction of the tube axis of the circular waveguide 2 is oriented so as to divide the X axis and the Y axis into two.
A linearly polarized wave having an electric field parallel to the direction that bisects the axis and the Y axis can be converted into an electric signal and output, and like the case where the rectangular waveguide 9 is used, the circular waveguide 2 is provided. A signal can be extracted from the introduced electromagnetic wave.

【0026】図9(A)は、本発明のその他の実施例を
示す円偏波及び直線偏波共用一次放射器の一部切欠き斜
視図であり、図1において位相回路として使用している
金属塊3及び4の代わりに、他の位相回路を使用するよ
うにしたものであり、(A)図では略長方形の金属板1
3及び14を使用しており、円形導波管2の内部表面の
上部と下部の対向する円弧の中心に取り付け、金属板1
3及び14の短辺方向が円形導波管2の管軸に向かうよ
うにし、円形導波管2の管軸方向に沿った金属板13及
び14の長手方向の長さを、円形導波管2の内部を伝播
する電磁波のTE11モードの直交する2つの偏波成分
間の位相差を90度とすることができる長さとしてい
る。図9(B)は図(A)の正面図であり、同図に示す
ように、円形導波管2の開口部からみた金属板13及び
14の管軸方向に向かう中心線(図示せず)と、方形導
波管9の管軸方向に向かう中心線(図示せず)とが約4
5度の角度をなすように配置している。金属板13及び
14の短辺方向の端面の形状は、段差を中間に設けた形
状としているが、位相器として整合がとれるようであれ
ば他の形状としても良い。また、前記金属板13及び1
4は、どちらか一方のみを使用するようにしても良い
が、この場合は、位相差を90度とするため前記金属板
の長辺方向の長さを長くする必要がある。
FIG. 9 (A) is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, showing another embodiment of the present invention, which is used as a phase circuit in FIG. Another phase circuit is used instead of the metal blocks 3 and 4, and the metal plate 1 having a substantially rectangular shape in FIG.
3 and 14 are attached to the inner surface of the circular waveguide 2 and are attached to the centers of the arcs of the upper and lower portions facing each other.
The short sides of 3 and 14 are directed toward the tube axis of the circular waveguide 2, and the lengths of the metal plates 13 and 14 in the longitudinal direction along the tube axis direction of the circular waveguide 2 are set to the circular waveguide. The phase difference between the two orthogonal polarization components of the TE11 mode of the electromagnetic wave propagating inside 2 is 90 degrees. FIG. 9 (B) is a front view of FIG. 9 (A). As shown in FIG. 9 (B), center lines (not shown) of the metal plates 13 and 14 seen from the opening of the circular waveguide 2 toward the tube axis direction. ) And the center line (not shown) of the rectangular waveguide 9 in the tube axis direction are about 4
It is arranged so as to form an angle of 5 degrees. The shape of the end faces of the metal plates 13 and 14 in the short side direction is a shape in which a step is provided in the middle, but any other shape may be used as long as matching can be achieved as a phase shifter. Also, the metal plates 13 and 1
4 may use only one of them, but in this case, the length in the long side direction of the metal plate needs to be long in order to set the phase difference to 90 degrees.

【0027】図10(A)は、本発明のその他の実施例
を示す円偏波及び直線偏波共用一次放射器の一部切欠き
斜視図であり、図1において位相回路として使用してい
る金属塊3及び4の代わりに、他の位相回路を使用する
ようにしたものであり、(A)図では金属製ビス15及
び16を複数個使用しており、円形導波管2の内部表面
の上部と下部の対向する円弧の中心に、管軸方向に沿っ
て並べて取り付け、各々の金属製ビスの先端が円形導波
管2の管軸に向かうようにし、円形導波管2の管軸方向
に沿って並べて取り付けた長さを、円形導波管2の内部
を伝播する電磁波のTE11モードの直交する2つの偏
波成分間の位相差を90度とすることができる長さとし
ている。図10(B)は図(A)の正面図であり、同図
に示すように、円形導波管2の開口部からみた前記金属
製ビスの管軸方向に向かう中心線(図示せず)と、方形
導波管9の管軸方向に向かう中心線(図示せず)とが約
45度の角度をなすように配置している。前記金属製ビ
スの列を円形導波管2の内部表面の上部と下部の2列と
しているが、どちらか一方の列のみを使用するようにし
ても良いが、この場合は、位相差を90度とするため前
記金属製ビスの列の長さを長くする必要がある。図9及
び図10に示す位相回路を使用しても、図1に使用した
金属塊3及び4と同様の効果を得ることができる。な
お、図1、図8(A)、図9(A)、図10(A)にお
ける17及び18、並びに図3(A)における17及び
19は、切欠き線を示す。
FIG. 10 (A) is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization showing another embodiment of the present invention, which is used as a phase circuit in FIG. Another phase circuit is used instead of the metal blocks 3 and 4, and a plurality of metal screws 15 and 16 are used in FIG. Are mounted side by side along the tube axis direction at the centers of the arcs of the upper and lower parts of the circular waveguide 2 facing each other so that the tips of the metal screws face the tube axis of the circular waveguide 2. The lengths arranged side by side along the direction are set so that the phase difference between two orthogonal polarization components of the TE11 mode of the electromagnetic wave propagating inside the circular waveguide 2 can be 90 degrees. FIG. 10 (B) is a front view of FIG. 10 (A), and as shown in the figure, a center line (not shown) of the metal screw as seen from the opening of the circular waveguide 2 in the tube axis direction. And the center line (not shown) of the rectangular waveguide 9 extending in the tube axis direction are arranged at an angle of about 45 degrees. Although the rows of the metal screws are the two rows of the upper portion and the lower portion of the inner surface of the circular waveguide 2, it is possible to use only one of the rows, but in this case, the phase difference is 90 degrees. The length of the row of metal screws must be increased in order to adjust the degree. By using the phase circuit shown in FIGS. 9 and 10, the same effect as that of the metal ingots 3 and 4 used in FIG. 1 can be obtained. Note that 17 and 18 in FIGS. 1, 8A, 9A, and 10A, and 17 and 19 in FIG. 3A represent cutout lines.

【0028】[0028]

【発明の効果】以上説明したように、本発明によればB
S用及びCS用に共用とした円偏波及び直線偏波共用一
次放射器を使用して、同一次放射器をリフレクタの焦点
に配置し、リフレクタの向きをBS受信のときは放送衛
星の方向にし、CS受信のときは通信衛星の方向にし
て、BS及びCSを受信可能としており、従来のように
同一リフレクタにBS用の一次放射器とCS用の一次放
射器を並べて取り付け、リフレクタの焦点をずらせて、
リフレクタの一端の焦点にBS用の一次放射器を配置
し、リフレクタの他端の焦点にCS用の一次放射器を配
置して、リフレクタの向きを各々の衛星の向きにして、
BSの電波及びCSの電波を受信するようにしたものよ
り、構造が簡単で価格の安い、経済的な受信システムを
提供することができる。
As described above, according to the present invention, B
The primary radiators for both circular polarization and linear polarization that are shared for S and CS are used, and the same primary radiator is placed at the focal point of the reflector, and the direction of the reflector is the direction of the broadcasting satellite when receiving BS. In the case of CS reception, BS and CS can be received in the direction of the communication satellite. As in the conventional case, the BS primary radiator and the CS primary radiator are mounted side by side on the same reflector, and the focus of the reflector is adjusted. Shift
The BS primary radiator is arranged at the focal point of one end of the reflector, the CS primary radiator is arranged at the focal point of the other end of the reflector, and the orientation of the reflector is set to the direction of each satellite.
It is possible to provide an economical receiving system having a simple structure and a low price, as compared with a device that receives BS radio waves and CS radio waves.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す円偏波及び直線偏波共
用一次放射器の一部切欠き斜視図である。
FIG. 1 is a partially cutaway perspective view of a circularly-polarized and linearly-polarized primary radiator according to an embodiment of the present invention.

【図2】図1の正面図である。FIG. 2 is a front view of FIG.

【図3】(A)は、本発明のその他の実施例を示す円偏
波及び直線偏波共用一次放射器の一部切欠き斜視図であ
り、(B)は、正面図である。
FIG. 3 (A) is a partially cutaway perspective view of a circularly-polarized and linearly-polarized primary radiator showing another embodiment of the present invention, and FIG. 3 (B) is a front view.

【図4】円形導波管2に導入された、水平偏波と垂直偏
波の電界分布を示す説明図である。
FIG. 4 is an explanatory diagram showing electric field distributions of horizontal polarization and vertical polarization introduced into the circular waveguide 2.

【図5】(A)〜(D)は位相器の入出力端における水
平偏波Ehと、垂直偏波Evの電界ベクトルの分解図であ
る。
5A to 5D are exploded views of electric field vectors of horizontal polarization Eh and vertical polarization Ev at the input / output ends of the phase shifter.

【図6】(A)〜(D)は直線偏波に対する位相器の作
用についての説明図である。
6A to 6D are explanatory views of the action of the phase shifter on linearly polarized waves.

【図7】(A)〜(E)は円偏波に対する位相器の作用
についての説明図である。
7 (A) to 7 (E) are explanatory views of the action of the phase shifter on circularly polarized waves.

【図8】(A)は、本発明の他の実施例を示す、円偏波
及び直線偏波共用一次放射器の一部切欠き斜視図であ
り、図1の方形導波管9を使用する代わりに励振プロー
ブ12を使用した例であり、(B)は同上の正面図であ
る。
8A is a partially cutaway perspective view of a primary radiator for both circularly polarized light and linearly polarized light, showing another embodiment of the present invention, in which the rectangular waveguide 9 of FIG. 1 is used. This is an example in which the excitation probe 12 is used instead of the above, and (B) is a front view of the same.

【図9】(A)図は、本発明のその他の実施例を示す円
偏波及び直線偏波共用一次放射器の一部切欠き斜視図で
あり、図1の金属塊を使用する代わりに金属板を使用し
た例であり、(B)図は、(A)図の正面図である。
9A is a partially cutaway perspective view of a primary radiator for both circularly polarized light and linearly polarized light, showing another embodiment of the present invention. Instead of using the metal block of FIG. 1, FIG. This is an example in which a metal plate is used, and (B) is a front view of (A).

【図10】(A)図は、本発明のその他の実施例を示す
円偏波及び直線偏波共用一次放射器の一部切欠き斜視図
であり、図1の金属塊を使用する代わりに金属製ビスを
使用した例であり、(B)図は、(A)図の正面図であ
る。
10 (A) is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, showing another embodiment of the present invention. Instead of using the metal block of FIG. This is an example in which a metal screw is used, and (B) is a front view of (A).

【図11】リフレクタと一次放射器の配置を示す説明図
であり、(A)図は、従来例を示し、(B)図は、本発
明の実施例を示す。
11A and 11B are explanatory views showing an arrangement of a reflector and a primary radiator, FIG. 11A shows a conventional example, and FIG. 11B shows an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 開口部 2 円形導波管 3 金属塊 4 金属塊 5 終端面 6 駆動部 7 誘電体板 8 回転軸 9 方形導波管 10 金属塊 11 金属塊 12 励振プローブ 13 金属板 14 金属板 15 金属製ビス 16 金属製ビス 17 切欠き線 18 切欠き線 19 切欠き線 20 リフレクタ 21 一次放射器 22 一次放射器 23 リフレクタ 24 一次放射器 1 Aperture 2 Circular Waveguide 3 Metal Lump 4 Metal Lump 5 End Surface 6 Driving Part 7 Dielectric Plate 8 Rotation Axis 9 Square Waveguide 10 Metal Lump 11 Metal Lump 12 Excitation Probe 13 Metal Plate 14 Metal Plate 15 Metal Made Screw 16 Metal screw 17 Notched wire 18 Notched wire 19 Notched wire 20 Reflector 21 Primary radiator 22 Primary radiator 23 Reflector 24 Primary radiator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一端を電磁波が導入し得る開口部とし、
他端に終端面を設けた円形導波管において、同円形導波
管の内部の開口部側から終端面に向かって順に、固定式
の第1位相回路と、回転式の第2位相回路とを設け、前
記第2位相回路と前記終端面の間に円形導波管の内部に
導入された電磁波の出力手段を設けて、円偏波の電磁波
が導入された場合は、前記第1位相回路で直線偏波に変
換し、前記第2位相回路を回転させて前記直線偏波の直
交する2つの偏波成分間の位相が変化しない向きとし
て、前記出力手段から信号を取り出し、直線偏波が導入
された場合は、水平及び垂直偏波の内どちらか一方に対
しては、同直線偏波の直交する2つの偏波成分間に対し
て前記第1位相回路で発生させた位相差を、前記第2位
相回路を回転させて同相となる向きとして、前記出力手
段から信号を取り出し、直線偏波の他方に対しては、前
記位相差が、前記第1位相回路と前記第2位相回路とで
約180度となるように、前記第2位相回路を回転させ
て、前記出力手段から信号を取り出すことを特徴とする
円偏波及び直線偏波共用一次放射器。
1. An opening at one end of which electromagnetic waves can be introduced,
In a circular waveguide having a terminating surface at the other end, a fixed first phase circuit and a rotating second phase circuit are sequentially arranged from the opening side inside the circular waveguide toward the terminating surface. And a means for outputting the electromagnetic wave introduced inside the circular waveguide between the second phase circuit and the terminal surface, and when the circularly polarized electromagnetic wave is introduced, the first phase circuit To convert it into a linearly polarized wave, rotate the second phase circuit, and take out a signal from the output means so that the phase between two orthogonal polarization components of the linearly polarized wave does not change. When introduced, for either one of the horizontal and vertical polarizations, the phase difference generated by the first phase circuit between the two orthogonal polarization components of the same linear polarization, A signal is taken out from the output means in a direction in which the second phase circuit is rotated to be in phase. For the other of the linearly polarized waves, the second phase circuit is rotated so that the phase difference is about 180 degrees between the first phase circuit and the second phase circuit, and the output means A primary radiator for both circularly polarized waves and linearly polarized waves, which is characterized in that a signal is taken out from it.
【請求項2】 前記出力手段が前記円形導波管の内部に
導入された直線偏波の水平及び垂直偏波の内どちらか一
方の電界と結合可能な向きにして、前記円形導波管の側
面に配設した方形導波管、又は励振プローブからなるこ
とを特徴とする請求項1記載の円偏波及び直線偏波共用
一次放射器。
2. The circular waveguide is oriented so that the output means can be coupled to an electric field of either one of horizontal and vertical polarizations of linearly polarized waves introduced into the circular waveguide. The primary radiator for dual-use circular polarization and linear polarization according to claim 1, characterized by comprising a rectangular waveguide or an excitation probe arranged on the side surface.
【請求項3】 前記第1位相回路が金属塊で構成された
90度位相器からなり、前記円形導波管の内部の円形表
面の少なくとも一方の円弧が平面になるように前記金属
塊を取り付け、円形導波管の管軸方向に沿った前記金属
塊の長さを、円形導波管の内部を伝播する電磁波のTE
11モードの直交する2つの偏波成分間の位相差を90
度とすることができる長さとし、円形導波管の開口部か
らみた前記金属塊の円形導波管の管軸方向に向かう中心
線と、前記出力手段の円形導波管の管軸方向に向かう中
心線とが、約45度の角度をなすように配置したことを
特徴とする請求項1記載の円偏波及び直線偏波共用一次
放射器。
3. The first phase circuit comprises a 90-degree phaser made of a metal block, and the metal block is attached such that at least one circular arc of a circular surface inside the circular waveguide is a flat surface. The length of the metal mass along the tube axis direction of the circular waveguide is set to TE of the electromagnetic wave propagating inside the circular waveguide.
The phase difference between two orthogonal polarization components of 11 modes is 90
The center line of the metal block in the direction of the tube axis of the circular waveguide as viewed from the opening of the circular waveguide, and the direction of the center of the output means in the tube axis direction of the circular waveguide. The primary radiator for dual use of circular polarization and linear polarization according to claim 1, wherein the primary radiator is arranged so as to form an angle of about 45 degrees with the center line.
【請求項4】 前記第1位相回路が少なくとも1枚の略
長方形の金属板で構成された90度位相器からなり、前
記円形導波管の内壁に前記金属板の短辺方向が円形導波
管の管軸に向かうようにして取り付け、円形導波管の管
軸方向に沿った前記金属板の長さを、円形導波管の内部
を伝播する電磁波のTE11モードの直交する2つの偏
波成分間の位相差を90度とすることができる長さと
し、円形導波管の開口部からみた前記金属板の円形導波
管の管軸方向に向かう中心線と、前記出力手段の円形導
波管の管軸方向に向かう中心線とが、約45度の角度を
なすように配置したことを特徴とする請求項1記載の円
偏波及び直線偏波共用一次放射器。
4. The first phase circuit comprises a 90-degree phaser composed of at least one substantially rectangular metal plate, and a circular waveguide is formed on an inner wall of the circular waveguide in a direction of a short side of the metal plate. Two polarized waves of TE11 mode of electromagnetic waves propagating inside the circular waveguide are orthogonal to each other, and the length of the metal plate along the tube axis direction of the circular waveguide is attached so as to face the tube axis. The phase difference between the components is set to 90 degrees, the center line of the circular waveguide of the metal plate in the axial direction of the circular waveguide seen from the opening of the circular waveguide, and the circular waveguide of the output means. The primary radiator for dual circular polarization and linear polarization according to claim 1, wherein the primary radiator is arranged so that the center line of the tube extending in the axial direction of the tube forms an angle of about 45 degrees.
【請求項5】 前記第1位相回路が複数の金属製ビスで
構成された90度位相器からなり、前記円形導波管の内
壁の少なくとも一方に円形導波管の管軸方向に沿って並
べて取り付け、各々の金属製ビスの先端が円形導波管の
管軸に向かうようにし、円形導波管の管軸方向に沿って
並べて取り付けた前記金属製ビスの列の長さを、円形導
波管の内部を伝播する電磁波のTE11モードの直交す
る2つの偏波成分間の位相差を約90度とすることがで
きる長さとし、円形導波管の開口部からみた前記金属製
ビスの円形導波管の管軸方向に向かう中心線と、前記出
力手段の円形導波管の管軸方向に向かう中心線とが、約
45度の角度をなすように配置したことを特徴とする請
求項1記載の円偏波及び直線偏波共用一次放射器。
5. The first phase circuit comprises a 90-degree phaser composed of a plurality of metal screws, and is arranged on at least one of the inner walls of the circular waveguide along the tube axial direction of the circular waveguide. Each of the metal screws is attached so that the tip of each metal screw is directed toward the tube axis of the circular waveguide, and the length of the row of the metal screws that are installed side by side along the tube axis direction of the circular waveguide is the circular waveguide. The length of the electromagnetic wave propagating in the inside of the tube between the two orthogonal polarization components of the TE11 mode is set to about 90 degrees, and the circular guide of the metal screw viewed from the opening of the circular waveguide is used. The center line of the wave guide in the tube axis direction and the center line of the circular waveguide of the output means in the tube axis direction are arranged at an angle of about 45 degrees. Primary radiator for both circular polarization and linear polarization described.
【請求項6】 前記第2位相回路が誘電体板で構成され
た90度位相器からなり、前記円形導波管の管軸を中心
として回転可能とし、同誘電体板の管軸方向に沿った長
さを、円形導波管の内部を伝播する電磁波のTE11モ
ードの直交する2つの偏波成分間の位相差を約90度と
することができる長さとしたことを特徴とする請求項1
記載の円偏波及び直線偏波共用一次放射器。
6. The second phase circuit comprises a 90-degree phaser composed of a dielectric plate, is rotatable about the tube axis of the circular waveguide, and is arranged along the tube axis direction of the dielectric plate. The length is set such that the phase difference between two orthogonal polarization components of the TE11 mode of the electromagnetic wave propagating inside the circular waveguide can be set to about 90 degrees.
Primary radiator for both circular polarization and linear polarization described.
JP19647691A 1991-08-06 1991-08-06 Primary radiator in common use with circularly polarized wave and linearly polarized wave Pending JPH0541602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19647691A JPH0541602A (en) 1991-08-06 1991-08-06 Primary radiator in common use with circularly polarized wave and linearly polarized wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19647691A JPH0541602A (en) 1991-08-06 1991-08-06 Primary radiator in common use with circularly polarized wave and linearly polarized wave

Publications (1)

Publication Number Publication Date
JPH0541602A true JPH0541602A (en) 1993-02-19

Family

ID=16358436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19647691A Pending JPH0541602A (en) 1991-08-06 1991-08-06 Primary radiator in common use with circularly polarized wave and linearly polarized wave

Country Status (1)

Country Link
JP (1) JPH0541602A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0711544A2 (en) 1994-10-18 1996-05-15 Kao Corporation Dentifrice composition
US6592887B2 (en) 1996-11-11 2003-07-15 Lts Lohmann Therapie-Systeme Ag Water soluble film for oral administration with instant wettability
US6596298B2 (en) 1998-09-25 2003-07-22 Warner-Lambert Company Fast dissolving orally comsumable films
US7067116B1 (en) 2000-03-23 2006-06-27 Warner-Lambert Company Llc Fast dissolving orally consumable solid film containing a taste masking agent and pharmaceutically active agent at weight ratio of 1:3 to 3:1
US8986735B2 (en) 2006-03-16 2015-03-24 Novartis Ag Solid dosage form containing a taste masked active agent

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0711544A2 (en) 1994-10-18 1996-05-15 Kao Corporation Dentifrice composition
US6592887B2 (en) 1996-11-11 2003-07-15 Lts Lohmann Therapie-Systeme Ag Water soluble film for oral administration with instant wettability
US6709671B2 (en) 1996-11-11 2004-03-23 Lts Lohmann Therapie-Systeme Ag Water soluble film for oral administration with instant wettability
US8865202B2 (en) 1996-11-11 2014-10-21 Lts Lohmann Therapie-Systeme Ag Water soluble film for oral administration with instant wettability
US6596298B2 (en) 1998-09-25 2003-07-22 Warner-Lambert Company Fast dissolving orally comsumable films
US6923981B2 (en) 1998-09-25 2005-08-02 Warner-Lambert Company Fast dissolving orally consumable films
US7025983B2 (en) 1998-09-25 2006-04-11 Warner-Lambert Company Llc Fast dissolving orally consumable films
US7407669B2 (en) 1998-09-25 2008-08-05 Mcneil-Ppc, Inc. Fast dissolving orally consumable films
US7491406B2 (en) 1998-09-25 2009-02-17 Mcneil-Ppc, Inc. Fast dissolving orally consumable films
US7067116B1 (en) 2000-03-23 2006-06-27 Warner-Lambert Company Llc Fast dissolving orally consumable solid film containing a taste masking agent and pharmaceutically active agent at weight ratio of 1:3 to 3:1
US7648712B2 (en) 2000-03-23 2010-01-19 Mcneil-Ppc, Inc. Fast dissolving orally consumable films containing a taste masking agent
US8986735B2 (en) 2006-03-16 2015-03-24 Novartis Ag Solid dosage form containing a taste masked active agent

Similar Documents

Publication Publication Date Title
US6087999A (en) Reflector based dielectric lens antenna system
US6181221B1 (en) Reflective waveguide variable power divider/combiner
JPH0444441B2 (en)
US6417742B1 (en) Circular polarizer having two waveguides formed with coaxial structure
JP2001237602A (en) Converter for receiving satellite double frequency band
EP1291965B1 (en) Antenna
US6181293B1 (en) Reflector based dielectric lens antenna system including bifocal lens
JPH0541602A (en) Primary radiator in common use with circularly polarized wave and linearly polarized wave
JPH0583004A (en) Primary radiator in common use for circularly polarized wave and linearly polarized wave
JP3472822B2 (en) Variable polarization system, polarization diversity system, and polarization modulation system
JPH0541603A (en) Primary radiator in common use with circularly polarized wave and linearly polarized wave
JPH0555806A (en) Primary radiator to be shared with circulariy polarized wave and linearly polarized wave
JPH0555807A (en) Primary radiator to be shared with circularly polarized wave and linearly polarized wave
JPH0529801A (en) Circularly polarized wave and linear polarized wave and shared primary radiator
JPH0555805A (en) Primary radiator to be shared with circularly polarized wave and linearly polarized wave
JPH05102702A (en) Primary radiator in common use of circularly polarized wave and linearly polarized wave
JPH07321502A (en) Primary radiator for linearly polarized wave
JPH05206720A (en) Primary radiator in common use for circularly and linearly polarized waves
JPH05235603A (en) Horizontally and vertically polarized wave changeover feed horn
JPH0555808A (en) Primary radiator to be shared with left-handed and right-handed circularly polarized waves
JPH0690101A (en) Circularly polarized wave and linearly polarized wave shared primary radiator multicoupling
JPH04373201A (en) Primary radiator in common use for circularly polarized wave and linearly polarized wave
JP2001196850A (en) Waveguide slot antenna
JPH06232602A (en) Primary radiator
JPH0583006A (en) Primary radiator in common use for leftward and rightward circular polarized wave