JPH0541594B2 - - Google Patents

Info

Publication number
JPH0541594B2
JPH0541594B2 JP1262960A JP26296089A JPH0541594B2 JP H0541594 B2 JPH0541594 B2 JP H0541594B2 JP 1262960 A JP1262960 A JP 1262960A JP 26296089 A JP26296089 A JP 26296089A JP H0541594 B2 JPH0541594 B2 JP H0541594B2
Authority
JP
Japan
Prior art keywords
liquid
fluidity
type phenolic
phenolic resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1262960A
Other languages
Japanese (ja)
Other versions
JPH03126679A (en
Inventor
Takashi Yamamura
Ryosuke Nakamura
Hiroshi Kiryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP1262960A priority Critical patent/JPH03126679A/en
Priority to PCT/JP1990/001305 priority patent/WO1991005748A1/en
Priority to DE69019730T priority patent/DE69019730T2/en
Priority to EP90914780A priority patent/EP0447562B1/en
Priority to AT90914780T priority patent/ATE123009T1/en
Priority to AU65142/90A priority patent/AU627945B2/en
Publication of JPH03126679A publication Critical patent/JPH03126679A/en
Priority to US08/034,665 priority patent/US5346942A/en
Publication of JPH0541594B2 publication Critical patent/JPH0541594B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は各種高温窯炉において補修用、充填用
に用いられる自己流動性を有する不定形耐火材に
関する。 〔従来の技術〕 転炉を中心に、電気炉、AOD炉、取鍋等にお
いて、材料の流動性を利用し、内張り耐火物の損
傷による凹部を充填する熱間補修材が広く使用さ
れている。 この材料としては一般に塩基性骨材にコールタ
ールピツチを添加して加温混練したり、場合によ
つてはクレオソート等を加え常温混練し、可塑性
のある塊状、固形状等や、骨材に粉状、粒状のピ
ツチを加えた粉末状等の形態としている。コール
タールは加熱後の残炭率が高く、よいカーボンボ
ンドを形成し、かつ価格も比較的低廉で、広く焼
付材のバインダーとして用いられてきた。 しかしコールタールピツチは揮発ガス中に有害
物質を含み、熱間補修時に激しい発煙を生じ作業
環境を悪くする。コールタールピツチは約500℃
以上で分解、重合反応により揮発分を失い炭化す
るが、各種組成の有機物の混合体であるため、反
応は複雑に進行する。たのため500〜600℃程度の
温度でのコールタールピツチの炭化、すなわち焼
付材の硬化までに長時間を要する。 焼付材は一般に高温で炉内に投入され、材料自
体の自然流動により、損傷により生じたライニン
グの凹部を埋めることにより、補修材としての効
果を発揮するものであるから、良好な流動性が要
求される。それ故良好な流動性を得るためにコー
ルタール添加量を増せば、流動性は得られても硬
化に要する時間がさらに長くなるという欠点を生
ずる。 これらのコールタール系バインダーを用いた焼
付材の欠点を改善するため種々の試みが提案され
ている。例えばコールタールの代りに芳香族石油
樹脂、石油ピツチおよび重質油から選ばれる熱可
塑物にフエノール樹脂又はメラミン樹脂と粉末炭
素を加えた配合物(特公昭62−28112)があるが、
石油系熱可塑物は炭化し固化後の強度に乏しく耐
摩耗性を要する転炉装入壁等には十分ではなく、
また塩基性骨材にノボラツク型フエノール樹脂を
加え、加温混練し塊状固形物とする(特公昭59−
17072)のは、炉体温度が高い場合、塊状物内部
が溶融軟化する前に表面が硬化及び炭化を開始し
てしまい、全体として流動しない場合が多く満足
な補修効果を得にくい。 また塩基性耐火骨材とコールタール等の瀝青物
質、フエノール樹脂等の熱硬化性樹脂にパラフイ
ンを添加混練し小塊に造粒した補修材(特開昭63
−74973)は、パラフインを用いることにより低
温加熱で混練が可能で、混練中に発煙を防止でき
る利点はあるが、高温炉内に投入されたとき塊状
物の表面の硬化が早く、各塊状物が瓦に溶融軟化
し一体化することがむずかしいという欠点があ
る。さらに塩基性耐火骨材に粒状コールタールピ
ツチ、粒状、液状で低分子量の熱可塑性樹脂およ
び有機溶媒を添加混練しブロツク状にする補修材
(特開昭61−242962)は自然流動性に乏しく、流
動体となつて凹部を埋めることに難点がある。さ
らにまた耐火材料と粉末樹脂を多価アルコールで
混練した材料(特開昭63−156081)は、特に熱硬
化型の樹脂を使用した場合は全く流動しない。 〔発明が解決しようとする課題〕 このようにコールタールピツチの場合には、硬
化に長時間を要するので、加熱による軟化状態が
かなりの時間接続され、流動性を示すが、有害物
質の発生や補修に長時間を要する。一方樹脂結合
材では焼付材の内部が加熱されて軟化する前に表
面では硬化が始まり、全体として流動することが
できず、一体化した施工体が得られないという傾
向がある。 このような問題点を解決するため、良好なカー
ボンボンドを形成し得る結合剤としてフエノール
樹脂を用い、かつ従来の樹脂を用いた補修材では
得られなかつた熱間流動性に優れ、強固に一体化
した施工体を提供する不定形耐火材を得るべく
種々検討した結果、本発明に到達した。 〔課題を解決するための手段〕 すなわち本発明は粒度調整された耐火骨材80〜
90重量部と液体ノボラツク型フエノール樹脂10〜
20重量部とから成る配合物に、融点もしくは軟化
点が50℃以上であり、有機溶剤に対して常温で不
溶又は難溶である有機質分離防止剤を添加混練
し、フロー値を125〜180mmとした自己流動性を有
する不定形耐火材を要旨とするものである。 本発明の不定形耐火材は従来のような可塑体や
固形状もしくは粉体状ではなく、自己流動性をも
つスラリー状の材料であつて、炉熱により軟化流
動するものでなく、常温でも流動性を有する。従
つて熱間の炉内に投入されたとき、高温中にあつ
ても良好な流動性を示し、炉内耐火ライニング壁
の損傷による凹部を充填し、かつ強固なカーボン
ボンドと共に緻密な一体化した耐火物層を形成
し、効果的な補修を可能ならしめる。 本発明の不定形耐火材に用いられる結合剤は、
不定形耐火材用結合剤としては既知である液体ノ
ボラツク型フエノール樹脂を用いる。ノボラツク
型フエノール樹脂は本来常温では固体であり、粉
末状や粒状のものがあるが、本発明においては常
温での自己流動性を与えるため、各種有機溶剤を
含有する液体のノボラツク型フエノール樹脂が用
いられる。 液体ノボラツク型フエノール樹脂のベースとな
るノボラツク型フエノール樹脂には、その重合度
により種々の分子量のものがある。分子量は特に
限定されるものではないが、一般に高分子量の樹
脂ほど有機溶剤を加えて液体化した場合高粘度で
あり、常温での自己流動性を与える点では液体樹
脂の混合量を増加させる傾向にあり、経済的であ
るといえない。また高分子量の樹脂ほど高温にさ
らされたときの重合が早く進み、硬化が早くな
り、熱間での流動性が低下する傾向があり、好ま
しくない。 単に流動性を付与するだけなら耐火骨材に対す
る液体ノボラツク型フエノール樹脂の混合量を多
くすることで容易に得られるが、保管中もしくは
トラツク等による輸送時の振動で耐火骨材が沈
降、分離し、実用は困難である。 本発明の不定形耐火材において最も重要な点は
良好な流動性と骨材の沈降、分離防止とを両立さ
せることにある。もちろん熱間で施工された硬化
体の品質特性、すなわち充填密度、強度等が満足
できるものでなければならない。 液体ノボラツク型フエノール樹脂は樹脂分と有
機溶剤とで構成されており、この比率や溶剤の種
類等により液体状態での粘度の異なる種々の市販
品がある。耐火材に流動性を与える上では、低粘
度の液体ノボラツク型フエノール樹脂を用いるこ
とにより少ない混合量でよく、一方高粘度の液体
ノボラツク型フエノール樹脂を用いる場合には比
較的混合量を増加させる必要がある。従つて経済
性の点からは低粘度の樹脂を少量使用するほうが
有効である。 また液体ノボラツク型フエノール樹脂の粘度の
値に関しては、同じ樹脂であつても温度によつて
変化する。低温では粘度が高く、高温では粘度が
低下する。これは気温の変化によつて配合物の自
己流動性に影響を与える程度に大きい変化であ
る。低粘度の場合、およそ10ポイズ未満の樹脂を
用いると配合物混練後、放置中の流動性に与える
経時変化が大きく好ましくない。この理由は明確
ではないが、放置中に骨材への液の浸透等の影響
があることも考えられる。 一方粘度が高く400ポイズを超えるような値で
あつても実用上大きな支障はないが、自己流動性
を与えるに必要な液体樹脂量が増加し経済的でな
い。従つて液体ノボラツク型フエノール樹脂の粘
度は配合物の製造時から使用されるまでの期間に
おける気温の変化に対して、およそ10ポイズから
400ポイズの範囲にあるように調整することが好
ましい。なお例えば高粘度の液体樹脂を用い、別
の有機溶剤を添加して事実上液分の粘度が上記範
囲にあるように調整しても同様である。 液体ノボラツク型フエノール樹脂における樹脂
分と有機溶剤との比率に関しては、通常の液体ノ
ボラツク型フエノール樹脂では樹脂分50%程度の
ものが多いが、硬化体におけるカーボンボンドの
形成による強度の点からは、樹脂分がおよそ15%
以上のものであれば使用可能である。 液体ノボラツク型フエノール樹脂に含有される
有機溶剤には特に限定はなく、フエノール樹脂を
溶解する液体であればよく、一般にはエタノー
ル、セロソルブ、エチレングリコール、トリエチ
レングリコール、プロピレングリコール等のアル
コール類、アセトン、メチルエチルケトン等のケ
トン類やフルフラールなどが単独又は混合使用さ
れるが、前記の粘度及び引火点等の安全性面を考
慮して決定される。 次に必要最少の液体ノボラツク型フエノール樹
脂量を求める実験を行つた。第1図は液体ノボラ
ツク型フエノール樹脂の混合量と熱間での流動性
との関係を示す図である。耐火材料には粒度調整
したマグネシアクリンカーを用い各種粘度を持つ
液体ノボラツク型フエノール樹脂を加え混練した
後のスラリー状材料の常温での自己流動性がフロ
ー値で140〜145mmとなるよう液体ノボラツク型フ
エノール樹脂量を調整して試料を作製した。この
試料1Kgを1000℃に加熱した試験炉内のキヤスタ
ブル耐火物製の平面板上に落下させ、放置した後
の試料の流動により広がつた直径を測定した値を
プロツトした。この図から明らかなように、液体
ノボラツク型フエノール樹脂が10%より少ない場
合には常温での自己流動性がほぼ同程度であつた
にも拘らず熱間での流動性が急激に低下する。一
方液体ノボラツク型フエノール樹脂量が多い場合
には、特に問題は発生しなかつたが、20%を超え
て混合しても熱間流動性の改善効果は少なく不経
済である。従つて液体ノボラツク型フエノール樹
脂の混合量は10〜20重量部であることが好まし
い。 このように耐火骨材と液体ノボラツク型フエノ
ール樹脂との混合により、加熱後満足すべきカー
ボンボンドを形成し、かつ常温で自己流動性をも
つ配合混練物が得られるが、もう一つの重要な問
題は一般に耐火骨材と液体ノボラツク型フエノー
ル樹脂とが濡れにくい性質を有するため、保管中
や特に輸送時の振動により耐火骨材が沈降、分離
してしまうことである。耐火骨材が沈降分離する
と下部の骨材沈降層は硬く、全く流動性を示さず
上部の微粉を含む液体樹脂層だけが流動する状態
となる。このように分離した材料は高温の窯炉内
に投入しても沈降層は塊のままで変形できず、上
部の液体樹脂層のみが流れるため満足し得る硬化
体組織は得られない。 そこでこの問題を解決すべく検討して得られた
のが、融点もしくは軟化点が50℃以上であり、有
機溶剤に対して常温で不溶又は難溶である有機質
分離防止剤である。 融点もしくは軟化点が50℃以上である有機質分
離防止剤としては、ポリエチレン、ポリプロピレ
ン等のポリオレフイン、パラフイン等のメタン列
炭化水素、ステアリン酸等の脂肪酸やその塩及び
エステル、油脂類及びその塩やエステル、各種合
成高分子化合物等で、特にその組成は限定されな
い。 有機質分離防止剤は常温では耐火骨材と同様に
固体であり、これを少量添加することにより見掛
上、液体樹脂量が不足した状態になり、耐火骨材
の沈降分離を実質上無視できる程度に抑制し得
る。従つて本発明において用いる有機質分離防止
剤は少なくとも配合物を製造し、使用されるまで
の温度で固体を保持しなければならず、輸送中の
温度上昇を考慮すると50℃以上の融点もしくは軟
化点を有することが必要である。有機質分離防止
剤の形態は粉状、鱗片状、繊維状、リボン状のよ
うに加工された表面積の大きいものが好ましい。
さらに有機質分離防止剤は本発明で用いる液体ノ
ボラツク型フエノール樹脂に含有されている有機
溶剤に対して、常温で不溶又は難溶であることが
必須で、かつ比較的低温、例えば200℃、好まし
くは150℃以下で低粘度の液体となることが好ま
しい。それにより常温では固体で耐火骨材の沈降
分離を防止し、加熱により比較的低温で液体化
し、熱間での流動性を助長するからである。 さらに有機質分離防止剤の比重が、液体ノボラ
ツク型フエノール樹脂の比重と同じか、小さい方
が好ましい。液体樹脂より比重が小さいと、有機
質分離防止剤に浮力が働き、比重の大きい耐火骨
材の沈降を阻止する効果が大きい。 有機質分離防止剤の添加量は少量でよく、通常
耐火骨材と液体ノボラツク型フエノール樹脂との
配合物に対して0.1〜5重量%である。0.1重量%
未満では液体樹脂量の多い配合の場合効果が小さ
く、また5重量%以下の添加で十分効果がみられ
るので、これを超えて添加しても意味がない。む
しろ過剰に添加した場合、混合物全体の自己流動
性や熱間流動性を低下させることがある。有機質
分離防止剤の最適添加量は耐火骨材の粒度構成や
液体ノボラツク型フエノール樹脂の粘度や混合
量、有機質分離防止剤自身の形態等によつて決定
される。 以上のようにして得られる耐火骨材と液体ノボ
ラツク型フエノール樹脂と有機質分離防止剤とを
混練した本発明の不定形耐火材が、良好な熱間流
動性と耐火骨材の沈降分離防止性を示す自己流動
性が適正な範囲にあるか否かをJIS R−2521のフ
ロー試験法によるフロー値で規定した。フロー試
験法は本来アルミナセメントの流動性を評価する
方法であるが、広くキヤスタブル耐火物の流動性
の評価にも用いられている。従つて本発明の不定
形耐火材においても自己流動性の調整にはそのま
ま適用できる。 さらにフロー値が大きい場合に耐火骨材の沈降
分離を生ずる場合が見出されたので、フロー値を
ある範囲に規定することが必要である。すなわち
第2図において、マグネシアクリンカーと液体ノ
ボラツク型フエノール樹脂とから成る配合物に有
機質分離防止剤を添加混練した試料について、フ
ロー値と熱間流動性並びに耐火骨材の分離との関
係を測定した。種々の粘度をもつ液体ノボラツク
型フエノール樹脂の混合量を適宜変化させ、かつ
各種の有機質分離防止剤を適当量添加して混練し
て試料を作製しその直後フロー値を測定し、熱間
流動性は試料を作製後3日間常温で放置した後、
前記第1図で求めたと同様に1000℃で試験を行つ
た。耐火骨材の分離深さについては、試料作製直
後に、円筒容器内に高さが100mmとなるように試
料を挿入し、30分間振動を加えた後、耐火骨材粒
を含まない微粉と液体とから成る上部層の深さを
測定したものである。 フロー値が125mmより少ない場合、熱間での流
動性の低下が大きく、また180mmを超えると耐火
骨材の分離の影響もあつて、液体樹脂が優先的に
流動し、全体としての流動、拡大が低下する傾向
がある。分離深さの面ではフロー値が180mmを超
えると振動を加えた後の耐火骨材粒の沈降が急激
に大きくなる。 このようにフロー値が125mm未満では自己流動
性が小さすぎるため、熱間での流動性も十分でな
い。一方フロー値が180mmを超えると有機質分離
防止剤を添加しても振動を加えると耐火骨材の沈
降が見られる場合もあるので、本発明の自己流動
性不定形耐火材がその性能を発揮するには、フロ
ー値が125〜180mmの範囲になければならない。 しかして液体ノボラツク型フエノール樹脂の粘
度は温度により変化するので、同じ配合比率の混
合物であつても、気温によつてフロー値が異な
る。従つて本発明の自己流動性不定形耐火材は配
合比率のみで規定することは困難である。しかし
ながら少なくとも耐火骨材80〜90部と液体ノボラ
ツク型フエノール樹脂10〜20部とから成る配合物
に有機質分離防止剤を添加混練した組成物におい
て、フロー値を規定すれば本発明の目的を達成す
る熱間流動性と耐火骨材の沈降分離防止性が得ら
れる。 本発明の自己流動性不定形耐火材に用いられる
耐火骨材は、例えば精錬炉等に用いられる場合に
は、マグネシア等の塩基性骨材がよく、溶銑容器
等ではシリカ、ジルコンもしくはアルミナ等の酸
性、中性の骨材を選択すればよいが、特に限定さ
れるものではない。耐火骨材の粒度は通常の不定
形耐火材に用いられる、例えば0.3mm以下の微粉
が20〜60%程度に調整したものが好ましい。 また硬化後組織の改善等の目的で、シリカ、ア
ルミナ、ジルコン等の超微粉を少量添加すること
も可能であり、さらにカーボンボンドを補強する
目的で炭素質物質、例えば黒鉛、カーボンブラツ
ク、固形ピツチ、メソフエースカーボン等を添加
してもよい。また流動性改善の目的で少量の界面
活性剤の添加も可能である。 〔実施例〕 本発明の不定形耐火材(実施例)、比較例、従
来例について熱間での流動性能、耐火骨材の沈降
分離及び熱間鋳込品の物性を別表に掲げた。 なお各物性等は下記の試験法に依つた。 フロー値はJIS R2521に準ずる方法により測
定、 分離深さは前記第2図の説明で示した方法によ
る、 熱間流動性は各試料作製後7日間放置した後、
前記第1図の説明で示した方法による、 流動終了時間は、落下させた試料が流動に伴
い、円形に拡大していく様子を目視で観察し、流
動が止まり、周囲に拡大しなくなるまでの時間を
測定、 発煙状態は目視による、 熱間鋳込品物性は、小型炉内に内寸法が200×
125×90mmの耐火物製のサヤをセツトし、1200℃
まで昇温し、バーナを切り、サヤの内面温度が
1000℃まで冷却された時に6Kgの試料を投入し、
放置し、常温まで冷却後切断し、サンプルを作製
する。このサンプルについて通常の方法で気孔率
と曲げ強度を測定
[Industrial Application Field] The present invention relates to a self-flowing monolithic refractory material used for repair and filling in various high-temperature kilns. [Conventional technology] Hot repair materials are widely used in converters, electric furnaces, AOD furnaces, ladles, etc. to fill in cavities caused by damage to lining refractories by utilizing the fluidity of the material. . This material is generally made by adding coal tar pitch to basic aggregate and kneading it under heat, or in some cases adding creosote etc. and kneading it at room temperature to form plastic lumps, solids, etc. It is in the form of powder, powder with granular pitch added, etc. Coal tar has a high residual carbon content after heating, forms a good carbon bond, and is relatively inexpensive, so it has been widely used as a binder for baking materials. However, coal tar pitch contains harmful substances in its volatile gases and generates intense smoke during hot repairs, creating a poor working environment. Coal tar pitch is approximately 500℃
As described above, volatile matter is lost through the decomposition and polymerization reactions, and the material is carbonized, but since it is a mixture of organic substances with various compositions, the reaction proceeds in a complicated manner. Therefore, it takes a long time to carbonize the coal tar pitch at a temperature of about 500 to 600°C, that is, to harden the baking material. Baking materials are generally put into a furnace at high temperatures, and the natural flow of the material itself fills in the dents in the lining caused by damage, making it effective as a repair material, so good fluidity is required. be done. Therefore, if the amount of coal tar added is increased in order to obtain good fluidity, even if fluidity is obtained, the disadvantage is that the time required for curing becomes longer. Various attempts have been proposed to improve the drawbacks of baking materials using these coal tar binders. For example, instead of coal tar, there is a mixture (Japanese Patent Publication No. 62-28112) in which a phenolic resin or melamine resin and powdered carbon are added to a thermoplastic selected from aromatic petroleum resin, petroleum pitch, and heavy oil.
Petroleum-based thermoplastics are carbonized and have poor strength after solidification, making them insufficient for materials such as converter charging walls that require wear resistance.
In addition, novolak type phenolic resin is added to the basic aggregate, and the mixture is heated and kneaded to form a lumpy solid material.
17072), when the temperature of the furnace body is high, the surface of the lump starts to harden and carbonize before the inside of the lump melts and softens, and the entire lump often does not flow, making it difficult to obtain a satisfactory repair effect. In addition, repair materials are prepared by adding paraffin to basic refractory aggregate, bituminous substances such as coal tar, and thermosetting resins such as phenolic resin, and granulating them into small lumps (Japanese Patent Laid-Open No. 63
-74973) can be kneaded by low-temperature heating by using paraffin, which has the advantage of preventing smoke generation during kneading, but when placed in a high-temperature furnace, the surface of the lumps hardens quickly, and each lump The disadvantage is that it is difficult to melt and soften the material and integrate it into the roof tile. Furthermore, a repair material made by adding and kneading granular coal tar pitch, a granular or liquid low molecular weight thermoplastic resin, and an organic solvent to a basic refractory aggregate (Japanese Patent Application Laid-Open No. 61-242962) has poor natural flowability. The problem is that it becomes a fluid and fills the recesses. Furthermore, a material obtained by kneading a fireproof material and a powdered resin with a polyhydric alcohol (Japanese Patent Application Laid-Open No. 156081/1981) does not flow at all, especially when a thermosetting resin is used. [Problems to be Solved by the Invention] As described above, coal tar pitch takes a long time to harden, so it remains in a softened state due to heating for a considerable period of time and exhibits fluidity, but there is a problem with the generation of harmful substances and Repairs take a long time. On the other hand, with resin binding materials, the surface of the baking material begins to harden before the inside of the baking material is heated and softened, and the entire material cannot flow, making it difficult to obtain an integrated construction body. In order to solve these problems, we used phenolic resin as a binder that can form a good carbon bond, and it also has excellent hot fluidity that could not be obtained with conventional repair materials using resin, and is strongly integrated. As a result of various studies in order to obtain a monolithic refractory material that provides a construction body with improved construction properties, the present invention was achieved. [Means for Solving the Problems] That is, the present invention provides a refractory aggregate with particle size adjustment of 80~
90 parts by weight and 10 to 10 parts of liquid novolak type phenolic resin
An organic separation inhibitor that has a melting point or softening point of 50°C or higher and is insoluble or sparingly soluble in organic solvents at room temperature is added and kneaded to a mixture consisting of 20 parts by weight to give a flow value of 125 to 180 mm. The gist is a monolithic refractory material with self-flowing properties. The monolithic refractory material of the present invention is not a plastic, solid or powder-like material as in the past, but is a slurry-like material with self-flowing properties, and does not soften and flow due to furnace heat, but flows even at room temperature. have sex. Therefore, when it is put into a hot furnace, it shows good fluidity even at high temperatures, fills the recesses caused by damage to the refractory lining wall in the furnace, and forms a dense and integrated structure with a strong carbon bond. Forms a refractory layer and enables effective repair. The binder used in the monolithic refractory material of the present invention is
A known liquid novolak type phenolic resin is used as the binder for the amorphous refractory material. Novolak type phenolic resin is originally solid at room temperature, and there are powdered and granular forms, but in the present invention, in order to provide self-flowing properties at room temperature, liquid novolak type phenolic resin containing various organic solvents is used. It will be done. Novolac type phenolic resins, which are the base of liquid novolac type phenolic resins, have various molecular weights depending on their degree of polymerization. Although the molecular weight is not particularly limited, in general, higher molecular weight resins have higher viscosity when liquefied by adding an organic solvent, and the tendency is to increase the amount of liquid resin mixed in order to provide self-flowing properties at room temperature. Therefore, it cannot be said that it is economical. Further, higher molecular weight resins tend to polymerize more quickly when exposed to high temperatures, harden more quickly, and have lower hot fluidity, which is not preferable. Simply adding fluidity to the refractory aggregate can be easily achieved by mixing a large amount of liquid novolak type phenolic resin to the refractory aggregate, but the refractory aggregate may settle and separate due to vibrations during storage or transportation by truck, etc. , it is difficult to put it into practice. The most important point in the monolithic refractory material of the present invention is to achieve both good fluidity and prevention of settling and separation of aggregate. Of course, the quality characteristics of the hot-applied cured body, ie, the filling density, strength, etc., must be satisfactory. Liquid novolak type phenolic resin is composed of a resin component and an organic solvent, and there are various commercially available products with different viscosities in the liquid state depending on the ratio of the resin and the type of solvent. In order to give fluidity to the refractory material, by using a low viscosity liquid novolak type phenolic resin, a small amount of mixing is required, whereas when using a high viscosity liquid novolak type phenolic resin, it is necessary to increase the mixing amount relatively. There is. Therefore, from an economic point of view, it is more effective to use a small amount of low viscosity resin. Furthermore, the viscosity of liquid novolac type phenolic resins varies depending on the temperature even if the resin is the same. At low temperatures, the viscosity is high, and at high temperatures, the viscosity decreases. This is a large enough change to affect the self-flowing properties of the formulation due to changes in temperature. In the case of a low viscosity, if a resin with a viscosity of less than about 10 poise is used, it is not preferable because the fluidity changes over time after the compound is kneaded and left to stand. Although the reason for this is not clear, it is thought that there may be an influence such as penetration of liquid into the aggregate during storage. On the other hand, even if the viscosity is high and exceeds 400 poise, there is no practical problem, but the amount of liquid resin required to provide self-flowing properties increases, which is not economical. Therefore, the viscosity of liquid novolak phenolic resins varies from approximately 10 poise to changes in temperature from the time the formulation is manufactured until it is used.
It is preferable to adjust it within the range of 400 poise. Note that, for example, the same effect can be obtained by using a high-viscosity liquid resin and adding another organic solvent to adjust the viscosity of the liquid component so that it falls within the above range. Regarding the ratio of resin content to organic solvent in liquid novolac type phenolic resin, most of the ordinary liquid novolac type phenolic resins have a resin content of about 50%, but in terms of strength due to the formation of carbon bonds in the cured product, Approximately 15% resin content
Anything above can be used. The organic solvent contained in the liquid novolak type phenolic resin is not particularly limited, as long as it dissolves the phenolic resin, and generally includes alcohols such as ethanol, cellosolve, ethylene glycol, triethylene glycol, and propylene glycol, and acetone. , ketones such as methyl ethyl ketone, furfural, and the like may be used alone or in combination, and are determined in consideration of safety aspects such as the above-mentioned viscosity and flash point. Next, an experiment was conducted to determine the minimum amount of liquid novolak type phenolic resin required. FIG. 1 is a diagram showing the relationship between the amount of liquid novolak type phenolic resin mixed and the fluidity in hot conditions. For the refractory material, we use magnesia clinker whose particle size has been adjusted, and liquid novolac type phenolic resin with various viscosities is added so that the self-fluidity of the slurry material after kneading is 140 to 145 mm in flow value at room temperature. Samples were prepared by adjusting the amount of resin. 1 kg of this sample was dropped onto a flat plate made of castable refractory material in a test furnace heated to 1000°C, and the measured value of the diameter expanded by the flow of the sample after standing was plotted. As is clear from this figure, when the liquid novolak type phenolic resin is less than 10%, the hot fluidity rapidly decreases even though the self-fluidity at room temperature is approximately the same. On the other hand, when the amount of liquid novolak type phenolic resin is large, no particular problem occurs, but even if the amount exceeds 20%, the effect of improving hot fluidity is small and it is uneconomical. Therefore, the amount of liquid novolak type phenolic resin mixed is preferably 10 to 20 parts by weight. In this way, by mixing refractory aggregate and liquid novolac type phenolic resin, it is possible to obtain a blended material that forms satisfactory carbon bonds after heating and has self-flowing properties at room temperature, but there is another important problem. Generally, the refractory aggregate and the liquid novolak type phenolic resin have a property of being difficult to wet, so the refractory aggregate settles and separates due to vibrations during storage or especially during transportation. When the refractory aggregate settles and separates, the lower aggregate sedimentation layer is hard and shows no fluidity, leaving only the upper liquid resin layer containing fine powder fluid. Even if the material separated in this way is placed in a high-temperature kiln, the sedimentary layer remains a lump and cannot be deformed, and only the upper liquid resin layer flows, making it impossible to obtain a satisfactory hardened structure. In order to solve this problem, we have developed an organic separation inhibitor that has a melting point or softening point of 50° C. or higher and is insoluble or poorly soluble in organic solvents at room temperature. Organic separation inhibitors with a melting point or softening point of 50°C or higher include polyolefins such as polyethylene and polypropylene, methane group hydrocarbons such as paraffin, fatty acids such as stearic acid, their salts and esters, oils and fats and their salts and esters. , various synthetic polymer compounds, etc., and the composition thereof is not particularly limited. The organic separation inhibitor is solid at room temperature like the refractory aggregate, and by adding a small amount of it, the amount of liquid resin appears to be insufficient, and the sedimentation and separation of the refractory aggregate can be virtually ignored. can be suppressed. Therefore, the organic separation preventive agent used in the present invention must at least maintain a solid state at the temperature from which the compound is manufactured until it is used, and should have a melting point or softening point of 50°C or higher, taking into account the temperature rise during transportation. It is necessary to have The organic separation preventing agent is preferably in the form of a powder, scale, fiber, or ribbon with a large surface area.
Furthermore, it is essential that the organic separation inhibitor is insoluble or poorly soluble at room temperature in the organic solvent contained in the liquid novolac type phenolic resin used in the present invention, and preferably at a relatively low temperature, e.g. It is preferable that the liquid becomes a low viscosity liquid at 150°C or lower. This is because the refractory aggregate, which is solid at room temperature, prevents sedimentation and separation, and when heated, becomes liquefied at a relatively low temperature, promoting fluidity in hot conditions. Furthermore, it is preferable that the specific gravity of the organic separation inhibitor is the same as or smaller than the specific gravity of the liquid novolak type phenolic resin. When the specific gravity is lower than that of the liquid resin, buoyancy acts on the organic separation preventive agent, which is highly effective in preventing settling of the refractory aggregate, which has a high specific gravity. The amount of the organic segregation inhibitor to be added may be small, and is usually 0.1 to 5% by weight based on the blend of fireproof aggregate and liquid novolak type phenolic resin. 0.1% by weight
If the amount is less than 5% by weight, the effect will be small in the case of formulations with a large amount of liquid resin, and since a sufficient effect can be seen with addition of 5% by weight or less, there is no point in adding more than 5% by weight. On the contrary, if it is added in excess, it may reduce the self-flowability and hot fluidity of the entire mixture. The optimum amount of the organic separation preventive agent to be added is determined by the particle size structure of the refractory aggregate, the viscosity and mixing amount of the liquid novolak type phenolic resin, the form of the organic separation preventive agent itself, etc. The amorphous refractory material of the present invention, which is obtained by kneading the refractory aggregate obtained as described above, a liquid novolak type phenolic resin, and an organic separation preventive agent, has good hot fluidity and anti-sedimentation properties of the refractory aggregate. Whether or not the self-flowing property shown was within an appropriate range was determined by the flow value according to the flow test method of JIS R-2521. The flow test method is originally a method for evaluating the fluidity of alumina cement, but it is also widely used to evaluate the fluidity of castable refractories. Therefore, the monolithic refractory material of the present invention can be directly applied to the adjustment of self-fluidity. Furthermore, it has been found that when the flow value is large, sedimentation and separation of the refractory aggregate occurs in some cases, so it is necessary to specify the flow value within a certain range. That is, in Fig. 2, the relationship between the flow value, hot fluidity, and separation of the refractory aggregate was measured for a sample obtained by adding and kneading an organic separation inhibitor to a compound consisting of magnesia clinker and liquid novolak type phenolic resin. . Samples were prepared by changing the mixing amount of liquid novolak type phenolic resins with various viscosities, adding appropriate amounts of various organic separation inhibitors, and kneading them. After leaving the sample at room temperature for 3 days after preparation,
The test was conducted at 1000°C in the same manner as determined in FIG. 1 above. Regarding the separation depth of refractory aggregate, immediately after preparing the sample, insert the sample into a cylindrical container so that the height is 100 mm, and after applying vibration for 30 minutes, fine powder and liquid that do not contain refractory aggregate particles are separated. The depth of the upper layer consisting of If the flow value is less than 125 mm, the fluidity in hot conditions will decrease significantly, and if it exceeds 180 mm, the liquid resin will flow preferentially due to the effect of separation of the refractory aggregate, causing overall flow and expansion. tends to decrease. In terms of separation depth, when the flow value exceeds 180 mm, the sedimentation of refractory aggregate particles increases rapidly after vibration is applied. As described above, when the flow value is less than 125 mm, the self-flowability is too small, and the hot fluidity is also insufficient. On the other hand, if the flow value exceeds 180 mm, sedimentation of the refractory aggregate may be observed when vibration is applied even if an organic separation inhibitor is added, so the self-flowing monolithic refractory material of the present invention exhibits its performance. The flow value must be in the range 125-180mm. However, since the viscosity of the liquid novolak type phenolic resin changes depending on the temperature, even if the mixture has the same blending ratio, the flow value will differ depending on the temperature. Therefore, it is difficult to define the self-flowing monolithic refractory material of the present invention only by the blending ratio. However, the object of the present invention can be achieved if the flow value is specified in a composition obtained by adding and kneading an organic separation inhibitor to a mixture consisting of at least 80 to 90 parts of refractory aggregate and 10 to 20 parts of liquid novolak type phenolic resin. Provides hot fluidity and prevention of sedimentation and separation of refractory aggregates. The refractory aggregate used in the self-flowing monolithic refractory material of the present invention is preferably a basic aggregate such as magnesia when used in a smelting furnace, etc., and a basic aggregate such as silica, zircon, or alumina when used in a hot metal container etc. Acidic or neutral aggregates may be selected, but are not particularly limited. The particle size of the refractory aggregate is preferably adjusted to about 20 to 60% fine powder of 0.3 mm or less, which is used for ordinary unshaped refractories. It is also possible to add a small amount of ultrafine powder such as silica, alumina, or zircon to improve the structure after hardening, and carbonaceous materials such as graphite, carbon black, or solid pitch can also be added to reinforce the carbon bond. , mesophase carbon, etc. may be added. It is also possible to add a small amount of surfactant for the purpose of improving fluidity. [Example] For the monolithic refractory material (Example) of the present invention, comparative examples, and conventional examples, the hot flow performance, sedimentation separation of refractory aggregate, and physical properties of hot cast products are listed in the attached table. In addition, each physical property etc. depended on the following test method. The flow value was measured by the method according to JIS R2521, the separation depth was measured by the method shown in the explanation of Figure 2 above, and the hot fluidity was measured after each sample was left for 7 days after preparation.
The flow end time is determined by visually observing how the dropped sample expands in a circular shape as it flows, and determining the flow end time using the method shown in the explanation of Figure 1 above. The time is measured, the state of smoke generation is visually checked, and the physical properties of the hot cast product are measured in a small furnace with internal dimensions of 200×
A 125 x 90 mm refractory pod was set and heated to 1200℃.
Turn off the burner until the internal temperature of the pod reaches
When the sample was cooled to 1000℃, a 6 kg sample was put into it.
Leave it to stand, cool it to room temperature, and then cut it to prepare a sample. Measure the porosity and bending strength of this sample using standard methods.

〔発明の効果〕〔Effect of the invention〕

本発明の自己流動性不定形耐火材は有機質分離
防止剤の添加により耐火骨材の沈降分離も殆どな
く優れた流動性を示す。従つて種々の利益を齎ら
す。例えば1t程度のフレキシブルコンテナバツグ
で梱包し、そのまま移送保管し、炉内に投入でき
るため、従来多く用いられてきた5〜10Kgの小口
梱包が不要で作業が容易である。また従来流動性
をもつものは使用現場でミキサー等で混練されて
いたが、本発明の不定形耐火材であれば製造工場
で混練しておくことができるため、常温施工用の
流動性を要する材料、例えば隙間の充填用材料等
にも適用できる。 また本発明品を例えば250tの容量をもつ転炉の
補修用に使用され、約1200℃で1回当り1t〜1.5t
をフレキシブルコンテナごと投入した直後には良
好な流動性により平面状となり、約20分で硬化
し、使用される。従来のピツチ材料では使用まで
に約1時間半の長時間を要し、かつ寿命も従来が
5〜6チヤージであつたものが、本発明品では10
〜15チヤージと大幅に向上した。
The self-flowing monolithic refractory material of the present invention exhibits excellent fluidity with almost no sedimentation and separation of the refractory aggregate due to the addition of an organic separation inhibitor. Therefore, it brings about various benefits. For example, it can be packed in a flexible container bag of about 1 ton, transported and stored as it is, and then put into the furnace, making the work easier as it eliminates the need for small packages of 5 to 10 kg, which have been used in the past. In addition, conventionally fluid materials were kneaded in a mixer etc. at the site of use, but the monolithic refractory material of the present invention can be kneaded at the manufacturing factory, so it requires fluidity for construction at room temperature. It can also be applied to materials such as materials for filling gaps. In addition, the product of the present invention is used for repairing a converter with a capacity of 250 tons, and the product is used for repairing a converter with a capacity of 250 tons.
Immediately after putting it into a flexible container, it becomes flat due to its good fluidity, hardens in about 20 minutes, and is ready for use. Conventional pitch material requires a long time of about 1 and a half hours to use, and the lifespan was 5 to 6 charges, but the product of the present invention has a lifespan of 10
A significant improvement of ~15 charges.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は液体ノボラツク型フエノール樹脂の混
合量と熱間流動性の関係、第2図はフロー値と熱
間流動性の関係をそれぞれ示すグラフであり、第
3図は実施例2と従来例4の各温度における硬化
時間を示すグラフである。
Figure 1 is a graph showing the relationship between the mixing amount of liquid novolak type phenolic resin and hot fluidity, Figure 2 is a graph showing the relationship between flow value and hot fluidity, and Figure 3 is a graph showing the relationship between Example 2 and the conventional example. 4 is a graph showing the curing time at each temperature.

Claims (1)

【特許請求の範囲】 1 粒度調整された耐火骨材80〜90重量部と液体
ノボラツク型フエノール樹脂10〜20重量部とから
成る配合物に、融点もしくは軟化点が50℃以上で
あり、有機溶剤に対して常温で不溶又は難溶であ
る有機質分離防止剤を添加混練し、フロー値を
125〜180mmとした自己流動性を有する不定形耐火
材。 2 有機質分離防止剤がポリエチレン、ポリプロ
ピレン等のポリオレフイン、パラフイン等のメタ
ン列炭化水素、ステアリン酸等の脂肪酸やその塩
又はエステル、油脂類やその塩又はエステルの少
なくとも1種である請求項1記載の不定形耐火
材。
[Scope of Claims] 1. A blend consisting of 80 to 90 parts by weight of refractory aggregate whose particle size has been adjusted and 10 to 20 parts by weight of liquid novolak type phenolic resin, which has a melting point or softening point of 50°C or higher, and an organic solvent. An organic separation inhibitor that is insoluble or poorly soluble at room temperature is added and kneaded to adjust the flow value.
A monolithic refractory material with self-flowing properties of 125 to 180 mm. 2. The organic separation inhibitor is at least one of polyolefins such as polyethylene and polypropylene, methane group hydrocarbons such as paraffin, fatty acids such as stearic acid, salts or esters thereof, and fats and oils and salts or esters thereof. Monolithic refractory material.
JP1262960A 1989-10-11 1989-10-11 Monolithic refractory Granted JPH03126679A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1262960A JPH03126679A (en) 1989-10-11 1989-10-11 Monolithic refractory
PCT/JP1990/001305 WO1991005748A1 (en) 1989-10-11 1990-10-09 Amorphous refractory material
DE69019730T DE69019730T2 (en) 1989-10-11 1990-10-09 AMORPHE FIREPROOF COMPOSITION.
EP90914780A EP0447562B1 (en) 1989-10-11 1990-10-09 Amorphous refractory material
AT90914780T ATE123009T1 (en) 1989-10-11 1990-10-09 AMORPHOUS FIREPROOF COMPOSITION.
AU65142/90A AU627945B2 (en) 1989-10-11 1990-10-09 Amorphous refractory material
US08/034,665 US5346942A (en) 1989-10-11 1993-03-22 Monolithic refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262960A JPH03126679A (en) 1989-10-11 1989-10-11 Monolithic refractory

Publications (2)

Publication Number Publication Date
JPH03126679A JPH03126679A (en) 1991-05-29
JPH0541594B2 true JPH0541594B2 (en) 1993-06-23

Family

ID=17382938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262960A Granted JPH03126679A (en) 1989-10-11 1989-10-11 Monolithic refractory

Country Status (1)

Country Link
JP (1) JPH03126679A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094396A (en) * 2017-11-21 2019-06-20 住友ベークライト株式会社 Phenol resin composition and refractory
KR20190059519A (en) 2017-11-23 2019-05-31 (주)포스코케미칼 Unshaped refractory composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410315A (en) * 1977-06-25 1979-01-25 Sumitomo Metal Ind Lowwtemperature curable*pressureeinsersion composition for blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410315A (en) * 1977-06-25 1979-01-25 Sumitomo Metal Ind Lowwtemperature curable*pressureeinsersion composition for blast furnace

Also Published As

Publication number Publication date
JPH03126679A (en) 1991-05-29

Similar Documents

Publication Publication Date Title
JPS62502332A (en) Granular, plastic, carbon-containing refractory compositions
US4327185A (en) Refractory compositions with binder
JPH0541594B2 (en)
NO873508L (en) ELECTRIC CONDUCTIVE CEMENT FOR USE IN ELECTROLYCLE CELLS.
US5346942A (en) Monolithic refractories
KR0144771B1 (en) Refractory composition for sealing
AU627945B2 (en) Amorphous refractory material
US3763085A (en) Refractory composition
JP3725910B2 (en) Method for manufacturing irregular refractories for hot repair
JP3037625B2 (en) Baking repair material
JP4044151B2 (en) Baking repair material
JP3222709B2 (en) Powder baking repair material
JP3729495B2 (en) Baking repair material
JPH02267172A (en) Hot repairing material and hot repairing method
JPH03271168A (en) Amorphous refractory
JPH0146473B2 (en)
KR100300854B1 (en) Carbonaceous Amorphous Refractories for Steelmaking Containers
JP3282963B2 (en) Baking repair material
JPH0413316B2 (en)
JP3151202B2 (en) Refractory materials
JPH09142944A (en) Press-fitting material for spacing part of furnace and method for repairing furnace
KR20000016688A (en) Seizure repairing material
JPH09227215A (en) Baking repairing material
JP3223039B2 (en) High durability baking repair material
JP2000063183A (en) Closing material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees