JPH0541432A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPH0541432A
JPH0541432A JP3240712A JP24071291A JPH0541432A JP H0541432 A JPH0541432 A JP H0541432A JP 3240712 A JP3240712 A JP 3240712A JP 24071291 A JP24071291 A JP 24071291A JP H0541432 A JPH0541432 A JP H0541432A
Authority
JP
Japan
Prior art keywords
wiring layer
integrated circuit
circuit device
semiconductor integrated
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3240712A
Other languages
Japanese (ja)
Other versions
JP2887972B2 (en
Inventor
Tadao Yasusato
直生 安里
Takanori Saeki
貴範 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3240712A priority Critical patent/JP2887972B2/en
Publication of JPH0541432A publication Critical patent/JPH0541432A/en
Application granted granted Critical
Publication of JP2887972B2 publication Critical patent/JP2887972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To obtain a manufacturing method making it easy to recognize whether a photo resist film is exposed and developed with desired precision, by a method wherein, in the manufacturing method of a high integration level IC containing a multilayer interconnection layer having step-differences, an L/S pattern for inspection is formed on the photo resist film corresponding with each of the wiring layers. CONSTITUTION:On a semiconductor substrate 1, function regions like wiring layers are formed in a plurality of layers. L/S patterns 2a-5d for inspection are formed for the respective processes, on the peripheral parts 1A-1D of a photo resist film covering the whole chip surface containing step-differences generated in the processes. At the same time as the formation of conductor wiring layers, interlayer insulating films, etc., the above L/S patterns are formed in the mutually adjacent positions by photolithography. The title manufacturing method contains the process wherein the resolution of the L/S pattern is inspected with a microscope in each forming process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は高集積度の半導体集積
回路装置(IC)の製造方法に関し、特に多層配線層を
備えるこの種のICの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a highly integrated semiconductor integrated circuit device (IC), and more particularly to a method for manufacturing such an IC having a multi-layer wiring layer.

【0002】[0002]

【従来の技術】半導体基板内に形成される半導体素子の
高集積度化に伴い、基板表面に絶縁膜を介して形成され
る回路配線パターンの微細化および高集積度化が進み、
線幅1μm以下のパターンが要求されるに至っている。
半導体基板内の素子の微細化/高集積度化についても基
板表面の回路配線パターンの微細化/高集積度化につい
ても、リソグラフィ工程においてフォトレジスト膜に形
成される遮光マスクの実像の精細度(解像度:Reso
lution)を確保しなければならない。そのため
に、フォトレジスト膜の露光に通常使われる縮小投影露
光装置(ステッパ)の光源としては、エキシマレーザな
ど波長の短い光源が使われるようになってきている。周
知のとおり、この解像度は上記露光装置の光源の短波長
化にほぼ正比例して高まるからである。一方、上記解像
度は上記露光装置のレンズの開口数(Numerica
l Aperture:NA)に反比例する。すなわ
ち、開口数(NA)が大きいほど解像度は上がる。した
がって、上記露光装置はその光源を波長の短い光源にす
るとともに、その波長短縮化が実際問題として限界に達
していることに伴い、上記開口数を大きくする手法が従
来採られてきている。しかしながら、この露光装置の光
学系の焦点深度(Depth of Focus:DO
F)は開口数の2乗に反比例するから、開口数を大きく
して解像度を上げると、焦点深度が不可避的に減少し、
露光工程における最適焦点の許容範囲が狭くなる。
2. Description of the Related Art With the increase in the degree of integration of semiconductor elements formed in a semiconductor substrate, the circuit wiring patterns formed on the surface of the substrate via an insulating film are becoming finer and more highly integrated.
A pattern having a line width of 1 μm or less has been required.
For the miniaturization / high integration of the elements in the semiconductor substrate and the miniaturization / high integration of the circuit wiring pattern on the substrate surface, the definition of the real image of the light-shielding mask formed on the photoresist film in the lithography process ( Resolution: Reso
must be secured. Therefore, as a light source of a reduction projection exposure apparatus (stepper) usually used for exposing a photoresist film, a light source with a short wavelength such as an excimer laser has been used. This is because, as is well known, this resolution increases substantially in proportion to the shortening of the wavelength of the light source of the above-mentioned exposure apparatus. On the other hand, the resolution is the numerical aperture (Numerica) of the lens of the exposure apparatus.
l Aperture: NA). That is, the larger the numerical aperture (NA), the higher the resolution. Therefore, in the exposure apparatus, a light source having a short wavelength is used as a light source, and a method of increasing the numerical aperture has been conventionally used because the shortening of the wavelength has reached a limit as a practical problem. However, the depth of focus (DO) of the optical system of this exposure apparatus is
Since F) is inversely proportional to the square of the numerical aperture, increasing the numerical aperture and increasing the resolution inevitably reduces the depth of focus,
The allowable range of the optimum focus in the exposure process becomes narrow.

【0003】[0003]

【発明が解決しようとする課題】半導体基板内に不純物
拡散層を形成するためのリソグラフィ工程におけるフォ
トレジスト膜の露光は、その膜がほぼ同一平面内に通常
納まるので、上記最適焦点の許容範囲の狭まりは問題と
ならない。しかし、基板表面に絶縁膜を介して形成され
る配線層、特に高集積度化に伴う多層配線層の各層の形
成のためのフォトレジスト膜は段差を伴う平面に形成さ
れるので、そのレジスト膜全体を上記許容範囲に入れる
ことは困難になる。フォトレジスト膜がその一部でも上
記許容範囲を逸脱した状態で露光するとその部分の回路
パターンは回路の短絡または断線を生じ製品の良品率を
下げる。
In the exposure of the photoresist film in the lithography process for forming the impurity diffusion layer in the semiconductor substrate, since the film usually fits in substantially the same plane, the optimum focus is within the allowable range. Narrowing is not a problem. However, since the wiring layer formed on the surface of the substrate via the insulating film, especially the photoresist film for forming each layer of the multi-layered wiring layer due to high integration, is formed on a flat surface with steps, the resist film It becomes difficult to put the whole into the above-mentioned allowable range. If even a part of the photoresist film is exposed in a state of deviating from the above-mentioned allowable range, the circuit pattern of that part causes a short circuit or a disconnection of the circuit, which reduces the yield rate of the product.

【0004】一方、上記縮小投影露光装置は通常オート
フォーカス装置を備え、上記最適焦点が自動的に決定さ
れるように構成されているが、この装置による距離の精
密測定はIC表面からの反射光に生ずる干渉に基づいて
いるので、その表面における上記段差はこの光の干渉に
影響を与え、距離測定の精度を害する。したがって、上
記段差を含むIC表面のリソグラフィ加工においては、
フォトレジスト膜の露光・現像のあとで、実際の回路パ
ターン全部あるいは上記段差を含む回路パターン部分を
顕微鏡による観察で確認した上で次の工程に進む手法が
採られる。実際の回路パターンの代わりに、チップ周縁
部に予め形成した所定のチェックパターン(通常はスト
ライプとスペースとを交互に配置したライン・アンド・
スペース(Line and Space(L/S)繰
返しパターン、集積回路ハンドブック(1968、丸
善、P269、図6.109)に示す)を顕微鏡で確認
する手法も同様に採られる。しかし、前者の手法は実際
の回路パターンの複雑化とともに実施が困難になるの
で、後者の手法がより一般に採られる傾向にある。
On the other hand, the above-mentioned reduction projection exposure apparatus is usually equipped with an auto-focusing device so that the above-mentioned optimum focus is automatically determined. However, the precise measurement of the distance by this device allows the reflected light from the IC surface to be reflected. Since the interference is caused by the above, the step on the surface affects the interference of this light and impairs the accuracy of distance measurement. Therefore, in the lithography processing of the IC surface including the step,
After the exposure and development of the photoresist film, a method of advancing to the next step after observing the entire actual circuit pattern or the circuit pattern portion including the above-mentioned step by a microscope is adopted. Instead of an actual circuit pattern, a predetermined check pattern formed in advance on the peripheral portion of the chip (usually line and pattern in which stripes and spaces are alternately arranged)
A method of confirming a space (Line and Space (L / S) repeating pattern, shown in Integrated Circuit Handbook (1968, Maruzen, P269, FIG. 6.109)) with a microscope is also adopted. However, since the former method becomes difficult to implement as the actual circuit pattern becomes complicated, the latter method tends to be adopted more generally.

【0005】後者の手法による場合も上記段差の悪影響
を解消できない。すなわち、IC基板上に直接に形成さ
れるチェックパターンについて最適焦点が決定できたと
しても、上記段差分だけ異なるレベルにある配線パター
ンが上記最適焦点の許容範囲にあるかどうかは確定でき
ないからである。
Even with the latter method, the adverse effect of the step difference cannot be eliminated. That is, even if the optimum focus can be determined for the check pattern formed directly on the IC substrate, it cannot be determined whether the wiring patterns at different levels by the step difference are within the allowable range of the optimum focus. ..

【0006】したがって、この発明の目的は、段差を伴
う多層配線層を含む高集積度ICの製造方法において、
それら配線層にそれぞれ対応するフォトレジスト膜の露
光・現像が所望の精細度を保って行われたか否かを確認
しやすくした製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method for manufacturing a highly integrated IC including a multi-layer wiring layer with steps.
It is an object of the present invention to provide a manufacturing method in which it is easy to confirm whether or not the exposure and development of the photoresist film corresponding to each of the wiring layers are performed with a desired definition.

【0007】[0007]

【課題を解決するための手段】この発明による高集積度
ICは、多層配線層にそれぞれ対応した複数のレベルの
うちの少なくとも2つのレベルに前記チェックパターン
備え、しかもそれらチェックパターンが顕微鏡によって
同時に観察できるようにICチップの周縁部などに近接
配置してあることを特徴とする。多層配線層のこれら互
いに相異なるレベルに形成される複数のチェックパター
ンは、各層の実際の回路パターンと同時に並行してチッ
プの周縁部などに形成される。実際の回路パターンの配
置上の制約がなければ、これらパターンの層間絶縁膜あ
るいはそれらパターンと実質的に同一平面にある同等の
部材の展延部に上記チェックパターンを形成できる。そ
の制約がある場合は、実際の回路パターンとは別のダミ
ー多層配線層を実際の多層配線層の各層と並行して形成
し、それらダミー配線層の各層の互いに近接した位置に
前記チェックパターンを形成する。
A highly integrated IC according to the present invention is provided with the above-mentioned check patterns at at least two levels among a plurality of levels respectively corresponding to the multi-layer wiring layers, and these check patterns are simultaneously observed by a microscope. It is characterized in that it is arranged in the vicinity of the peripheral portion of the IC chip so as to be possible. The plurality of check patterns formed at different levels of the multi-layer wiring layer are formed in parallel with the actual circuit pattern of each layer in the peripheral portion of the chip. If there are no restrictions on the layout of actual circuit patterns, the check patterns can be formed on the interlayer insulating films of these patterns or on the extended portions of equivalent members that are substantially on the same plane as the patterns. If there is such a restriction, a dummy multi-layer wiring layer different from the actual circuit pattern is formed in parallel with each layer of the actual multi-layer wiring layer, and the check patterns are provided at positions close to each other in each of the dummy wiring layers. Form.

【0008】この発明によると、高集積度ICチップ表
面の多層配線層の各層の配線パターン形成工程におい
て、フォトレジスト膜に結像された配線パターン対応の
遮光マスクの実像が上記最適焦点の許容範囲内にあるか
どうかを、ICチップ上の少なくとも2つのレベルにお
いて顕微鏡による観察によりチェックできるので、上記
遮光マスク実像の解像度の低下を回避できる。
According to the present invention, in the wiring pattern forming step of each layer of the multi-layer wiring layer on the surface of the highly integrated IC chip, the real image of the light-shielding mask corresponding to the wiring pattern formed on the photoresist film is within the allowable range of the optimum focus. Since it can be checked whether or not there is at least two levels on the IC chip by observing with a microscope, it is possible to avoid deterioration of the resolution of the light-shielding mask real image.

【0009】[0009]

【実施例】次に、図面を参照して本発明の2つの実施例
を説明する。まず本発明を高集積度DRAMデバイスの
製造に実施した実施例を示す図1を参照すると、シリコ
ン(Si)からなる半導体基板1の表面全面にフォトレ
ジストを塗布したのち活性領域に対応するマスクパター
ンを介してフォトレジスト膜を露光し、それら活性領域
対応部以外の基板表面をフィールド酸化膜形成工程にか
ける。これと並行して上記L/Sパターン2aをこのフ
ィールド酸化膜周縁部1Aに形成する(図1(a))。
なお、このL/Sパターン2aはフィールド酸化膜周縁
部1Aに形成できるので、上記活性領域のための開孔は
図1(a)の範囲外となりしたがって図示されていな
い。
Next, two embodiments of the present invention will be described with reference to the drawings. First, referring to FIG. 1 showing an embodiment in which the present invention is applied to manufacture of a highly integrated DRAM device, a photoresist is applied to the entire surface of a semiconductor substrate 1 made of silicon (Si), and then a mask pattern corresponding to an active region is formed. The photoresist film is exposed through the vias and the substrate surface other than those corresponding to the active regions is subjected to a field oxide film forming step. In parallel with this, the L / S pattern 2a is formed on the field oxide film peripheral portion 1A (FIG. 1A).
Since the L / S pattern 2a can be formed in the peripheral edge portion 1A of the field oxide film, the opening for the active region is outside the range of FIG. 1A and is not shown.

【0010】次に、上記開孔を設けたフィールド酸化膜
(図1(a))の表面全体にフォトレジスト膜を形成し
所望のパターニングをして上記開孔部にゲート絶縁膜を
形成する工程と同時に、並行して上記フィールド酸化膜
およびゲート絶縁膜とそれぞれ同一の平面にあるフィー
ルド酸化膜周縁部1Aおよびゲート配線層周縁部1Bに
L/Sパターン3aおよび3bをそれぞれ形成する(図
1(b))。その際、フィールド酸化膜周縁部1Aに形
成されたL/Sパターン2aはエッチングにより除去さ
れる(図1(b)に点線で図示)。
Next, a step of forming a photoresist film on the entire surface of the field oxide film (FIG. 1 (a)) having the openings and performing a desired patterning to form a gate insulating film in the openings. At the same time, in parallel, L / S patterns 3a and 3b are respectively formed on the field oxide film peripheral portion 1A and the gate wiring layer peripheral portion 1B which are on the same plane as the field oxide film and the gate insulating film, respectively (FIG. b)). At that time, the L / S pattern 2a formed on the peripheral portion 1A of the field oxide film is removed by etching (illustrated by a dotted line in FIG. 1B).

【0011】さらに、上記活性領域の各々に形成された
ドレイン領域(またはソース領域、図示してない)に接
続される第1のポリシリコン配線層を同様にフォトレジ
スト膜の形成、配線パターン露光・現像を経て形成する
工程と同時に並行して、フィールド酸化膜、ゲート配線
層およびポリシリコン配線層とそれぞれ同一平面にある
周縁部1A〜1DにL/Sパターン4a、4bおよび4
cを形成する(図1(c))。この工程において、上記
ゲート配線層と並行して形成したL/Sパターン3aお
よび3bはエッチングにより除去される(図1(c)に
点線で図示)。
Further, the first polysilicon wiring layer connected to the drain region (or source region, not shown) formed in each of the above active regions is similarly formed with a photoresist film, a wiring pattern exposure and Simultaneously with the step of forming through development, in parallel with the field oxide film, the gate wiring layer and the polysilicon wiring layer, the L / S patterns 4a, 4b and 4 are formed on the peripheral portions 1A to 1D respectively.
c is formed (FIG. 1C). In this step, the L / S patterns 3a and 3b formed in parallel with the gate wiring layer are removed by etching (shown by dotted lines in FIG. 1C).

【0012】次に、上記活性領域の各々のソース領域
(またはドレイン領域、図示していない)に接続される
キャパシタを形成する第2のポリシリコン配線層を層間
絶縁層による誘電体層の形成を経て形成する工程と並行
して、フォトレジストによるパターニングにより、L/
Sパターン5a、5b、5cおよび5dを、フィールド
酸化膜、ゲート配線層、ポリシリコン配線層とそれぞれ
同一の平面にある周縁部1A、1B、1Cおよび1Dに
形成する(図1(d))。この工程に伴い、L/Sパタ
ーン4a、4bおよび4cは除去される(図1(d)に
点線で図示)。上記L/Sパターン2a、3a、3b、
4a〜4cおよび5a〜5dはいずれも光学顕微鏡の視
野に入るよう互いに近接した位置に形成される。
Next, a second polysilicon wiring layer forming a capacitor connected to each source region (or drain region, not shown) of each of the above active regions is formed with a dielectric layer by an interlayer insulating layer. In parallel with the subsequent formation process, L /
S patterns 5a, 5b, 5c and 5d are formed on peripheral portions 1A, 1B, 1C and 1D on the same plane as the field oxide film, the gate wiring layer and the polysilicon wiring layer, respectively (FIG. 1 (d)). Along with this step, the L / S patterns 4a, 4b and 4c are removed (shown by the dotted line in FIG. 1D). The L / S patterns 2a, 3a, 3b,
All of 4a to 4c and 5a to 5d are formed at positions close to each other so as to be in the visual field of the optical microscope.

【0013】上述の一連の工程を経てL/Sパターン5
a、5b、5cおよび5dを形成した半導体チップ1
(図1(d))のL/Sパターン形成部を拡大した概略
図に示した図2およびその断面図である図3を参照する
と、L/Sパターン5a、5b、5cおよび5dが基板
1の表面を基準にして層間膜8b〜8dを挟んで互いに
レベルを異にするフィールド酸化膜7a、ゲート配線層
7b、第1ポリシリコン配線層7cおよび第2ポリシリ
コン配線層7dの周縁部1A、1B、1Cおよび1Dに
形成されている状態が模式的に示してある。
The L / S pattern 5 is subjected to the series of steps described above.
Semiconductor chip 1 on which a, 5b, 5c and 5d are formed
Referring to FIG. 2 which is an enlarged schematic view of the L / S pattern forming portion in FIG. 1D and FIG. 3 which is a sectional view thereof, the L / S patterns 5a, 5b, 5c and 5d are formed on the substrate 1. The peripheral portions 1A of the field oxide film 7a, the gate wiring layer 7b, the first polysilicon wiring layer 7c, and the second polysilicon wiring layer 7d, which have different levels with the interlayer films 8b to 8d sandwiched therebetween, with reference to the surface of The state formed in 1B, 1C and 1D is schematically shown.

【0014】上述の一連の工程において、ゲート配線層
7b(図3)の形成のためのフォトレジスト膜が上記露
光装置の最適焦点の許容範囲内に納まっているか否かの
チェックはL/Sパターン3aおよび3bの解像度を顕
微鏡で同時にチェックすることによって行う(図1
(b))。同様にフィールド酸化膜7a、ゲート配線層
7b、第1ポリシリコン配線層7cの形成が上記許容範
囲内に納まっているか否かのチェックはL/Sパターン
4a、4bおよび4cの解像度を顕微鏡によってチェッ
クすることによって行う(図1(c))。また、上記フ
ィールド酸化膜7aから第2のポリシリコン配線層7d
までが上記許容範囲に納まっているか否かのチェックは
L/Sパターン5a、5b、5cおよび5dを顕微鏡に
よってチェックすることによって行う(図1(d))。
上述のとおり、この実施例においては、所望の工程にお
いて、形成された配線層の配線パターンが所要の解像度
をもって形成されるか否かをフォトレジストのパターニ
ングの段階で簡単に確認できる。確認の結果、解像度が
不十分と判断される場合は、そのチップについてはフォ
トレジストの再塗布、露光、現像を行う。これによって
製品の良品率を大幅に改善できる。
In the above-described series of steps, it is checked whether the photoresist film for forming the gate wiring layer 7b (FIG. 3) is within the allowable range of the optimum focus of the exposure apparatus, which is the L / S pattern. This is done by simultaneously checking the resolution of 3a and 3b with a microscope (Fig. 1).
(B)). Similarly, to check whether the formation of the field oxide film 7a, the gate wiring layer 7b, and the first polysilicon wiring layer 7c is within the allowable range, the resolution of the L / S patterns 4a, 4b, and 4c is checked by a microscope. (Fig. 1 (c)). In addition, from the field oxide film 7a to the second polysilicon wiring layer 7d
It is checked by checking the L / S patterns 5a, 5b, 5c and 5d with a microscope whether or not the values up to the above are within the allowable range (FIG. 1 (d)).
As described above, in this embodiment, it is possible to easily confirm whether or not the wiring pattern of the formed wiring layer is formed with the required resolution in the desired process at the photoresist patterning step. If the result of the confirmation shows that the resolution is insufficient, the chip is re-coated with photoresist, exposed and developed. This can significantly improve the yield rate of products.

【0015】次に図4を参照すると、図3と同様の断面
図で示された本発明の第2の実施例はチップ1の周縁部
にエッチング等で予め形成した凹部9(同図では深さを
強調してあるが実際には数μm程度)に第1の実施例と
同様のL/Sパターン10aを形成し、そのパターン1
0aと配線層上のもう一つのL/Sパターン10bとを
顕微鏡による解像度チェックの対象とする。それぞれの
点については第1の実施例と共通であるのでこれ以上の
説明は省略するが、この構成が第1の実施例のようなD
RAM以外のICデバイスにも応用できることは明らか
であろう。
Next, referring to FIG. 4, a second embodiment of the present invention shown in a sectional view similar to that of FIG. 3 has a concave portion 9 (a deep portion in the same figure) formed in advance in the peripheral portion of the chip 1 by etching or the like. Although the height is emphasized, the L / S pattern 10a similar to that of the first embodiment is actually formed on the order of several .mu.m.
0a and another L / S pattern 10b on the wiring layer are subjected to resolution check by a microscope. Since each point is the same as that of the first embodiment, further description will be omitted, but this configuration is similar to that of the first embodiment.
It will be clear that it can be applied to IC devices other than RAM.

【0016】上記第1および第2実施例において、L/
Sパターンとしては、幅および間隔それぞれ0.4〜
0.8μm、長さが幅の約10倍、3本のストライプか
らなるパターンを用いた。また、上記確認用の顕微鏡の
倍率は20〜100倍程度が適しており、実施例では4
0倍のものを使用した。
In the above first and second embodiments, L /
As the S pattern, the width and the spacing are each 0.4 to
A pattern composed of three stripes having a length of 0.8 μm and a length about 10 times the width was used. Further, it is suitable that the magnification of the above-mentioned confirmation microscope is about 20 to 100 times, and it is 4 in the embodiment.
0 times that used.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、半
導体チップ上の高低差のある複数個所に形成されたL/
Sパターンを光学顕微鏡の同一視野内に入れてその形状
を確認することによって、縮小投影露光装置で露光を行
う前に予め半導体チップ表面全体が露光光の焦点深度内
にあるか否かが容易に検査できるので、その都度焦点深
度の修正を行う必要がなくなる。
As described above, according to the present invention, L / Ls formed at a plurality of locations on a semiconductor chip having height differences.
By putting the S pattern in the same field of view of the optical microscope and confirming its shape, it is possible to easily determine whether or not the entire surface of the semiconductor chip is within the depth of focus of the exposure light in advance before performing exposure with the reduction projection exposure apparatus. Since it can be inspected, it is not necessary to correct the depth of focus each time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明する図で、同図
(a)〜(d)はそれぞれMOS構造のDRAMの製造
工程を説明するためのICチップの平面図である。
FIG. 1 is a diagram for explaining a first embodiment of the present invention, and FIGS. 1A to 1D are plan views of an IC chip for explaining a manufacturing process of a DRAM having a MOS structure.

【図2】図1(d)の平面図の一部を拡大して概略的に
示した平面図である。
FIG. 2 is an enlarged schematic plan view of a part of the plan view of FIG. 1 (d).

【図3】図2のX−X線における縦断面図である。FIG. 3 is a vertical sectional view taken along line XX of FIG.

【図4】本発明の第2の実施例を説明するICチップの
縦断面図である。
FIG. 4 is a vertical sectional view of an IC chip for explaining a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体基板 1A フィールド酸化膜周縁部 1B ゲート配線層周縁部 1C 第1ポリシリコン配線層周縁部 1D 第2ポリシリコン配線層周縁部 2a、3a,3b、4a〜4c、5a〜5d L/S
パターン 7a フィールド酸化膜 7b ゲート配線層 7c 第1ポリシリコン配線層 7d 第2ポリシリコン配線層 8b〜8d 層間膜 9 凹部 10a,10b L/Sパターン
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 1A Field oxide film peripheral part 1B Gate wiring layer peripheral part 1C 1st polysilicon wiring layer peripheral part 1D 2nd polysilicon wiring layer peripheral part 2a, 3a, 3b, 4a-4c, 5a-5d L / S
Pattern 7a Field oxide film 7b Gate wiring layer 7c First polysilicon wiring layer 7d Second polysilicon wiring layer 8b to 8d Interlayer film 9 Recesses 10a, 10b L / S pattern

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7013−4M H01L 21/30 341 K 7013−4M 341 P ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location 7013-4M H01L 21/30 341 K 7013-4M 341 P

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高密度に形成された多数の不純物拡散領
域を内部に含む半導体基板と前記拡散領域に電気的にそ
れぞれ接続されるとともに前記半導体基板の表面に絶縁
物の膜を介して層状に形成された複数の導体配線層とを
含み、前記基板表面を基準にして前記絶縁物膜および前
記配線層の少なくとも一方で定義される複数の高さの表
面部分を含む表面を有する半導体集積回路装置の製造方
法において、前記複数の高さのうち予め定めた少なくと
も2つと実質的に同じ高さをそれぞれ有する少なくとも
2つの表面部分であって前記導体配線層との間で電気的
結合を生じない表面部分の互いに隣接した位置に前記配
線層形成のためのリソグラフィ加工用フォトレジスト膜
を形成することと、それらフォトレジスト膜を予め定め
たライン・アンド・スペースパターンの遮光マスクを介
してそれぞれ露光しそのライン・アンド・スペースパタ
ーンの実像をそれぞれ現像することと、それら実像の解
像度を顕微鏡により同時に検査することとを含む半導体
集積回路装置の製造方法。
1. A semiconductor substrate having a large number of high-density impurity diffusion regions therein and electrically connected to the diffusion regions, respectively, and layered on the surface of the semiconductor substrate via an insulating film. A semiconductor integrated circuit device having a plurality of formed conductor wiring layers and having a surface including a plurality of surface portions defined by at least one of the insulator film and the wiring layer with respect to the substrate surface. 2. At least two surface portions each having substantially the same height as at least two predetermined heights out of the plurality of heights, the surface being free from electrical coupling with the conductor wiring layer. Forming a photoresist film for lithography processing for forming the wiring layer at positions adjacent to each other in a portion, and performing a predetermined line and A method of manufacturing a semiconductor integrated circuit device, comprising: exposing through a light-shielding mask of a space pattern to develop respective real images of the line-and-space pattern; and simultaneously inspecting the resolution of the real images with a microscope.
【請求項2】 前記半導体集積回路装置がMOS構造の
ダイナミックRAMであって、前記表面部分が前記複数
の導体配線層および絶縁物膜の形成と並行して形成され
ることを特徴とする請求項1記載の半導体集積回路装置
の製造方法。
2. The semiconductor integrated circuit device is a dynamic RAM having a MOS structure, and the surface portion is formed in parallel with the formation of the plurality of conductor wiring layers and the insulator film. 1. A method for manufacturing a semiconductor integrated circuit device according to 1.
【請求項3】 前記複数の高さの少なくとも1つを定義
する凹みを前記基板の前記表面部分に対応する位置に形
成するように前記基板を前記拡散領域の形成に先立って
エッチングする工程をさらに含む請求項1記載の半導体
集積回路装置の製造方法。
3. A step of etching the substrate prior to forming the diffusion region to form a recess defining at least one of the plurality of heights at a position corresponding to the surface portion of the substrate. The method of manufacturing a semiconductor integrated circuit device according to claim 1, including the above.
JP3240712A 1990-09-28 1991-09-20 Method for manufacturing semiconductor integrated circuit device Expired - Fee Related JP2887972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3240712A JP2887972B2 (en) 1990-09-28 1991-09-20 Method for manufacturing semiconductor integrated circuit device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-259264 1990-09-28
JP25926490 1990-09-28
JP3240712A JP2887972B2 (en) 1990-09-28 1991-09-20 Method for manufacturing semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPH0541432A true JPH0541432A (en) 1993-02-19
JP2887972B2 JP2887972B2 (en) 1999-05-10

Family

ID=26534872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3240712A Expired - Fee Related JP2887972B2 (en) 1990-09-28 1991-09-20 Method for manufacturing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2887972B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490277B1 (en) * 1996-07-26 2005-08-05 소니 가부시끼 가이샤 The alignment error measuring method and alignment error measuring pattern
JP2006186177A (en) * 2004-12-28 2006-07-13 Oki Electric Ind Co Ltd Manufacturing method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490277B1 (en) * 1996-07-26 2005-08-05 소니 가부시끼 가이샤 The alignment error measuring method and alignment error measuring pattern
JP2006186177A (en) * 2004-12-28 2006-07-13 Oki Electric Ind Co Ltd Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2887972B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
US7244533B2 (en) Method of the adjustable matching map system in lithography
US5525840A (en) Semiconductor device having an alignment mark
US7659040B2 (en) Exposure mask and method of manufacturing the same, and semiconductor device manufacturing method
JP3348783B2 (en) Mark for overlay and semiconductor device
KR100787941B1 (en) Photomask with overlay mark and methods of fabricating semiconductor device
KR100258655B1 (en) Contact structure manufacturing method
KR20070018527A (en) overlay apparatus for semiconductor device manufacturing and overlay measuring method the same
US8241988B2 (en) Photo key and method of fabricating semiconductor device using the photo key
JP2001209167A (en) Photomask, photomask pair, semiconductor device and method for manufacturing semiconductor device
JP2001083688A (en) Method for forming photomask and resist pattern, alignment precision measuring method, manufacture of semiconductor device
US6601314B2 (en) Method of manufacturing alignment mark
JP2887972B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2001110719A (en) Exposure method
KR100663347B1 (en) Semiconductor device having overlay measurement mark and method of fabricating the same
JP2002100557A (en) Method of manufacturing semiconductor device
US5902717A (en) Method of fabricating semiconductor device using half-tone phase shift mask
US5981114A (en) Photoresist check patterns in highly integrated circuits having multi-level interconnect layers
JP2000208394A (en) Semiconductor device, fabrication thereof, formation of resist pattern employing it and aligner
EP0477957A1 (en) Process of fabricating semiconductor IC devices, including several lithographic steps and check patterns
JP2006303541A (en) Method for manufacturing semiconductor integrated circuit device
US6861176B2 (en) Hole forming by cross-shape image exposure
JP4342202B2 (en) Method of forming alignment mark and method of manufacturing semiconductor device using the same
JP3196721B2 (en) Semiconductor device manufacturing method and measuring device
JP3362717B2 (en) Semiconductor device and manufacturing method thereof
KR100283483B1 (en) Method for manufacturing target for measuring overlapping

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990119

LAPS Cancellation because of no payment of annual fees