JPH0541302A - Bulk type of linear resistor and manufacture of same - Google Patents
Bulk type of linear resistor and manufacture of sameInfo
- Publication number
- JPH0541302A JPH0541302A JP3196517A JP19651791A JPH0541302A JP H0541302 A JPH0541302 A JP H0541302A JP 3196517 A JP3196517 A JP 3196517A JP 19651791 A JP19651791 A JP 19651791A JP H0541302 A JPH0541302 A JP H0541302A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- metal boride
- temperature
- sintered body
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermistors And Varistors (AREA)
- Circuit Breakers (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Non-Adjustable Resistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電力機器特に遮断器お
よび変圧器に使用して好適なバルク型直線抵抗体および
その製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bulk type linear resistor suitable for use in electric power equipment, particularly circuit breakers and transformers, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】従来、抵抗体には、例えば特開昭56−
4206号公報号に記載のごとき炭素系、あるいは特開
昭63−233502号公報号に記載のごときZnO系
が開示されている。2. Description of the Related Art Conventionally, for example, Japanese Patent Laid-Open No. Sho 56-56 has been used as a resistor.
A carbon type as described in Japanese Patent No. 4206 and a ZnO type as described in Japanese Patent Laid-Open No. 63-233502 are disclosed.
【0003】炭素系抵抗体は、Al2O3からなるマトリ
ックス中に炭素粉を分散させた構造を有し、その抵抗率
は数百Ωcmである。The carbon-based resistor has a structure in which carbon powder is dispersed in a matrix made of Al 2 O 3 , and its resistivity is several hundred Ωcm.
【0004】他方、ZnO系抵抗体は、ZnOを主成分
として、Al2O3,MgO,Y2O3,Sb2O3,SiO
2等を含む結晶体であり、その抵抗率は、10〜100
0Ωcmであって、適用機器により使い分ける。On the other hand, ZnO-based resistors have ZnO as a main component, and Al 2 O 3 , MgO, Y 2 O 3 , Sb 2 O 3 and SiO.
It is a crystal containing 2 etc., and its resistivity is 10-100.
It is 0 Ωcm, and it is used properly depending on the applied device.
【0005】そして、ZnO系抵抗体は、2種以上の原
料粉を混合後、有機バインダーを加えて造粒し、金型で
成形する。次いで、前記成形体を電気炉で焼成した後、
この焼結体を挾んで電極を対向配置する。Then, the ZnO-based resistor is formed by mixing two or more kinds of raw material powders, adding an organic binder and granulating the powder. Then, after firing the molded body in an electric furnace,
The sintered body is sandwiched and the electrodes are arranged to face each other.
【0006】なお、抵抗体として関連するものには、前
記以外に、例えば特公昭58−21402号,特公昭5
9−51721号,特公平1−147802号,特公平
2−3524号公報等が挙げられる。[0006] In addition to the above, those related to the resistor include, for example, Japanese Patent Publication Nos. 58-21402 and 5.
9-51721, Japanese Patent Publication No. 1-147802, Japanese Patent Publication No. 2-3524, and the like.
【0007】そして、これらは、いずれも厚膜組成物に
関するもので、結晶性ガラスからなるマトリックス中に
電気伝導性LaB6を分散させた構造を有する。All of these relate to thick film compositions and have a structure in which electrically conductive LaB 6 is dispersed in a matrix made of crystalline glass.
【0008】一方、厚膜組成物に関する抵抗体として、
ZrB2系を開示したものには、例えば特開昭62−2
32901号公報を挙げることができる。On the other hand, as a resistor for the thick film composition,
The ZrB 2 system is disclosed in, for example, JP-A-62-2.
32901 can be mentioned.
【0009】そして、その厚膜組成物は、アルミナ等の
基板上に導体ペーストと一緒にスクリーン印刷するた
め、有機ベヒクルを含有している。The thick film composition contains an organic vehicle for screen printing together with a conductor paste on a substrate such as alumina.
【0010】ところで、前記したごとき厚膜組成物から
なる回路基板の許容温度は、高々150℃で、大きなエ
ネルギ−が注入されるために200℃以上に加熱される
電力用抵抗体には用いられない。By the way, the allowable temperature of the circuit board made of the thick film composition as described above is at most 150 ° C., and it is used for a power resistor which is heated to 200 ° C. or more because a large amount of energy is injected. Absent.
【0011】[0011]
【発明が解決しようとする課題】電力用抵抗体には、動
作時、大きなエネルギ−が注入され、200〜300℃
まで加熱される。A large amount of energy is injected into the power resistor during operation, and the power resistor has a temperature of 200 to 300 ° C.
Is heated up.
【0012】したがって、前記200〜300℃の高温
範囲において、抵抗体の抵抗値低下が大きい場合、過大
電流が流れ、抵抗体が破壊に至ると、熱暴走を起こす。Therefore, in the high temperature range of 200 to 300 ° C., when the resistance value of the resistor is largely decreased, an excessive current flows, and when the resistor is destroyed, thermal runaway occurs.
【0013】そして、先の炭素系抵抗体の抵抗値は、そ
の温度係数が負であるため、許容温度を低めに設定する
必要があった。Since the temperature coefficient of the resistance value of the carbon-based resistor is negative, it is necessary to set the allowable temperature to a low value.
【0014】一方、ZnO系の抵抗体は、電流電圧特性
が悪い問題があった。On the other hand, the ZnO-based resistor has a problem that the current-voltage characteristic is poor.
【0015】また、厚膜組成物は、その名のとおり厚膜
抵抗体に適用され、高エネルギー容量の抵抗体としては
考えられていない。Further, the thick film composition is applied to a thick film resistor as its name suggests, and is not considered as a resistor having a high energy capacity.
【0016】本発明の目的は、電力用抵抗体として30
0℃まで抵抗値がほとんど減少することなく、炭素系に
較べて許容温度を高めに設定することができ、また電流
電圧特性の直線性がZnO系より優れ、さらに通電耐量
がZnO系に較べて格段に優れたバルク型直線抵抗体お
よびその製造方法を提供することにある。The object of the present invention is to provide a power resistor 30
The resistance value hardly decreases up to 0 ° C, the allowable temperature can be set higher than that of the carbon type, the linearity of the current-voltage characteristic is superior to that of the ZnO type, and the withstand current is more excellent than that of the ZnO type. An object of the present invention is to provide a remarkably excellent bulk type linear resistor and a manufacturing method thereof.
【0017】[0017]
【課題を解決するための手段】本発明に係るバルク型直
線抵抗体は、5〜40体積%の金属ほう化物および60
〜95体積%の非還元性ガラスからなる焼結体と、前記
焼結体を挾んで対向位置に配置された電極とからなり、
前記焼結体の温度300℃での抵抗値の温度係数が−1
×10~3〜+5×10~3/℃範囲であることを特徴とす
るものである。A bulk type linear resistor according to the present invention comprises 5 to 40% by volume of metal boride and 60% by volume.
˜95% by volume of a non-reducing glass sintered body, and electrodes sandwiched by the sintered body and facing each other,
The temperature coefficient of resistance of the sintered body at a temperature of 300 ° C. is −1.
It is characterized in that it is in the range of × 10 3 to +5 × 10 3 / ° C.
【0018】なお、前記非還元性ガラスは、酸化物が主
成分であるが、窒素,アルゴン等の還元性ないし不活性
ガス中で加熱しても還元されないガラスであり、したが
ってこの非還元性ガラスは、還元性ないし不活性ガス雰
囲気中で焼成するときに用いられる。The non-reducing glass, whose main component is an oxide, is a glass which is not reduced by heating in a reducing or inert gas such as nitrogen or argon. Therefore, the non-reducing glass is Is used when firing in a reducing or inert gas atmosphere.
【0019】また、本発明で対象とするバルク型直線抵
抗体は、厚膜型直線抵抗体と区別され、成形加工後焼成
された塊状直線抵抗体である。The bulk type linear resistor, which is the object of the present invention, is a bulk linear resistor which is distinguished from the thick film type linear resistor and which is fired after molding.
【0020】さらに、本発明のバルク型直線抵抗体が用
いられる電力用抵抗体は、既述のごとく、動作時に大き
なエネルギ−が注入され、200〜300℃まで加熱さ
れる。ただし、バルク型直線抵抗体を収納するタンク内
には、電気的接続部や絶縁物等が設けられているため、
この温度以上に昇温することは許容されない。以上のよ
うなことから、本発明では、焼結体の抵抗値の温度係数
を、温度300℃を上限として前記のごとく規定したも
のである。Further, as described above, the power resistor in which the bulk type linear resistor of the present invention is used is heated to 200 to 300 ° C. by being injected with a large amount of energy during operation. However, since an electrical connection part and an insulator are provided in the tank that stores the bulk type linear resistor,
It is not allowed to raise the temperature above this temperature. From the above, in the present invention, the temperature coefficient of the resistance value of the sintered body is defined as described above with the temperature of 300 ° C. being the upper limit.
【0021】なお、厚膜組成物からなる回路基板の許容
温度は、高々150℃で、大きなエネルギ−が注入され
るために200℃以上に加熱される電力用抵抗体に用い
られない点については既述した。The allowable temperature of the circuit board made of the thick film composition is 150 ° C. at the most, and it is not used as a power resistor which is heated to 200 ° C. or more because a large amount of energy is injected. As mentioned above.
【0022】金属ほう化物は、、MoB,ZrB2,T
iB2,VB2,NbB2,TaB2,CrB2,LaB6,
CaB6,W2B5等の電気伝導性粒子であり、特に、L
aB6系の電流電圧特性が優れている。Metal borides include MoB, ZrB 2 , T
iB 2 , VB 2 , NbB 2 , TaB 2 , CrB 2 , LaB 6 ,
Electrically conductive particles such as CaB 6 and W 2 B 5 , especially L
The current-voltage characteristics of the aB 6 system are excellent.
【0023】一方、本発明に係るバルク型直線抵抗体の
製造方法は、5〜40体積%の金属ほう化物と、60〜
95体積%の非還元性ガラスとからなる混合粉に有機バ
インダーを加えて造粒,成形し、窒素雰囲気中で焼成し
た後、この焼結体を挾んで電極を対向配置し、かつ前記
焼結体の温度300℃での抵抗値の温度係数を−1×1
0~3〜+5×10~3/℃範囲に設定することを特徴とす
るものである。On the other hand, the method of manufacturing a bulk type linear resistor according to the present invention comprises 5 to 40% by volume of metal boride and 60 to 60% by volume.
An organic binder was added to a mixed powder consisting of 95% by volume of non-reducing glass, granulated and molded, and the mixture was fired in a nitrogen atmosphere, and then the sintered body was sandwiched and electrodes were arranged to face each other. The temperature coefficient of resistance at a body temperature of 300 ° C is -1 x 1
It is characterized in that it is set in the range of 0 to 3 to + 5 × 10 3 / ° C.
【0024】金属ほう化物は、MoB等、先に列挙した
各材料の電気伝導性粉体であり、特に、LaB6系の電
流電圧特性が優れている点については既述した。The metal boride is an electrically conductive powder of each of the above-listed materials such as MoB, and it has been described above that the LaB 6 system has excellent current-voltage characteristics.
【0025】そして、金属ほう化物は、5〜40体積%
が適量である。5体積%以下では、抵抗率が5000Ω
cm以上になり、電力機器には適合しない。一方、40
体積%以上では、抵抗率が10Ωcm以下になり、やは
り電力機器には適合しない。The metal boride is 5 to 40% by volume.
Is an appropriate amount. Below 5% by volume, the resistivity is 5000Ω
It becomes more than cm and is not suitable for electric power equipment. On the other hand, 40
If it is more than volume%, the resistivity becomes 10 Ωcm or less, which is not suitable for electric power equipment.
【0026】非還元性ガラスは、ほう珪酸系ガラスが適
当である。ガラス成分は、SiO2,B2O3のほか、適
宜Al2O3,ZrO2,CaO等を含んでいる。As the non-reducing glass, borosilicate glass is suitable. The glass component appropriately contains Al 2 O 3 , ZrO 2 , CaO, etc. in addition to SiO 2 and B 2 O 3 .
【0027】抵抗体の抵抗率は、金属ほう化物の粒径に
よっても異なる。粒径が大きいと、抵抗率は大きくな
る。The resistivity of the resistor also depends on the particle size of the metal boride. The larger the particle size, the higher the resistivity.
【0028】なお、この点については、実施例の中で説
明する。Incidentally, this point will be described in an embodiment.
【0029】本発明のバルク型直線抵抗体における抵抗
値の温度係数は、温度300℃で−1×10~3〜+5×
10~3/℃範囲が達成され、その抵抗値は、300℃の
高温状態においてもほとんど減少しないことが実験によ
り確認された。The temperature coefficient of resistance of the bulk linear resistor of the present invention is -1 × 10 3 to + 5 × at a temperature of 300 ° C.
It was confirmed by experiments that the range of 10 to 3 / ° C. was achieved and that the resistance value hardly decreased even at a high temperature of 300 ° C.
【0030】一方、本発明抵抗体の電流電圧特性は、Z
nO系と比べて直線性に優れることも実験により確認さ
れた。On the other hand, the current-voltage characteristic of the resistor of the present invention is Z
It was also confirmed by experiments that the linearity is superior to that of the nO system.
【0031】なお、これら2点についても、前記抵抗率
の説明と同様、実施例の中で説明する。Note that these two points will also be described in the examples as in the case of the above-mentioned description of the resistivity.
【0032】変圧器の中性点接地用抵抗器や遮断器用抵
抗体等は、数十〜数百Aの電流を数秒〜数十秒間通電す
るテストがあるが、本発明のバルク型直線抵抗体は、こ
のテストをクリヤし、1kW以上の電力を正常に消費す
ることが実験により確認された。For the neutral point grounding resistor and the circuit breaker resistor of the transformer, there is a test in which a current of several tens to several hundreds of amperes is applied for several seconds to several tens of seconds, but the bulk type linear resistor of the present invention is used. It was confirmed by experiment that the power consumption of 1 kW or more was normally performed by clearing this test.
【0033】すなわち、前記テストに際し、抵抗体の温
度は数百℃にまで上昇するが、本発明のバルク型直線抵
抗体は、先に述べた電力用抵抗体としての温度上限値で
ある300℃まで昇温しても、その機能は正常に保持さ
れ、熱暴走しないことが実験により確認された。That is, in the test, the temperature of the resistor rises to several hundreds of degrees Celsius, but the bulk type linear resistor of the present invention has the temperature upper limit value of 300 ° C. as the above-mentioned power resistor. It was confirmed by experiments that the function was maintained normally and the thermal runaway did not occur even if the temperature was raised to.
【0034】焼結体の焼成温度は、500℃〜ガラス軟
化点の範囲が適当である。500℃以下では、収縮率が
上がらず、他方、ガラスの軟化点以上では、焼結体が変
形し、望ましくない。The firing temperature of the sintered body is preferably in the range of 500 ° C. to the glass softening point. If the temperature is 500 ° C. or lower, the shrinkage ratio does not increase. On the other hand, if the glass softening point or higher, the sintered body is deformed, which is not desirable.
【0035】なお、厚膜組成物に関する前掲5件の従来
例には、それらの厚膜組成物を厚膜抵抗体に適用するこ
とが明記されており、その使用条件は、電力1W以下、
使用温度は100℃以下である。It should be noted that the above-mentioned five prior art examples relating to thick film compositions specify that those thick film compositions are applied to thick film resistors, and the conditions of use are as follows:
The operating temperature is 100 ° C or lower.
【0036】これに対し、本発明のバルク型直線抵抗体
は、前記説明、さらには下記実施例の説明から明らかな
ように、電力用抵抗体の許容温度を300℃まで昇温可
能とし、しかも1kW以上の電力の消費を可能とするこ
とができる。On the other hand, the bulk type linear resistor of the present invention makes it possible to raise the permissible temperature of the power resistor to 300 ° C., as is clear from the above description and the description of the following examples. It is possible to consume electric power of 1 kW or more.
【0037】[0037]
【作用】金属ほう化物は、非還元性ガラスからなるマト
リックス中に分散した構造を有する。The metal boride has a structure in which it is dispersed in a matrix made of non-reducing glass.
【0038】また、金属ほう化物は、正の抵抗温度係数
を有する導電粒子で、導電パスを形成し、ガラスからな
るマトリックスは、抵抗として機能するものであって、
本発明によれば、金属ほう化物量および非還元性ガラス
の混合割合を前記のごとく設定し、これを焼成して得ら
れた焼結体の抵抗値の温度係数を、これまた前記の範囲
に設定したものであって、実験によれば、このようにし
て得られた電力抵抗体としてのバルク型直線抵抗体の許
容温度を300℃まで高めることができ、電力機器とし
て適合する10〜5000Ωcmの抵抗率を達成するこ
とができる。The metal boride is a conductive particle having a positive temperature coefficient of resistance and forms a conductive path, and the glass matrix functions as a resistance.
According to the present invention, the amount of the metal boride and the mixing ratio of the non-reducing glass are set as described above, and the temperature coefficient of the resistance value of the sintered body obtained by firing this is also within the above range. According to the experiment, the allowable temperature of the bulk type linear resistor as the power resistor thus obtained can be increased up to 300 ° C., and it is 10 to 5000 Ωcm suitable for the power equipment. Resistivity can be achieved.
【0039】[0039]
【実施例】以下、本発明を、図面を参照して説明する
と、図1は本発明に係るバルク型直線抵抗体の一実施例
(円柱型金属ほう化物系抵抗体)を示す正面図であり、
同図において、1が金属ほう化物系焼結体で、金属ほう
化物系焼結体1の両面には、アルミニウム電極2,2′
が付設されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a front view showing an embodiment (cylindrical metal boride-based resistor) of a bulk linear resistor according to the present invention. ,
In the figure, 1 is a metal boride-based sintered body, and aluminum electrodes 2, 2'are provided on both surfaces of the metal boride-based sintered body 1.
Is attached.
【0040】図2は本発明に係るバルク型直線抵抗体の
他の実施例(ドーナツ型金属ほう化物系抵抗体)を示す
正面図であり、同図において、3が金属ほう化物系焼結
体、4,4′はアルミニウム電極であるが、抵抗体の中
心に孔5が設けられている。FIG. 2 is a front view showing another embodiment (doughnut type metal boride type resistor) of the bulk type linear resistor according to the present invention. In FIG. 2, 3 is a metal boride type sintered body. , 4, 4 ′ are aluminum electrodes, but a hole 5 is provided at the center of the resistor.
【0041】ここで、本発明の実験例について下記す
る。Now, experimental examples of the present invention will be described below.
【0042】〔実験例1〕LaB6:158g(9.4
体積%)、およびガラスフリット:842g(90.6
体積%)を雷かい機で混合した。[Experimental Example 1] LaB 6 : 158 g (9.4 g)
%), And glass frit: 842 g (90.6
(Volume%) was mixed with a lightning striker.
【0043】LaB6には、粒径1μmの粉体、および
粒径10μmの粉体を用い、ガラスフリットには、La
B6と密度が等しいほう珪酸系ガラスを用い、これにポ
リビニルアルコール水溶液を30cc加えて造粒した
後、直径105mmの金型で厚さ30mmに成形した。For LaB 6 , powder having a particle size of 1 μm and powder having a particle size of 10 μm were used, and for the glass frit, La was used.
A borosilicate glass having the same density as B 6 was used, and 30 cc of an aqueous polyvinyl alcohol solution was added thereto to granulate, followed by molding with a mold having a diameter of 105 mm to a thickness of 30 mm.
【0044】次に、前記成形体を電気炉に入れ、窒素雰
囲気中700℃の温度に4h保持して焼成した。Next, the molded body was placed in an electric furnace and baked at a temperature of 700 ° C. in a nitrogen atmosphere for 4 hours.
【0045】最後に、この焼結体の両面にアルミニウム
を溶射した。Finally, aluminum was sprayed on both surfaces of this sintered body.
【0046】なお、このようにして成形した抵抗体の直
径は95mm、厚さは25mmとした。The resistor thus formed had a diameter of 95 mm and a thickness of 25 mm.
【0047】粒径1μmのLaB6を用いた抵抗体の抵
抗値は15Ω(410Ωcm)であり、一方、粒径10
μmのLaB6を用いた抵抗体の抵抗値は3MΩであっ
た。The resistance value of the resistor using LaB 6 having a particle size of 1 μm is 15Ω (410Ωcm), while the particle size is 10
The resistance value of the resistor using LaB 6 of μm was 3 MΩ.
【0048】〔実験例2〕LaB6:166g(9.9
体積%)、およびほう珪酸系ガラス:834g(90.
1体積%)を雷かい機で混合し、これにポリビニルアル
コール水溶液を加え、造粒後、成形した。[Experimental Example 2] LaB 6 : 166 g (9.9)
%), And borosilicate glass: 834 g (90.
1% by volume) was mixed with a lightning striker, and an aqueous polyvinyl alcohol solution was added thereto, and the mixture was granulated and then molded.
【0049】次いで、前記成形体を電気炉に入れ、窒素
雰囲気中600℃の一定温度に2h保持して焼成した。Next, the molded body was placed in an electric furnace and baked in a nitrogen atmosphere at a constant temperature of 600 ° C. for 2 hours.
【0050】このようにして得られた抵抗体の抵抗値は
11Ωであった。The resistance value of the resistor thus obtained was 11Ω.
【0051】他方、ZrB2:292g(15体積
%)、およびほう珪酸系ガラス:707g(85体積
%)を雷かい機で混合し、これにポリビニルアルコール
水溶液を加え、造粒後、成形した。On the other hand, ZrB 2 : 292 g (15% by volume) and borosilicate glass: 707 g (85% by volume) were mixed by a lightning machine, and a polyvinyl alcohol aqueous solution was added thereto, and the mixture was granulated and then molded.
【0052】次いで、前記成形体を電気炉に入れ、窒素
雰囲気中900℃の一定温度に2h保持して焼成した。Then, the molded body was placed in an electric furnace and baked at a constant temperature of 900 ° C. in a nitrogen atmosphere for 2 hours.
【0053】このようにして得られた抵抗体の抵抗値は
10.7Ωであった。The resistance value of the thus obtained resistor was 10.7Ω.
【0054】図3は本発明抵抗体と従来型抵抗体との電
流密度−電気抵抗比較特性線図である。FIG. 3 is a current density-electrical resistance comparison characteristic diagram of the resistor of the present invention and the conventional resistor.
【0055】図3において、6はLaB6系抵抗体の特
性曲線、7はZrB2系抵抗体の特性曲線、8は従来型
ZnO系抵抗体の特性曲線、9は従来型炭素系抵抗体の
特性曲線であり、同図から明らかなように、LaB6系
抵抗体6およびZrB2系抵抗体7の直線性は、ZnO
系抵抗体8のそれと較べて優り、炭素系抵抗体9並みの
直線性が得られる。In FIG. 3, 6 is the characteristic curve of the LaB 6 series resistor, 7 is the characteristic curve of the ZrB 2 series resistor, 8 is the characteristic curve of the conventional ZnO series resistor, and 9 is the conventional carbon series resistor. As is clear from the figure, the linearity of the LaB 6 series resistor 6 and the ZrB 2 series resistor 7 is ZnO.
It is superior to that of the system resistor 8 and can obtain linearity equivalent to that of the carbon resistor 9.
【0056】図4は本発明抵抗体と従来型抵抗体との温
度−電気抵抗比較特性線図である。FIG. 4 is a temperature-electric resistance comparison characteristic diagram of the resistor of the present invention and the conventional resistor.
【0057】図4において、6′はLaB6系抵抗体の
特性曲線、7′はZrB2系抵抗体の特性曲線、8′は
従来型ZnO系抵抗体の特性曲線、9′は従来型炭素系
抵抗体の特性曲線であり、同図から明らかなように、L
aB6系抵抗体6′およびZrB2系抵抗体7′の昇温時
の温度特性は、炭素系抵抗体9′のそれと較べて優り、
ZnO系抵抗体8′並みの温度特性が得られる。In FIG. 4, 6'is the characteristic curve of the LaB 6 series resistor, 7'is the characteristic curve of the ZrB 2 series resistor, 8'is the characteristic curve of the conventional ZnO series resistor, and 9'is the conventional carbon. It is a characteristic curve of the system resistor, and as is clear from the figure, L
The temperature characteristics of the aB 6 series resistor 6 ′ and the ZrB 2 series resistor 7 ′ at the time of temperature rise are superior to those of the carbon series resistor 9 ′,
Temperature characteristics similar to those of the ZnO-based resistor 8'are obtained.
【0058】ここで、本発明抵抗体と従来型ZnO系抵
抗体との通電耐量を表1に示す。Table 1 shows the withstand currents of the resistor of the present invention and the conventional ZnO-based resistor.
【0059】[0059]
【表1】 [Table 1]
【0060】なお、前記通電耐量は、抵抗体に十数Aの
交流電流を一定時間通電したとき正常であるか否か、あ
るいは破壊の有無を調べるものである。The energization resistance is to check whether the resistor is normal when an alternating current of a dozen A is applied for a certain period of time or whether the resistor is broken.
【0061】表1には、各試料に長時間通電し、それぞ
れの試料が急激な電流増加、熱暴走、破壊等を起すまで
の時間を示した。Table 1 shows the time required for each sample to be energized for a long time and to cause a rapid increase in current, thermal runaway, breakdown, etc. of each sample.
【0062】また、表1の通電電流は、試験開始時の初
期電流を示し、この値は、通電中に変化する。The energizing current in Table 1 indicates the initial current at the start of the test, and this value changes during energizing.
【0063】さらに、表1の電力も、試験開始時の値を
示し、試料の温度は、最後には、200〜300℃にま
で昇温する。Further, the electric power in Table 1 also shows the value at the start of the test, and the temperature of the sample is finally raised to 200 to 300 ° C.
【0064】表1から、LaB6系抵抗体およびZrB2
系抵抗体の通電時間は、ZnO系抵抗体のそれに較べて
2倍以上長く、本発明抵抗体の通電耐量が従来に比較し
て格段に優れていることがわかる。From Table 1, LaB 6 series resistors and ZrB 2
It can be seen that the energization time of the system resistor is more than twice as long as that of the ZnO system resistor, and the energization resistance of the resistor of the present invention is remarkably superior to the conventional one.
【0065】〔実験例3〕図5は図2に示すバルク型直
線抵抗体(ドーナツ型金属ほう化物系抵抗体)をガス遮
断器(GCB)用投入抵抗器に応用した場合の内部構造
説明図である。[Experimental Example 3] FIG. 5 is an explanatory diagram of the internal structure when the bulk type linear resistor (donut type metal boride type resistor) shown in FIG. 2 is applied to a closing resistor for a gas circuit breaker (GCB). Is.
【0066】なお、図5に示すガス遮断器用投入抵抗器
には、実験例1の工程で作製した抵抗率100Ωcmの
抵抗体を適用した。そして、LaB6の含有量は、1
7.6体積%であった。The resistor having a resistivity of 100 Ωcm manufactured in the process of Experimental Example 1 was applied to the closing resistor for gas circuit breaker shown in FIG. And, the content of LaB 6 is 1
It was 7.6% by volume.
【0067】図中、10は抵抗体、11はブッシング、
12は絶縁ロッド、13はコンデンサ、14は遮断部、
15は油ダッシュポット、16は開閉操作用ピストン、
17は空気タンクである。In the figure, 10 is a resistor, 11 is a bushing,
12 is an insulating rod, 13 is a capacitor, 14 is a blocking part,
15 is an oil dashpot, 16 is an opening / closing piston,
17 is an air tank.
【0068】そして、本発明のバルク型直線抵抗体を適
用した前記ガス遮断器用投入抵抗器の通電耐量は極めて
大きいほか、抵抗値の直線性および温度特性も優れてお
り、従来型抵抗体を用いたガス遮断器と比較して、下記
理由により、装置の小型、軽量化、さらには抵抗体の使
用個数を低減することができる。The energization resistance of the closing resistor for gas circuit breaker to which the bulk type linear resistor of the present invention is applied is very large, and the linearity of the resistance value and the temperature characteristic are excellent. Compared with the conventional gas circuit breaker, the size and weight of the device can be reduced and the number of resistors used can be reduced for the following reasons.
【0069】すなわち、前記実験例で示した数値を用い
てその理由を説明すると、先の実験例で示した本発明抵
抗体(バルク型直線抵抗体)の通電耐量は、従来型抵抗
体のそれと較べて2倍大きいため、抵抗体の体積を1/
2低減することができ、また高電流域での抵抗値が10
%増大するため、抵抗体の個数を10%低減することが
でき、さらに高温での抵抗値が20%増大するため、こ
の点でも抵抗体の個数を20%低減することができる。That is, the reason for this will be explained using the numerical values shown in the above experimental example. The resistance of the present invention resistor (bulk type linear resistor) shown in the previous experimental example is equal to that of the conventional resistor. Since it is twice as large as the
2 can be reduced, and the resistance value in the high current range is 10
%, The number of resistors can be reduced by 10%, and the resistance value at a high temperature is increased by 20%. In this respect also, the number of resistors can be reduced by 20%.
【0070】〔実験例4〕図6は図2に示すバルク型直
線抵抗体(ドーナツ型金属ほう化物系抵抗体)を変圧器
用SF6ガス絶縁中性点接地抵抗器(NGR)に応用し
た場合の内部構造説明図である。[Experimental Example 4] FIG. 6 shows a case where the bulk type linear resistor (doughnut type metal boride type resistor) shown in FIG. 2 is applied to an SF 6 gas insulated neutral point grounding resistor (NGR) for a transformer. It is an internal structure explanatory view of.
【0071】なお、図6に示す中性点接地抵抗器には、
実験例1の工程で作製した抵抗率410Ωcmの抵抗体
を適用した。The neutral point grounding resistor shown in FIG.
A resistor having a resistivity of 410 Ωcm manufactured in the process of Experimental Example 1 was applied.
【0072】図中、10は抵抗体、12′は絶縁ロッ
ド、17はブッシング、18はタンク、19は接地点で
ある。In the figure, 10 is a resistor, 12 'is an insulating rod, 17 is a bushing, 18 is a tank, and 19 is a ground point.
【0073】そして、本発明のバルク型直線抵抗体を適
用した前記中性点接地抵抗器の通電耐量は、前記ガス遮
断器用投入抵抗器のそれと同様、極めて大きいほか、抵
抗値の直線性および温度特性も優れており、従来型抵抗
体を用いた変圧器と比較して装置の小型、軽量化、さら
には抵抗体の使用個数を低減することができる。The neutral resistance of the neutral point grounding resistor to which the bulk type linear resistor of the present invention is applied is extremely large as is the case with the closing resistor for the gas circuit breaker, and the linearity of the resistance value and the temperature. The characteristics are also excellent, and the size and weight of the device can be reduced and the number of resistors used can be reduced as compared with a transformer using a conventional resistor.
【0074】[0074]
【発明の効果】本発明は以上のごときであり、本発明に
よれば、電力用抵抗体として300℃まで抵抗値がほと
んど減少することなく、炭素系に較べて許容温度を高め
に設定することができ、また電流電圧特性の直線性がZ
nO系より優れ、さらに通電耐量がZnO系に較べて格
段に優れている等、温度特性、電流電圧特性および通電
耐量のいずれの点でも、従来型抵抗体に比較して優れて
いるという効果を奏することがでる。The present invention is as described above. According to the present invention, the permissible temperature is set to be higher than that of the carbon type, with the resistance value hardly decreasing up to 300 ° C. as a power resistor. And the linearity of the current-voltage characteristic is Z
It is superior to nO type and has much higher current carrying capability than ZnO system, and it is superior to conventional resistors in terms of temperature characteristics, current-voltage characteristics and current handling capability. You can play.
【0075】さらに、本発明によれば、前記抵抗体を応
用したガス遮断器用投入抵抗器および中性点接地抵抗器
等の大きさを、従来型抵抗体のそれと比較して40%以
下に低減することができる。Further, according to the present invention, the size of the closing resistor for gas circuit breaker and the neutral grounding resistor to which the resistor is applied is reduced to 40% or less as compared with that of the conventional resistor. can do.
【図1】本発明に係るバルク型直線抵抗体の一実施例
(円柱型金属ほう化物系抵抗体)を示す正面図である。FIG. 1 is a front view showing an embodiment (cylindrical metal boride-based resistor) of a bulk linear resistor according to the present invention.
【図2】本発明に係るバルク型直線抵抗体の他の実施例
(ドーナツ型金属ほう化物系抵抗体)を示す正面図であ
る。FIG. 2 is a front view showing another embodiment (a toroidal metal boride-based resistor) of the bulk linear resistor according to the present invention.
【図3】本発明抵抗体と従来型抵抗体との電流密度−電
気抵抗比較特性線図である。FIG. 3 is a current density-electrical resistance comparison characteristic diagram of a resistor of the present invention and a conventional resistor.
【図4】本発明抵抗体と従来型抵抗体との温度−電気抵
抗比較特性線図である。FIG. 4 is a temperature-electrical resistance comparison characteristic diagram of a resistor of the present invention and a conventional resistor.
【図5】図2に示すバルク型直線抵抗体(ドーナツ型金
属ほう化物系抵抗体)をガス遮断器(GCB)用投入抵
抗器に応用した場合の内部構造説明図である。5 is an explanatory diagram of the internal structure when the bulk type linear resistor (donut type metal boride type resistor) shown in FIG. 2 is applied to a closing resistor for a gas circuit breaker (GCB).
【図6】図2に示すバルク型直線抵抗体(ドーナツ型金
属ほう化物系抵抗体)を変圧器用SF6ガス絶縁中性点
接地抵抗器(NGR)に応用した場合の内部構造説明図
である。FIG. 6 is an explanatory diagram of the internal structure when the bulk type linear resistor (donut type metal boride type resistor) shown in FIG. 2 is applied to an SF 6 gas insulated neutral point grounding resistor (NGR) for a transformer. ..
1…金属ほう化物系焼結体、2,2′…アルミニウム電
極、3…金属ほう化物系焼結体、4,4′…アルミニウ
ム電極、5…孔、6,6′…LaB6系抵抗体の特性曲
線、7,7′…ZrB2系抵抗体の特性曲線、8,8′
…従来型ZnO系抵抗体の特性曲線、9,9′…従来型
炭素系抵抗体の特性曲線。DESCRIPTION OF SYMBOLS 1 ... Metal boride-based sintered body, 2, 2 '... Aluminum electrode, 3 ... Metal boride-based sintered body, 4, 4' ... Aluminum electrode, 5 ... Hole, 6, 6 '... LaB 6 series resistor Characteristic curve, 7, 7 '... Characteristic curve of ZrB 2 system resistor, 8, 8'
... Characteristic curve of conventional ZnO-based resistor, 9, 9 '... Characteristic curve of conventional carbon-based resistor.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅井 忠道 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 山崎 武夫 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadamichi Asai 4026 Kujimachi, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Takeo Yamazaki 1-1-1 Kokubuncho, Hitachi City, Ibaraki Stock Hitachi, Ltd. Kokubu factory
Claims (8)
〜95体積%の非還元性ガラスからなる焼結体と、前記
焼結体を挾んで対向位置に配置された電極とからなり、
前記焼結体の温度300℃での抵抗値の温度係数が−1
×10~3〜+5×10~3/℃範囲であることを特徴とす
るバルク型直線抵抗体。1. A metal boride of 5 to 40% by volume and 60.
˜95% by volume of a non-reducing glass sintered body, and electrodes sandwiched by the sintered body and facing each other,
The temperature coefficient of resistance of the sintered body at a temperature of 300 ° C. is −1.
A bulk type linear resistor having a range of × 10 3 to +5 × 10 3 / ° C.
B,ZrB2,TiB2,VB2,NbB2,TaB2,C
rB2,LaB6,CaB6,W2B5より選ばれた1種以上
の粒子であるバルク型直線抵抗体。2. The metal boride according to claim 1, wherein the metal boride is Mo.
B, ZrB 2 , TiB 2 , VB 2 , NbB 2 , TaB 2 , C
A bulk type linear resistor which is one or more kinds of particles selected from rB 2 , LaB 6 , CaB 6 and W 2 B 5 .
B6に換算して5〜40体積%のほう化ランタンである
バルク型直線抵抗体。3. The metal boride according to claim 1, wherein the metal boride is La.
A bulk type linear resistor which is 5 to 40% by volume of lanthanum boride in terms of B 6 .
を含むガス遮断器において、前記抵抗器には、5〜40
体積%の金属ほう化物および、60〜95体積%の非還
元性ガラスからなる焼結体と、前記焼結体を挾んで対向
配置された電極とからなりかつ、前記焼結体の温度30
0℃での抵抗値の温度係数が−1×10~3〜+5×10
~3/℃範囲であるバルク型直線抵抗体を使用することを
特徴とするガス遮断器。4. A gas circuit breaker including a breaker housed in a tank and a closing resistor, wherein the resistor has 5 to 40 parts.
The sintered body is composed of a metal boride of volume% and a non-reducing glass of 60 to 95 volume%, and electrodes which are arranged to face each other with the sintered body interposed therebetween, and the temperature of the sintered body is 30.
Temperature coefficient of resistance at 0 ° C is -1 x 10 to 3 to +5 x 10
A gas circuit breaker characterized by using a bulk type linear resistor having a temperature range of up to 3 ° C.
地抵抗器において、前記抵抗器には、5〜40体積%の
金属ほう化物および、60〜95体積%の非還元性ガラ
スからなる焼結体と、前記焼結体を挾んで対向配置され
た電極とからなりかつ、前記焼結体の温度300℃での
抵抗値の温度係数が−1×10~3〜+5×10~3/℃範
囲であるバルク型直線抵抗体を使用することを特徴とす
る中性点接地抵抗器。5. A neutral grounding resistor including a resistor housed in a tank, wherein the resistor comprises 5-40 vol% metal boride and 60-95 vol% non-reducing glass. And a pair of electrodes that are arranged to face each other across the sintered body, and the temperature coefficient of the resistance value of the sintered body at a temperature of 300 ° C. is −1 × 10 to 3 to + 5 × 10 to Neutral point grounding resistor characterized by using a bulk type linear resistor in the range of 3 / ° C.
95体積%の非還元性ガラスとからなる混合粉に有機バ
インダーを加えて造粒,成形し、窒素雰囲気中で焼成し
た後、この焼結体を挾んで電極を対向配置し、かつ前記
焼結体の温度300℃での抵抗値の温度係数を−1×1
0~3〜+5×10~3/℃範囲に設定することを特徴とす
るバルク型直線抵抗体の製造方法。6. A metal boride of 5 to 40% by volume, and 60 to
An organic binder was added to a mixed powder consisting of 95% by volume of non-reducing glass, granulated and molded, and the mixture was fired in a nitrogen atmosphere, and then the sintered body was sandwiched and electrodes were arranged to face each other. The temperature coefficient of resistance at a body temperature of 300 ° C is -1 x 1
A method of manufacturing a bulk type linear resistor, characterized in that the range is 0 to 3 to + 5 × 10 3 / ° C.
B,ZrB2,TiB2,VB2,NbB2,TaB2,C
rB2,LaB6,CaB6,W2B5より選ばれた1種以上
の粉体であるバルク型直線抵抗体の製造方法。7. The metal boride according to claim 6, wherein the metal boride is Mo.
B, ZrB 2 , TiB 2 , VB 2 , NbB 2 , TaB 2 , C
A method for producing a bulk linear resistor, which is one or more powders selected from rB 2 , LaB 6 , CaB 6 , and W 2 B 5 .
B6に換算して5〜40体積%のほう化ランタンである
バルク型直線抵抗体の製造方法。8. The metal boride according to claim 6, which is La.
A method for manufacturing a bulk linear resistor, which is 5 to 40 vol% lanthanum boride in terms of B 6 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3196517A JPH0541302A (en) | 1991-08-06 | 1991-08-06 | Bulk type of linear resistor and manufacture of same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3196517A JPH0541302A (en) | 1991-08-06 | 1991-08-06 | Bulk type of linear resistor and manufacture of same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0541302A true JPH0541302A (en) | 1993-02-19 |
Family
ID=16359060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3196517A Pending JPH0541302A (en) | 1991-08-06 | 1991-08-06 | Bulk type of linear resistor and manufacture of same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0541302A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5764129A (en) * | 1995-03-27 | 1998-06-09 | Hitachi, Ltd. | Ceramic resistor, production method thereof, neutral grounding resistor and circuit breaker |
EP2180491A1 (en) | 2008-10-24 | 2010-04-28 | Kabushiki Kaisha Toshiba | Gas insulated circuit breaker system and gas insulated circuit breaker monitoring method |
-
1991
- 1991-08-06 JP JP3196517A patent/JPH0541302A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5764129A (en) * | 1995-03-27 | 1998-06-09 | Hitachi, Ltd. | Ceramic resistor, production method thereof, neutral grounding resistor and circuit breaker |
EP2180491A1 (en) | 2008-10-24 | 2010-04-28 | Kabushiki Kaisha Toshiba | Gas insulated circuit breaker system and gas insulated circuit breaker monitoring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4333861A (en) | Thick film varistor | |
US4091144A (en) | Article with electrically-resistive glaze for use in high-electric fields and method of making same | |
EP0316015A2 (en) | Material for resistor body and non-linear resistor made thereof | |
US4180483A (en) | Method for forming zinc oxide-containing ceramics by hot pressing and annealing | |
CA1100749A (en) | Pre-glassing method of producing homogeneous sintered zno non-linear resistors | |
US5764129A (en) | Ceramic resistor, production method thereof, neutral grounding resistor and circuit breaker | |
JPH0541302A (en) | Bulk type of linear resistor and manufacture of same | |
Bhushan et al. | Electrical and dielectric behavior of a zinc oxide composite | |
KR20190071658A (en) | Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for producing positive temperature coefficient resistor | |
JPH06101401B2 (en) | Linear resistor | |
JP3254950B2 (en) | Voltage non-linear resistor, its manufacturing method and application | |
JPH0677010A (en) | Linear resistor | |
JPH07249502A (en) | Linear resistor | |
JPH0582314A (en) | Linear resistor | |
JP2001257104A (en) | Neutral point grounding resistor and gas circuit breaker | |
Weißmann et al. | Glasses for High‐Resistivity Thick‐Film Resistors | |
JPH07130503A (en) | Manufacture of ceramic resisting body | |
JPH03159201A (en) | Oxide resistor | |
JPH10261506A (en) | Composite ptc material | |
JP2777009B2 (en) | Neutral grounding resistor | |
KR0159032B1 (en) | Resistive paste | |
JP2786367B2 (en) | Gas insulated circuit breaker | |
JPH0519802B2 (en) | ||
KR100279149B1 (en) | Blackout chuck | |
JPH10289807A (en) | Functional ceramic element |