JPH0541298A - Cod detection device and cod correction device for circular accelerator - Google Patents

Cod detection device and cod correction device for circular accelerator

Info

Publication number
JPH0541298A
JPH0541298A JP21617491A JP21617491A JPH0541298A JP H0541298 A JPH0541298 A JP H0541298A JP 21617491 A JP21617491 A JP 21617491A JP 21617491 A JP21617491 A JP 21617491A JP H0541298 A JPH0541298 A JP H0541298A
Authority
JP
Japan
Prior art keywords
cod
orbit
vacuum chamber
circular accelerator
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21617491A
Other languages
Japanese (ja)
Inventor
Shinichi Bandai
新一 萬代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP21617491A priority Critical patent/JPH0541298A/en
Publication of JPH0541298A publication Critical patent/JPH0541298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To detect and correct COD (closed orbit deviation) arranging no detection electrode or the like in a vacuum chamber, in a circular accelerator vacuum chamber such as a storage ring of an SOR equipment. CONSTITUTION:Vacuum ports 49 are drawn out from respective deflection sections 40 of a storage ring 22 in tangential directions. SOR light beams 54 introduced in the vacuum ports 49 are emitted from beryllium windows on the ends to observe with TV cameras 56 respectively. Deviations of electron beams circulating in the storage ring from the central orbit appear as deviations of positions on SOR light images, hence CODs can be obtained from observed images on the TV cameras 56. Then observed images on TV cameras 56 are inputted to a personal computer 66 through image processors 61-64, and horizontal and vertical CODs for respective deflection sections are detected in the personal computer 66, and magnetization of orbit adjusting electromagnets 44, 46 are controlled so as that both dispersions become minimal, to correct CODs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、シンクロトロン等の
円形加速器において、COD(closed orbitdistortion
:閉軌道のずれ)を検出し補正するための装置に関
し、円形加速器真空チャンバー中にCOD検出用電極等
を配することなくCODを検出して補正を行なえるよう
にしたものである。
This invention relates to a COD (closed orbit distortion) in a circular accelerator such as a synchrotron.
This is a device for detecting and correcting (closed orbit deviation) so that COD can be detected and corrected without disposing a COD detection electrode or the like in the circular accelerator vacuum chamber.

【0002】[0002]

【従来の技術】近年、シンクロトロンは、シンクロトロ
ン放射光(SOR)装置として、超々LSI回路の作
成、医療分野における診断、分子解析、構造解析等様々
な分野への適用が期待されている。SOR装置の概要を
図2に示す。荷電粒子発生装置(電子銃等)10で発生
した電子ビームは線型加速装置(ライナック)12で光
速近くに加速され、ビーム輸送部14の偏向電磁石16
で偏向されて、インフレクタ18を介して蓄積リング
(円形加速器真空チャンバー)22内に入射される。蓄
積リング22に入射された電子ビームは高周波加速空洞
21でエネルギを与えられながら収束電磁石23(垂直
方向用)、25(水平方向用)で収束され、偏向電磁石
24で偏向されて蓄積リング22中を回り続ける。偏向
電磁石24で偏向される時に発生するSOR光はビーム
チャンネル26を通して例えば露光装置28に送られて
超々LSI回路作成用の光源等として利用される。
2. Description of the Related Art In recent years, a synchrotron is expected to be applied as a synchrotron radiation (SOR) device to various fields such as creation of ultra-ultra LSI circuits, diagnosis in the medical field, molecular analysis, and structural analysis. The outline of the SOR device is shown in FIG. An electron beam generated by a charged particle generator (electron gun, etc.) 10 is accelerated by a linear accelerator (linac) 12 to near the speed of light, and a deflection electromagnet 16 of the beam transport unit 14 is accelerated.
It is deflected by and is incident on the storage ring (circular accelerator vacuum chamber) 22 via the inflector 18. The electron beam incident on the storage ring 22 is converged by the converging electromagnets 23 (for vertical direction) and 25 (for horizontal direction) while being given energy in the high-frequency acceleration cavity 21, and is deflected by the deflection electromagnet 24 to be stored in the storage ring 22. Keep going around. The SOR light generated when being deflected by the deflection electromagnet 24 is sent to, for example, the exposure device 28 through the beam channel 26, and is used as a light source or the like for creating an ultra-super LSI circuit.

【0003】シンクロトロン等の円形加速器において
は、中心軌道は粒子の運動方程式の周期解(つまり閉軌
道)になっており、ビームの重心は、中心軌道に一致す
る。ところが、加速器内に、余分な偏向磁場(誤差磁
場)があったとすると、もはや、閉軌道は中心軌道に一
致しなくなる。この閉軌道のずれをCODという)(図
3参照)。
In a circular accelerator such as a synchrotron, the central orbit is a periodic solution (that is, a closed orbit) of the particle equation of motion, and the center of gravity of the beam coincides with the central orbit. However, if there is an extra deflection magnetic field (error magnetic field) in the accelerator, the closed orbit will no longer coincide with the central orbit. The deviation of this closed orbit is called COD) (see FIG. 3).

【0004】CODは加速器を運転するとき、色々な不
都合を引きおこす。まず、加速器の物理的な口径が減る
ことによって、ビームの寿命が短くなる。極端な場合、
ビームが、真空チャンバーに当って、全く回らなくな
る。また、ビームの入射、取り出し、SOR光のビーム
位置調整、衝突型加速器での物理実験用測定器に入るノ
イズ落とし等、ビームの位置および角度を細かくコント
ロールする必要がある場合、それが困難になる。
COD causes various inconveniences when operating the accelerator. First, the reduced physical aperture of the accelerator shortens the life of the beam. In extreme cases,
The beam hits the vacuum chamber and does not rotate at all. In addition, when it is necessary to finely control the position and angle of the beam, such as beam injection, beam extraction, SOR beam position adjustment, noise reduction entering the physical experiment measuring instrument in the collider, it becomes difficult. ..

【0005】CODは、誤差磁場の原因(偏向磁石の磁
場のばらつき、四極磁石の設置誤差等)を減すことによ
り小さくすることができるが、それには限界があるの
で、補正システムが必要になる。
The COD can be reduced by reducing the cause of the error magnetic field (variation of the magnetic field of the deflection magnet, installation error of the quadrupole magnet, etc.), but there is a limit to that, and a correction system is required. ..

【0006】この補正は、通常加速器の何箇所かに水平
方向および垂直方向用軌道調整電磁石を配して、各位置
ごとに水平方向および垂直方向のCODを検出して、各
方向のCODずれの分散が最小となるようにこれら軌道
調整電磁石の励磁量を調整することにより行なわれる。
In this correction, the horizontal and vertical orbit adjusting electromagnets are usually arranged at several points in the accelerator, the horizontal and vertical CODs are detected at each position, and the COD deviation in each direction is detected. This is done by adjusting the amount of excitation of these orbit adjusting electromagnets so that the dispersion is minimized.

【0007】従来のCOD検出は、図4に加速器の断面
図を示すように、ビーム位置モニタとして加速器真空チ
ャンバー22内の上下にボタン電極31〜34を配し
て、ビームがここを通過する時に各電極に得られる信号
レベルから所定の演算式により水平方向および垂直方向
のビーム位置を求めて、中心軌道1からの実際のビーム
軌道2のずれΔx,Δyを求めるようにしていた。
In the conventional COD detection, as shown in the sectional view of the accelerator in FIG. 4, button electrodes 31 to 34 are arranged above and below the accelerator vacuum chamber 22 as a beam position monitor, and when the beam passes therethrough. The beam positions in the horizontal direction and the vertical direction are obtained from the signal levels obtained at the respective electrodes by a predetermined arithmetic expression, and the deviations Δx and Δy of the actual beam orbit 2 from the central orbit 1 are obtained.

【0008】[0008]

【発明が解決しようとする課題】前記図4のビーム位置
モニタによるCOD検出では加速器真空チャンバー22
にボタン電極を配する必要があるため真空チャンバーの
構造が複雑になる欠点があった。
In the COD detection by the beam position monitor of FIG. 4, the accelerator vacuum chamber 22 is used.
There is a drawback that the structure of the vacuum chamber is complicated because it is necessary to dispose a button electrode on the.

【0009】この発明は、前記従来の技術における問題
点を解決して、加速器真空チャンバー中に電極等を配す
ることなくCODを検出して補正できるようにした円形
加速器のCOD検出およびCOD補正装置を提供しよう
とするものである。
The present invention solves the above-mentioned problems in the prior art, and makes it possible to detect and correct COD without disposing electrodes or the like in the accelerator vacuum chamber, and a COD detection and COD correction device for a circular accelerator. Is to provide.

【0010】[0010]

【課題を解決するための手段】この発明のCOD検出装
置は、円形加速器真空チャンバーの偏向部からその接線
上に引き出された真空ポートと、この真空ポートに導か
れるSOR光の画像を観測する画像観測手段と、この画
像観測手段の観測に基づいて円形加速器真空チャンバー
の中心軌道からの粒子ビーム軌道のずれを求める演算手
段とを具備してなるものである。
The COD detector of the present invention is an image for observing an image of SOR light guided to the vacuum port and a vacuum port that is drawn out tangentially from the deflection part of the circular accelerator vacuum chamber. The observation means and the calculation means for obtaining the deviation of the particle beam trajectory from the central trajectory of the circular accelerator vacuum chamber based on the observation by the image observation means are provided.

【0011】また、この発明のCOD補正装置は上記検
出された軌道のずれに応じて、この軌道のずれの分散が
最小となるように円形加速器真空チャンバーに配された
軌道調整電磁石の励磁量を制御する制御手段をさらに具
備してなるものである。
Further, according to the deviation of the detected orbit, the COD correction device of the present invention adjusts the excitation amount of the orbit adjustment electromagnet arranged in the circular accelerator vacuum chamber so that the dispersion of the deviation of the orbit is minimized. It further comprises control means for controlling.

【0012】[0012]

【作用】この発明のCOD検出装置によれば、円形加速
器真空チャンバー内でのビームのずれが偏向位置でのS
OR光のずれとして現われることを利用して、SOR光
の画像をTVカメラ等の画像観測装置で観測することに
より軌道のずれを検出することができる。これによれ
ば、SOR光の画像の観測は円形加速器真空チャンバー
において偏向部に通常設けられている真空ポートを利用
して行なえるので、加速器真空チャンバーの構造を複雑
化させることなくCOD検出を行なうことができる。
According to the COD detection device of the present invention, the deviation of the beam in the circular accelerator vacuum chamber is S at the deflection position.
By utilizing the fact that the OR light appears as a deviation, the deviation of the orbit can be detected by observing the image of the SOR light with an image observation device such as a TV camera. According to this, since the observation of the image of the SOR light can be performed by utilizing the vacuum port which is usually provided in the deflection part in the circular accelerator vacuum chamber, COD detection is performed without complicating the structure of the accelerator vacuum chamber. be able to.

【0013】また、この発明のCOD補正装置によれば
上記COD検出に基づき自動でCOD補正を行なうこと
ができる。
Further, according to the COD correction device of the present invention, the COD correction can be automatically performed based on the COD detection.

【0014】[0014]

【実施例】この発明の実施例を図1に示す。SOR装置
の蓄積リング(円形加速器真空チャンバー)22には各
偏向部40に偏向電磁石24が配設され、各直線部42
に収束電磁石(図示せず)、垂直軌道調整電磁石44、
水平軌道調整電磁石46その他の電磁石が配されてい
る。垂直、水平軌道調整電磁石44,46は蓄積リング
22の真空チャンバーを挾んで磁極を水平方向、垂直方
向にそれぞれ対向させた2極電磁石としてそれぞれ構成
されている。
FIG. 1 shows an embodiment of the present invention. In the storage ring (circular accelerator vacuum chamber) 22 of the SOR device, a deflection electromagnet 24 is arranged in each deflection portion 40, and each linear portion 42.
Focusing electromagnet (not shown), vertical orbit adjusting electromagnet 44,
A horizontal orbit adjusting electromagnet 46 and other electromagnets are arranged. The vertical and horizontal orbit adjusting electromagnets 44 and 46 are respectively configured as two-pole electromagnets that sandwich the vacuum chamber of the storage ring 22 and have their magnetic poles facing each other in the horizontal and vertical directions.

【0015】各偏向部40の真空チャンバーからはその
接線上にそれぞれ2本ずつビームチャンネル48,49
が引き出されている。このうちビームチャンネル48か
ら出射されるSOR光50は露光装置等に導かれる。他
のビームチャンネル49はCOD検出用の真空ポートと
して利用され、それぞれ真空窓52を通してSOR光5
4を出射する。真空ポート49の延長上にはTVカメラ
56が配置され、出射されるSOR光54の画像を観測
する。
From the vacuum chamber of each deflecting section 40, two beam channels 48 and 49 are provided on the tangent line.
Have been pulled out. Of these, the SOR light 50 emitted from the beam channel 48 is guided to an exposure device or the like. The other beam channels 49 are used as vacuum ports for COD detection, and the SOR light 5 passes through a vacuum window 52.
4 is emitted. A TV camera 56 is arranged on the extension of the vacuum port 49 and observes an image of the emitted SOR light 54.

【0016】各偏向部40のTVカメラ56の観測画像
は画像処理装置61〜64にそれぞれ送り込まれて、水
平方向および垂直方向の画像出力分布(ビームプロファ
イル信号)が例えば図5に示すようなデータとして出力
される。
The images observed by the TV camera 56 of each deflecting section 40 are sent to the image processing devices 61 to 64, respectively, and the image output distributions (beam profile signals) in the horizontal and vertical directions are data as shown in FIG. 5, for example. Is output as.

【0017】パソコン66は演算手段および制御手段と
して、画像処理出力に基づき中心軌道1に対する実際の
軌道2の水平方向ずれ量Δxおよび垂直方向ずれ量Δy
を求める。そして、 i=1,2,3,4(4つの偏向部40を表わす)を演
算し、両分散の値を最小とするように水平軌道調整電源
68および垂直軌道調整電源70を制御して、水平軌道
調整電磁石46および垂直軌道調整電磁石48の励磁量
を偏向部40ごとに調整する。これにより、CODの自
動補正が実現される。なお、パソコン66を単に演算手
段として用いて、ここで検出されたずれ量に基づいてオ
ペレータのマニュアル操作で水平、垂直軌道調整電源6
8,70を調整してCOD補正を行なうこともできる。
The personal computer 66 serves as a calculation means and a control means, based on the image processing output, the horizontal deviation amount Δx and the vertical deviation amount Δy of the actual track 2 with respect to the central track 1.
Ask for. And i = 1, 2, 3, 4 (representing the four deflecting units 40) is calculated, and the horizontal orbit adjusting power supply 68 and the vertical orbit adjusting power supply 70 are controlled so as to minimize the values of both dispersions, and the horizontal orbit is adjusted. The amount of excitation of the adjusting electromagnet 46 and the vertical orbit adjusting electromagnet 48 is adjusted for each deflecting unit 40. As a result, automatic correction of COD is realized. It should be noted that the personal computer 66 is simply used as a calculation means, and the horizontal and vertical trajectory adjustment power source 6 is manually operated by the operator based on the deviation amount detected here.
COD correction can also be performed by adjusting 8, 70.

【0018】[0018]

【変更例】前記実施例ではこの発明をSOR装置に適用
した場合について説明したが、その他各種円形加速器に
適用することができる。
MODIFICATIONS In the above embodiments, the case where the present invention is applied to the SOR device has been described, but the present invention can be applied to various other circular accelerators.

【0019】[0019]

【発明の効果】以上説明したように、この発明のCOD
検出装置によれば、加速器内でのビームのずれが偏向位
置でのSOR光のずれとして現われることを利用して、
SOR光の画像をTVカメラ等の画像観測装置で観測す
ることにより軌道のずれを検出することができる。これ
によれば、SOR光の画像の観測は円形加速器真空チャ
ンバーにおいて偏向部に通常設けられている真空ポート
を利用して行なえるので、加速器真空チャンバーの構造
を複雑化させることなくCOD検出を行なうことができ
る。
As described above, the COD of the present invention
According to the detection device, by utilizing the fact that the deviation of the beam in the accelerator appears as the deviation of the SOR light at the deflection position,
The deviation of the orbit can be detected by observing the image of the SOR light with an image observation device such as a TV camera. According to this, since the observation of the image of the SOR light can be performed by utilizing the vacuum port which is usually provided in the deflection part in the circular accelerator vacuum chamber, COD detection is performed without complicating the structure of the accelerator vacuum chamber. be able to.

【0020】また、この発明のCOD補正装置によれば
上記COD検出に基づき自動でCOD補正を行なうこと
ができる。
Further, according to the COD correction device of the present invention, the COD correction can be automatically performed based on the COD detection.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】SOR装置の概要を示す平面図である。FIG. 2 is a plan view showing an outline of an SOR device.

【図3】CODの説明図である。FIG. 3 is an explanatory diagram of COD.

【図4】従来のビーム位置モニタを示す加速器真空チャ
ンバーの断面図である。
FIG. 4 is a cross-sectional view of an accelerator vacuum chamber showing a conventional beam position monitor.

【図5】図1の画像処理装置61〜64からの出力信号
の一例を示す線図である。
5 is a diagram showing an example of output signals from the image processing devices 61 to 64 of FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

1 中心軌道 2 実際の軌道(粒子ビーム軌道) 22 蓄積リング(円形加速器真空チャンバー) 40 偏向部 44,46 軌道調整電磁石 49 ビームチャンネル(真空ポート) 54 SOR光 56 TVカメラ(観測手段) 66 パソコン(演算手段、制御手段) 1 Central orbit 2 Actual orbit (particle beam orbit) 22 Storage ring (circular accelerator vacuum chamber) 40 Deflection part 44, 46 Orbit adjustment electromagnet 49 Beam channel (vacuum port) 54 SOR light 56 TV camera (observation means) 66 PC ( Calculation means, control means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】円形加速器真空チャンバーの偏向部からそ
の接線上に引き出された真空ポートと、 この真空ポートに導かれるSOR光の画像を観測する画
像観測手段と、 この画像観測手段の観測に基づいて円形加速器真空チャ
ンバーの中心軌道からの粒子ビーム軌道のずれを求める
演算手段とを具備してなる円形加速器のCOD検出装
置。
1. A vacuum port drawn out from a deflecting part of a circular accelerator vacuum chamber on its tangent line, an image observing means for observing an image of SOR light guided to this vacuum port, and an observation means for observing the image. Circular accelerator, a COD detection device for a circular accelerator, which comprises a calculating means for obtaining a deviation of a particle beam trajectory from a central trajectory of a vacuum chamber.
【請求項2】円形加速器真空チャンバーの偏向部からそ
の接線上に引き出された真空ポートと、 この真空ポートに導かれるSOR光の画像を観測する画
像観測手段と、 この画像観測手段の観測に基づいて円形加速器真空チャ
ンバーの中心軌道からの粒子ビーム軌道のずれを求める
演算手段と、 前記軌道のずれの分散が最小となるように円形加速器真
空チャンバーに配された軌道調整電磁石の励磁量を制御
する制御手段とを具備してなる円形加速器のCOD補正
装置。
2. A vacuum port drawn out from a deflection part of a circular accelerator vacuum chamber on its tangent line, an image observation means for observing an image of SOR light guided to this vacuum port, and an observation means for observing the image. And calculating means for calculating the deviation of the particle beam orbit from the central orbit of the circular accelerator vacuum chamber, and controlling the excitation amount of the orbit adjustment electromagnet arranged in the circular accelerator vacuum chamber so that the deviation of the orbit deviation is minimized. A COD correction device for a circular accelerator, comprising: a control means.
JP21617491A 1991-08-02 1991-08-02 Cod detection device and cod correction device for circular accelerator Pending JPH0541298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21617491A JPH0541298A (en) 1991-08-02 1991-08-02 Cod detection device and cod correction device for circular accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21617491A JPH0541298A (en) 1991-08-02 1991-08-02 Cod detection device and cod correction device for circular accelerator

Publications (1)

Publication Number Publication Date
JPH0541298A true JPH0541298A (en) 1993-02-19

Family

ID=16684450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21617491A Pending JPH0541298A (en) 1991-08-02 1991-08-02 Cod detection device and cod correction device for circular accelerator

Country Status (1)

Country Link
JP (1) JPH0541298A (en)

Similar Documents

Publication Publication Date Title
JP3912364B2 (en) Particle beam therapy system
US6580084B1 (en) Accelerator system
US7001071B2 (en) Method and device for setting the focal spot position of an X-ray tube by regulation
KR20040079835A (en) Apparatus for positioning bed and method thereof
JP2002204798A (en) Diagnostic imaging apparatus for radiotherapy
TW201332606A (en) Particle beam therapeutic system and its beam position correcting method
CN107648749A (en) Radiotherapy system and its line control device and beam-based method
JPH10234715A (en) Medical imaging system and device therefor
CN110169208B (en) Particle acceleration system and adjustment method thereof
JPH0541298A (en) Cod detection device and cod correction device for circular accelerator
JPH06154349A (en) Radiotherapy device
JP2001004559A (en) X-ray inspecting device
Ateş et al. Development of a Multi-Camera System for Non-Invasive Intense Ion Beam Investigations
TWI643531B (en) Particle acceleration system and method for adjusting particle acceleration system
TWI515026B (en) Septum magnet and particle beam therapy system
JPH06269439A (en) X-ray ct apparatus and x-ray generator
WO2023243143A1 (en) Beam monitor device, accelerator, radiation treatment device, and beam measurement method
JP6965185B2 (en) Ion injection device and particle beam therapy device
JPH0590000A (en) Beam monitor of particle accelerator
JPH03261100A (en) Electron beam monitoring device of synchrotron
JP2001116899A (en) Radiation generator
Tzoganis Investigations into Ion Beam Emittance and Profile Monitoring
JPS63184255A (en) Electron beam irradiation device
JPH06310300A (en) Adjusting method and device for magnet alignment of accelerator
JPH0555497U (en) Particle accelerator entrance structure