WO2023243143A1 - Beam monitor device, accelerator, radiation treatment device, and beam measurement method - Google Patents

Beam monitor device, accelerator, radiation treatment device, and beam measurement method Download PDF

Info

Publication number
WO2023243143A1
WO2023243143A1 PCT/JP2023/005535 JP2023005535W WO2023243143A1 WO 2023243143 A1 WO2023243143 A1 WO 2023243143A1 JP 2023005535 W JP2023005535 W JP 2023005535W WO 2023243143 A1 WO2023243143 A1 WO 2023243143A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
particle beam
accelerator
covariance
dimensional
Prior art date
Application number
PCT/JP2023/005535
Other languages
French (fr)
Japanese (ja)
Inventor
沙希子 足利
孝道 青木
孝義 関
風太郎 ▲えび▼名
貴啓 山田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023243143A1 publication Critical patent/WO2023243143A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the present disclosure relates to a beam monitor device, an accelerator, a radiation therapy device, and a beam measurement method.
  • Non-Patent Document 1 describes the fluorescence generated by the interaction between a charged particle beam and residual gas on its trajectory using a CCD (Charge-Coupled Device) camera installed parallel to the trajectory of the charged particle beam.
  • CCD Charge-Coupled Device
  • a technique has been disclosed for measuring the envelope and two-dimensional emittance of a charged particle beam by detecting the charged particle beam. With this technology, charged particle beams can be monitored in real time by non-contact measurements that do not involve contacting the charged particle beam with a measuring device, so real-time monitoring without affecting the charged particle beam is possible.
  • Non-Patent Document 1 emittance and the like are measured by projecting the particle distribution of the beam onto a single plane on which a CCD camera is installed, so it is not possible to detect the particle distribution of the beam three-dimensionally. . For this reason, it is not possible to grasp the three-dimensional structure of the beam, and in particular, the dispersion, covariance, and emittance in a four-dimensional phase space consisting of the position and momentum in two different directions intersecting the beam's traveling direction. There is a problem in that it is not possible to measure
  • the particle distribution of the beam may be correlated or the topology of the beam may differ in a plane perpendicular to the beam axis due to the interaction between the electric charge of the beam itself and the magnetic field during transport. Sometimes it becomes. Therefore, in order to accurately understand the state of the beam, it is important to understand the three-dimensional structure of the beam, especially to measure the dispersion, covariance, emittance, etc. in the four-dimensional phase space.
  • An object of the present disclosure is to provide a beam monitor device, an accelerator, a radiation therapy device, and a beam measurement method that can grasp the three-dimensional structure of a beam.
  • a beam monitoring device is a beam monitoring device that monitors a charged particle beam, and includes fluorescence generated in response to the charged particle beam from each of a plurality of directions intersecting the traveling direction of the charged particle beam.
  • an imaging unit that generates a plurality of captured images, an acquisition unit that acquires a three-dimensional beam distribution that is a distribution of the charged particle beam in a three-dimensional space, based on the plurality of captured images; a calculation unit that calculates variance and covariance due to the position and momentum of the charged particle beam in two directions intersecting the traveling direction, based on the beam distribution.
  • FIG. 1 is a diagram illustrating a boron neutron capture therapy system according to an example of the present disclosure.
  • FIG. 3 is a flowchart for explaining an example of beam monitoring processing. It is a figure showing an example of a three-dimensional beam image.
  • FIG. 1 is a diagram showing a boron neutron capture therapy system according to an embodiment of the present disclosure.
  • a boron neutron capture therapy system 999 shown in FIG. 1 is a type of radiation therapy apparatus that irradiates a patient with radiation to treat an affected area of the patient, such as cancer. Specifically, the boron neutron capture therapy system 999 irradiates a patient's cancer cells, which have accumulated boron with a drug, with a thermal neutron beam as radiation.
  • a boron neutron capture therapy system 999 is arranged across an accelerator room 1000, an accelerator operator room 1001, and a treatment room (not shown).
  • the accelerator operating room 1001 is a room in a non-radiation controlled area located near the accelerator room 1000.
  • the accelerator operating room 1001 is equipped with a computer 13, a computer 14, a display device 15, a recording device 16, and a speaker 17, which constitute the beam monitor 1, as components of the boron neutron capture therapy system 999.
  • a computer 13 a computer 14
  • a display device 15 a recording device 16
  • a speaker 17 which constitute the beam monitor 1
  • an accelerator operator 1002 who operates the boron neutron capture therapy system 999 stays in the accelerator operator's room 1001 during radiation therapy.
  • the accelerator operator 1002 understands the state of the beam based on visual information from the display device 15 and auditory information from the speaker 17, and operates the accelerator 100.
  • the accelerator 100 accelerates and emits a particle beam.
  • the accelerator 100 is a proton accelerator that emits a proton beam 103, which is a charged particle beam, as a particle beam. It is accelerated until it becomes , and is ejected to the lithium target 107 .
  • the accelerator 100 includes an ion source 110, a low energy beam transport line 105, and a high frequency quadrupole linear accelerator 106.
  • the ion source 110 is an emission unit that generates and emits a proton beam.
  • the ion source 110 is an electron cyclotron resonance (ECR) type ion source, and includes a plasma chamber (not shown) inside, and is further equipped with an extraction electrode 102 and a beam extraction power source 104.
  • ECR electron cyclotron resonance
  • hydrogen plasma is generated by ionizing hydrogen gas with high-frequency voltage.
  • Protons in the hydrogen plasma are extracted to the outside of the plasma chamber by a voltage applied to the extraction electrode 102 and emitted as a proton beam 103 to a low energy beam transport line 105.
  • the proton beam 103 is a collection of protons that have momentum.
  • the proton beam 103 extracted from the plasma chamber has a current of 25 mA and a kinetic energy of 30 keV in this embodiment.
  • the beam extraction power supply 104 is a high voltage power supply and applies a high voltage of 30 kV to the extraction electrode 102.
  • the voltage applied by the beam extraction power source 104 is controlled by the computer 14 via the cable 54.
  • the cable 54 is, for example, a BNC (Bayonet Neill Concelman) cable.
  • the low energy beam transport line 105 is a transport line whose interior is evacuated and through which a low energy beam passes.
  • the low energy beam transport line 105 transports the proton beam 103 emitted from the ion source 110 and enters the high frequency quadrupole linear accelerator 106 .
  • the low energy beam transport line 105 includes solenoid electromagnets 1051 and 1052 and a measurement point 101.
  • the solenoid electromagnets 1051 and 1052 have electric wires wound spirally along the traveling direction of the proton beam 103, and the proton beam 103 is powered by currents supplied to the electric wires from the solenoid electromagnet power supplies 1053 and 1054. It is an electromagnet that induces a magnetic field parallel to the direction of travel.
  • the solenoid electromagnets 1051 and 1052 apply converging force to the proton beam 103 using the induced magnetic fields, shape the proton beam into a shape that can be accelerated by the high-frequency quadrupole linear accelerator 106, and emit it to the high-frequency quadrupole linear accelerator 106.
  • the measurement location 101 is a location in the low-energy beam transport line 105 where the side wall portion is formed by a window 108 having light transmittance.
  • the window 108 is made of lead glass, for example.
  • the window 108 is a portion that allows fluorescence generated in response to the proton beam 103 within the low-energy beam transport line 105 to be measured from outside the low-energy beam transport line 105.
  • the measurement location 101 is the location immediately before the proton beam 103 enters the high-frequency quadrupole linear accelerator 106 from the low-energy beam transport line 105, but it may be another location.
  • the measurement point 101 may be provided in a high frequency quadrupole linear accelerator 106.
  • the high-frequency quadrupole linear accelerator 106 is an accelerator that accelerates a particle beam along a straight line using a high-frequency voltage that is an acceleration voltage supplied from a high-frequency acceleration source 1055.
  • the high-frequency quadrupole linear accelerator 106 accelerates the proton beam 103 using a high-frequency voltage while applying a focusing force until the kinetic energy reaches 2.5 MeV, and emits the proton beam 103 to a lithium target 107 .
  • the acceleration high-frequency source 1055 is a high-frequency source equipped with a vacuum tube that generates microwaves, and supplies a high-frequency voltage for accelerating the proton beam 103 to the high-frequency quadrupole linear accelerator 106.
  • the high frequency voltage supplied by the acceleration high frequency source 1055 is applied to the computer 14 via the cable 58.
  • the computer 14 can modulate the acceleration frequency and the like.
  • Cable 58 is, for example, a BNC cable.
  • the lithium target 107 is a conical target mainly made of lithium (Li), and is arranged so that its bottom face faces the high-frequency quadrupole linear accelerator 106 side.
  • the lithium target 107 has a heat removal function using cooling water.
  • the lithium target 107 generates thermal neutrons by causing a 7 Li (p, n) 7 Be reaction with protons in the proton beam 103 supplied from the accelerator 100, and sends the thermal neutron beam to patients in the treatment room. and emit light.
  • the CCD camera 11, the motor-driven rotary frame 12, the computer 13, the computer 14, the display device 15, the recording device 16, and the speaker 17 constitute the beam monitor 1.
  • the beam monitor 1 is a beam monitoring device that monitors the proton beam 103 in real time and detects abnormalities in the beam based on the monitoring results.
  • the CCD camera 11 is a camera that uses a CCD, which is a semiconductor element, as an imaging element, and measures the position and intensity of fluorescence generated in response to the proton beam 103 at the measurement location 101.
  • the CCD camera 11 is fixed to a motor-driven rotating frame 12 with bolts or the like. Further, the CCD camera 11 is communicably connected to a computer 13 installed in the accelerator operating room 1001 via a cable 50.
  • the cable 50 is, for example, an RJ45 cable.
  • the motor-driven rotating mount 12 rotates the CCD camera 11 around the proton beam 103 by rotating the CCD camera 11 around the low energy beam transport line 105 with the beam axis direction of the proton beam 103 as the rotation axis direction.
  • the motor-driven rotating pedestal 12 includes a guide rail 18, a plate 19, and a motor (not shown).
  • the guide rail 18 is a rail made by combining two aluminum rings, and is arranged in a ring shape so as to surround the window 108.
  • Plate 19 is supported by guide rail 18. Furthermore, the CCD camera 11 is fixed to the plate 19 with bolts or the like. The plate 19 is driven by a motor and moves along the guardrail 18. As a result, the plate 19 rotates around the proton beam 103 together with the CCD camera 11 fixed thereto, and the CCD camera 11 captures protons from each of a plurality of imaging directions substantially perpendicular to the beam axis direction of the proton beam 103. It becomes possible to image fluorescence according to the beam 103.
  • the computer 13 is a computer that performs various information processing such as input/output, calculation, and conversion of digital data using electronic circuits.
  • the computer 13 is installed in the accelerator operator's room 1001 and is communicatively connected to the computer 14 via a cable 51.
  • the cable 51 is, for example, an RJ45 cable.
  • the computer 13 calculates the distribution of fluorescence in a three-dimensional space according to the proton beam 103 based on a plurality of captured images acquired by the CCD camera 11, and calculates the distribution of fluorescence in a three-dimensional space corresponding to the proton beam 103 into a three-dimensional distribution that is the distribution in the three-dimensional space of the proton beam 103. It functions as an acquisition unit that acquires a three-dimensional beam image shown as a beam distribution.
  • the computer 14 is a computer that performs various information processing such as input/output, calculation, and conversion of digital data using electronic circuits.
  • the computer 14 is communicably connected to a display device 15 via a cable 52 , a recording device 16 via a cable 53 , and a speaker 17 via a cable 55 .
  • Cables 52 and 53 are, for example, RJ45 cables, and cable 55 is, for example, a coaxial cable.
  • the computer 14 calculates dispersion and covariance due to the position and momentum of the proton beam 103 in two directions intersecting (specifically, approximately orthogonal to) the beam axis direction. It functions as a calculation unit that calculates the dispersion/covariance matrix shown and the emittance of the proton beam 103.
  • the computer 14 determines whether an abnormality has occurred in the proton beam 103 based on the calculation result. Specifically, the computer 14 determines whether each element of the variance/covariance matrix exceeds the threshold value of each element of a predetermined threshold matrix, and whether the emittance exceeds the emittance threshold value. The computer 14 determines whether an abnormality has occurred in the proton beam 103 based on the determination result. If it is determined that an abnormality has occurred, the computer 14 executes feedback processing to control the outputs of the display device 15, speaker 17, beam extraction power source 104, solenoid electromagnet power sources 1053, 1054, and acceleration high frequency source 1055.
  • computers 13 and 14 may be computer systems having a memory that records a computer program and a processor that reads the computer program recorded in the memory and executes the read computer program to achieve the above functions. .
  • the variance/covariance matrix is a real symmetric matrix with 4 rows and 4 columns, and represents the correlation between the position and momentum in two mutually different directions intersecting the beam axis direction.
  • Emittance is an index (numerical value) representing the quality of the beam, and is a value obtained by calculating the determinant of the variance/covariance matrix.
  • the threshold matrix is a real symmetric matrix with 4 rows and 4 columns, and the element in the i row and j column of the threshold matrix is the threshold corresponding to the element in the i row and j column of the variance/covariance matrix.
  • the display device 15 is a device that displays various information such as characters, figures, and graphics, and is installed in the accelerator cab 1001.
  • the display device 15 displays, for example, the three-dimensional beam image acquired by the computer 13 and the variance/covariance matrix and emittance calculated by the computer 14 in real time, and notifies the accelerator operator 1002 of the three-dimensional beam image.
  • the speaker 17 is an audio output device that converts electrical signals into audio, and is installed in the accelerator operator's cab 1001.
  • the speaker 17 receives an electrical signal from the computer 14 when an abnormality is detected in which the proton beam 103 is determined to be abnormal, and outputs an alarm sound according to the electrical signal to alert the accelerator operator 1002 (proton beam 103 Functions as a notification section to notify of abnormalities).
  • the computer 14 receives a threshold matrix and an emittance threshold, which is a threshold for emittance, from the accelerator operator 1002, and sets the threshold matrix and emittance threshold to itself (step S1).
  • the computer 14 activates the beam extraction power supply 104 in accordance with the instructions from the accelerator operator 1002, starts the generation and emission of the proton beam 103 by the ion source 110, and also starts the solenoid electromagnet power supplies 1053, 1054 and the acceleration high frequency
  • the source 1055 is controlled to accelerate the proton beam 103 (step S2).
  • the proton beam 103 emitted from the ion source 110 is accelerated via the low energy beam transport line 105 and the high frequency quadrupole linear accelerator 106 and is irradiated onto the lithium target 107.
  • a 7 Li (p, n) 7 Be reaction occurs between the lithium target 107 and the proton beam 103, and a thermal neutron beam is generated and irradiated to the patient in the treatment room.
  • the proton beam 103 generates fluorescence when the proton beam 103 itself or nitrogen excited by the proton beam 103 captures electrons in the low energy beam transport line 105.
  • the CCD camera 11 images this fluorescence through a window 108 made of lead glass provided at the measurement location 101. Further, the CCD camera 11 is fixed to a plate 19 of a motor-driven rotary frame 12 and moves along a guide rail 18 arranged in an annular manner so as to surround the window 108. Then, the CCD camera 11 images fluorescence corresponding to the proton beam 103 from a plurality of directions while rotating around the proton beam 103.
  • the captured images acquired by imaging are sequentially transmitted to the computer 13.
  • the CCD camera 11 images fluorescence from at least four different imaging directions.
  • the computer 13 receives a plurality of captured images from the CCD camera 11, generates a three-dimensional beam image based on the plurality of captured images, and transmits the three-dimensional beam image to the computer 14 (step S4).
  • the computer 13 can generate a three-dimensional beam image by, for example, performing inverse Radon transformation on a plurality of captured images.
  • the computer 14 receives the three-dimensional beam image from the computer 13, and calculates the dispersion/covariance matrix and emittance of the proton beam 103 based on the three-dimensional beam image.
  • the computer 14 transmits the variance/covariance matrix and emittance that are the calculation results to the display device 15 and the recording device 16 (step S5).
  • the display device 15 receives the calculation result, it displays the calculation result, and when the recording device 16 receives the calculation result, it records the calculation result (step S6).
  • step S7: No If no abnormality has occurred (step S7: No), the process returns to step S3. On the other hand, if an abnormality has occurred (step S7: Yes), the computer 14 transmits a beam stop signal to the speaker 17 and the beam extraction power source 104.
  • the speaker 17 receives the beam stop signal, it outputs an alarm sound to notify that the beam will be stopped because an abnormality has occurred in the proton beam 103.
  • the beam extraction power supply 104 receives the beam stop signal, it stops supplying power to the extraction electrode 102, stops the ion source 110 from emitting the proton beam 103 (step S8), and ends the process.
  • step S5 by the computer 14 will be explained in more detail.
  • FIG. 3 is a diagram showing an example of a three-dimensional beam image used by the computer 14.
  • a three-dimensional beam image 201 shown in FIG. 3 is an image showing a three-dimensional distribution of fluorescence according to the proton beam 103, and in this embodiment, it is regarded as an image showing the three-dimensional distribution of the proton beam 103.
  • the example in FIG. 3 shows a state in which the proton beam 103 is being transported from left to right.
  • the beam axis direction of the proton beam 103 is the s-axis direction
  • the left direction in the horizontal direction when viewed from the beam axis direction is the positive direction of the x1 axis
  • the upward direction in the vertical direction perpendicular to the beam axis direction is the x3 axis direction.
  • the direction is positive.
  • the brightness center (x 1 , x 3 , s) center of the proton beam 103 calculated from Equation 1 using the brightness distribution ⁇ (x 1 , x 3 , s) of the three-dimensional beam image 201 is set as the origin.
  • the dispersion/covariance matrix ⁇ (s) of the proton beam 103 is defined by Equation 2, and the emittance ⁇ (s) is defined by Equation 3.
  • the variance/covariance matrix ⁇ (s) is a real symmetric matrix, and the emittance ⁇ (s) is the determinant of the variance/covariance matrix ⁇ (s).
  • x 1 (s) is the position of the particle (proton) constituting the proton beam 103 in the x 1 axis direction
  • x 3 (s) is the position of the particle in the x 3 axis direction
  • x 2 ( s) is the inclination of the trajectory of the particle in the x1 - axis direction
  • x4 is the inclination of the trajectory of the particle in the x2 - axis direction, each expressed as a function of the beam axis direction s.
  • the slope x 2 (s) corresponds to the momentum of the particle in the x 1 direction
  • the slope x 4 (s) corresponds to the momentum of the particle in the x 3 direction. Therefore, the variables x 1 (s) to x 4 (s) are four-dimensional phases composed of positions and momentums in two different directions intersecting (specifically, orthogonal to) the beam axis direction s of the proton beam 103. Corresponds to coordinates in space.
  • the diagonal component ⁇ x i 2 (s)> in the variance/covariance matrix ⁇ (s) indicates the variance of the variable x i (s)
  • the off-diagonal component ⁇ x i (s) x j (s )> indicates the covariance of the variable x i (s) and the variable x j (s).
  • the square of x i (s) ( ⁇ x i (s) ⁇ 2 ) is expressed as x i 2 (s).
  • the element ⁇ ij (s) in the i row and j column (i ⁇ j) that does not include the slopes x 2 (s) and x 4 (s) in the variance/covariance matrix ⁇ (s) is It is calculated by a weighted average of a function x i (s) x j (s) weighted by the brightness distribution ⁇ (x 1 , x 3 , s) of the three-dimensional beam image 201. Note that the brightness distribution ⁇ (x 1 , x 3 , s) and the positions x 1 (s) and x 3 (s) are calculated from the three-dimensional beam image 201.
  • the element ⁇ ij (s) in the i-th row and the j-th column including the slopes x 2 (s) and x 4 (s) in the variance/covariance matrix ⁇ (s) is calculated in steps S11 to S13 below. .
  • Step S11 Based on the three-dimensional beam image 201, the computer 14 calculates the variances ⁇ x 1 2 > and ⁇ x 3 2 > is calculated.
  • Step S12 The calculator 14 fits the variables x 1 ( s) and x 3 ( Obtain the variances ⁇ x 1 2 (s)> and ⁇ x 3 2 (s)> of s) as functions of the variable s.
  • the envelope equation shown by Equation 5 is an envelope equation that takes into account only the air charge of the proton beam itself in free space.
  • p1 to p4 are fitting parameters.
  • Step S13 As shown in Equation 6, the computer 14 performs first-order differentiation in the s-axis direction for the variances ⁇ x 1 2 (s)> and ⁇ x 3 2 (s)>, so that the covariance ⁇ x 1 (s)x 2 (s)> and ⁇ x 3 (s)x 4 (s)> are calculated.
  • the computer 14 calculates the variance ⁇ x 1 2 (s)> and ⁇ x 3 2 (s)> by performing second-order differentiation in the s-axis direction.
  • the covariances of the positions x 1 (s) and x 3 (s) and the slopes x 2 (s) and x 4 (s) are ⁇ x 1 (s)x 4 (s)> and ⁇ x 2 (s)x 3 (s)>, the variance of the positions x 1 (s) and x 3 (s) ⁇ x 1 2 (s )> and ⁇ x 3 2 (s)>.
  • the angular velocity ⁇ is related to the first differential in the s-axis direction of the covariance ⁇ x 1 (s) x 3 (s)> of the positions x 1 (s) and x 3 (s). Can be attached.
  • the computer 14 calculates the covariances ⁇ x 1 (s)x 4 (s)> and ⁇ x 2 (s)x 3 (s)> from the covariances ⁇ x 1 (s)x 3 (s)> Calculated based on the dependence of the s-axis direction.
  • the computer 14 first calculates the covariance ⁇ x 1 x 3 > of the variables x 1 (s) and x 3 (s) at predetermined intervals ⁇ s along the s-axis.
  • the calculator 14 fits ⁇ x 1 x 3 >, ⁇ x 1 2 (s)>, and ⁇ x 3 2 (s)> calculated for each interval ⁇ s using the differential equation shown in Equation 9. , obtain ⁇ as a fitting parameter.
  • the computer 14 uses the fitting parameter ⁇ and Equation 8 to calculate covariances ⁇ x 1 (s)x 4 (s)> and ⁇ x 2 (s)x 3 (s)>.
  • the functions calculated in step S12 described above are used as the variances ⁇ x 1 2 (s)> and ⁇ x 3 2 (s)>.
  • the calculator 14 calculates the amount of change ⁇ x 1 x 3 > in the covariance ⁇ x 1 x 3 >/the amount of change ⁇ in ⁇ s at each predetermined interval ⁇ s along the s-axis ( ⁇ x 1 x 3 >) / ⁇ s 2 is calculated for each interval ⁇ s. Since this value satisfies the relationship shown in Equation 10 with the covariance between the slopes ⁇ x 2 (s) x 4 (s)>, the calculator 14 calculates ⁇ x 2 (s) )> is calculated.
  • step S7 by the computer 14 will be explained in more detail.
  • the computer 14 assigns predetermined values (here, 0) to the variance/covariance matrix and the emittance variable s. Furthermore, since both the variance/covariance matrix and the threshold matrix are real symmetric matrices, the computer 14 sets the element in the i row and j column to 0 when i ⁇ j in the variance/covariance matrix and the threshold matrix. Then, the difference matrix is calculated by subtracting the variance/covariance matrix from the threshold matrix. The calculator 14 determines whether each element in row i and column j, where i ⁇ j, in the difference matrix is positive or negative. The computer 14 determines that an abnormality has occurred when a negative determination is obtained. Similarly, the calculator 14 determines whether the difference value obtained by subtracting the emittance from the emittance threshold value is positive or negative, and if the difference value is negative, it is determined that an abnormality has occurred.
  • predetermined values here, 0
  • the beam monitor 1 monitors the beam of the accelerator 100 for the boron neutron capture therapy system 999, but the accelerator that performs beam monitoring is not limited to this example. It may be an accelerator for fusion or an accelerator for particle beam therapy. Further, although the accelerator 100 is a linear accelerator, the accelerator for beam monitoring may be a circular accelerator or the like.
  • the CCD camera 11 was used as the camera of the beam monitor 1, but instead of the CCD camera 11, for example, a CMOS (Complementary Metal Oxide Semiconductor) camera, a multi-channel photomultiplier tube, or a silicon photomultiplier tube (SIPM) can be used. :Silicon Photomultiplier) array etc. may be used.
  • CMOS Complementary Metal Oxide Semiconductor
  • SIPM silicon photomultiplier tube
  • :Silicon Photomultiplier) array etc. may be used.
  • the CCD camera 11 and the motor-driven rotary mount 12 were used to acquire captured images from each of a plurality of directions, it is possible to arrange multiple cameras to surround the window 108 of the measurement point 101. , captured images may be acquired from each of a plurality of directions.
  • the functions of the computers 13 and 14 may be realized by one computer, or may be realized by three or more computers.
  • the computer 14 may adjust the state of the proton beam 103 by controlling the solenoid electromagnet power supplies 1053, 1054, the acceleration high-frequency source 1055, etc.
  • the calculator 14 calculates the value and period of the electromagnet current supplied from the solenoid electromagnet power supplies 1053 and 1054 to the solenoid type electromagnets 1051 and 1052, and the value of the acceleration voltage supplied from the acceleration high frequency source 1055 to the high frequency quadrupole linear accelerator 106.
  • a control signal indicating the period and the like is transmitted to the solenoid electromagnet power supplies 1053, 1054 and the acceleration high frequency source 1055, thereby controlling the solenoid electromagnet power supplies 1053, 1054 and the acceleration high frequency source 1055.
  • the computer 14 determines the electromagnet current and accelerating voltage indicated by the control signal based on the dispersion/covariance matrix and emittance. For example, the computer 14 maintains a lookup table showing the relationship between each element of the dispersion/covariance matrix and emittance, and the electromagnet current and accelerating voltage, and based on the lookup table, calculates the dispersion/covariance that exceeds a threshold value. Determine the electromagnet current and accelerating voltage according to the elements of the dispersion matrix or emittance.
  • a three-dimensional beam image can be generated by creating symmetry in the shape of the proton beam 103.
  • the imaging unit generates a plurality of captured images of fluorescence generated according to the proton beam 103 from each of a plurality of directions intersecting the traveling direction of the proton beam 103.
  • the computer 13 obtains a three-dimensional beam distribution, which is a distribution of the proton beam 103 in a three-dimensional space, based on a plurality of captured images.
  • the computer 14 calculates the dispersion and covariance due to the position and momentum of the proton beam 103 in two directions intersecting the traveling direction of the proton beam 103 based on the three-dimensional beam distribution. Therefore, since the dispersion and covariance due to the position and momentum of the proton beam 103 represent the three-dimensional structure of the beam, it is possible to grasp the three-dimensional structure of the beam.
  • the emittance of the proton beam 103 is calculated based on the above-mentioned dispersion and covariance, so it is possible to more accurately understand the three-dimensional structure of the beam.
  • the CCD camera 11 rotates around the proton beam 103, so that captured images are acquired from multiple directions. Therefore, since it is not necessary to prepare a plurality of CCD cameras 11, it is possible to understand the three-dimensional structure of the beam while reducing costs.
  • the computer 14 determines whether an abnormality has occurred in the proton beam 103 based on the dispersion and covariance. Therefore, it is possible to accurately determine abnormalities in the beam based on the three-dimensional structure of the beam.
  • the state of the proton beam is adjusted based on the dispersion and covariance, so that it is possible to suppress the abnormal proton beam 103 from being emitted. It becomes possible.
  • Beam monitor 11 CCD camera 12: Motor-driven rotating frame 13: Computer 14: Computer 15: Display device 16: Recording device 17: Speaker 18: Guide rail 19: Plate 100: Accelerator 101: Measurement point 102: Extraction electrode 103: Proton beam 104: Beam extraction power supply 105: Low energy beam transport line 106: High frequency quadrupole linear accelerator 107: Lithium target 108: Window 110: Ion source 999: Boron neutron capture therapy system 1000: Accelerator room 1000a: Shielding wall 1001: Accelerator operator's room 1002: Accelerator operator 1051: Solenoid electromagnet 1053: Solenoid electromagnet power supply 1054: Solenoid electromagnet power supply 1055: High frequency source for acceleration

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

Provided is a beam monitor device that makes it possible to grasp the three-dimensional structure of a beam. An imaging unit generates, from each of a plurality of directions intersecting the direction of travel of a proton beam 103, a plurality of captured images of fluorescence generated in response to the proton beam 103. A calculator 13 uses the plurality of captured images as a basis to acquire a three-dimensional beam distribution which is the distribution of the proton beam 103 within a three-dimensional space. A calculator 14 uses the three-dimensional beam distribution as a basis to calculate the position of the proton beam 103 in two directions intersecting the direction of travel of the proton beam 103, and the variance and covariance resulting from momentum.

Description

ビームモニタ装置、加速器及び放射線治療装置及びビーム測定方法Beam monitor device, accelerator and radiation therapy device, and beam measurement method
 本開示は、ビームモニタ装置、加速器及び放射線治療装置及びビーム測定方法に関する。 The present disclosure relates to a beam monitor device, an accelerator, a radiation therapy device, and a beam measurement method.
 放射線治療装置などで使用される加速器においてビームを安定的に供給するためには、ビームをリアルタイムで監視する必要がある。特に大電流の荷電粒子ビームでは、荷電粒子ビームが通過する空間の空間電荷によるビーム品質への影響が顕著であるため、荷電粒子ビームの状態を監視することが重要である。 In order to stably supply beams to accelerators used in radiation therapy equipment, etc., it is necessary to monitor the beams in real time. Particularly in charged particle beams with large currents, the beam quality is significantly affected by the space charge in the space through which the charged particle beam passes, so it is important to monitor the state of the charged particle beam.
 非特許文献1には、荷電粒子ビームの軌道と平行に設置したCCD(Charge-Coupled Device:荷電結合素子)カメラを用いて荷電粒子ビームとその軌道上の残留ガスとの相互作用により発生する蛍光を検出することで、荷電粒子ビームのエンベロープ及び2次元方向のエミッタンスを測定する技術が開示されている。この技術では、荷電粒子ビームに測定器を接触させない非接触測定により荷電粒子ビームをリアルタイムで監視することが可能となるため、荷電粒子ビームに影響を与えないリアルタイムの監視が可能となる。 Non-Patent Document 1 describes the fluorescence generated by the interaction between a charged particle beam and residual gas on its trajectory using a CCD (Charge-Coupled Device) camera installed parallel to the trajectory of the charged particle beam. A technique has been disclosed for measuring the envelope and two-dimensional emittance of a charged particle beam by detecting the charged particle beam. With this technology, charged particle beams can be monitored in real time by non-contact measurements that do not involve contacting the charged particle beam with a measuring device, so real-time monitoring without affecting the charged particle beam is possible.
 非特許文献1に記載の技術では、CCDカメラを設置した単一の平面にビームの粒子分布を射影してエミッタンスなどを測定しているため、ビームの粒子分布を立体的に検出することができない。このため、ビームの3次元的な構造を把握することができず、特にビームの進行方向と交差する互いに異なる2方向の位置と運動量とで構成される4次元位相空間における分散、共分散及びエミッタンスなどを測定することができないという問題がある。 In the technique described in Non-Patent Document 1, emittance and the like are measured by projecting the particle distribution of the beam onto a single plane on which a CCD camera is installed, so it is not possible to detect the particle distribution of the beam three-dimensionally. . For this reason, it is not possible to grasp the three-dimensional structure of the beam, and in particular, the dispersion, covariance, and emittance in a four-dimensional phase space consisting of the position and momentum in two different directions intersecting the beam's traveling direction. There is a problem in that it is not possible to measure
 なお、ビームを輸送する過程では、ビーム自身が有する電荷と輸送中の磁場との作用により、ビーム軸に垂直な平面内で、ビームの粒子分布が相関を有したり、ビームのトポロジーが異なる状態になったりすることがある。このため、ビームの状態を正確に把握するためには、ビームの3次元的な構造を把握すること、特に4次元位相空間における分散、共分散及びエミッタンスなどを測定することが重要となる。 In addition, during the process of transporting the beam, the particle distribution of the beam may be correlated or the topology of the beam may differ in a plane perpendicular to the beam axis due to the interaction between the electric charge of the beam itself and the magnetic field during transport. Sometimes it becomes. Therefore, in order to accurately understand the state of the beam, it is important to understand the three-dimensional structure of the beam, especially to measure the dispersion, covariance, emittance, etc. in the four-dimensional phase space.
 本開示の目的は、ビームの3次元的な構造を把握することが可能なビームモニタ装置、加速器及び放射線治療装置及びビーム測定方法を提供することにある。 An object of the present disclosure is to provide a beam monitor device, an accelerator, a radiation therapy device, and a beam measurement method that can grasp the three-dimensional structure of a beam.
 本開示の一態様に従うビームモニタ装置は、荷電粒子ビームを監視するビームモニタ装置であって、前記荷電粒子ビームの進行方向と交差する複数の方向のそれぞれから前記荷電粒子ビームに応じて発生する蛍光を撮像した複数の撮像画像を生成する撮像部と、前記複数の撮像画像に基づいて、3次元空間内の前記荷電粒子ビームの分布である3次元ビーム分布を取得する取得部と、前記3次元ビーム分布に基づいて、前記進行方向と交差する2方向における前記荷電粒子ビームの位置及び運動量による分散及び共分散を算出する算出部と、を有する。 A beam monitoring device according to one aspect of the present disclosure is a beam monitoring device that monitors a charged particle beam, and includes fluorescence generated in response to the charged particle beam from each of a plurality of directions intersecting the traveling direction of the charged particle beam. an imaging unit that generates a plurality of captured images, an acquisition unit that acquires a three-dimensional beam distribution that is a distribution of the charged particle beam in a three-dimensional space, based on the plurality of captured images; a calculation unit that calculates variance and covariance due to the position and momentum of the charged particle beam in two directions intersecting the traveling direction, based on the beam distribution.
 本発明によれば、ビームの3次元的な構造を把握することが可能になる。 According to the present invention, it is possible to grasp the three-dimensional structure of a beam.
本開示の実施例に係るホウ素中性子捕捉療法システムを示す図である。1 is a diagram illustrating a boron neutron capture therapy system according to an example of the present disclosure. FIG. ビーム監視処理の一例を説明するためのフローチャートである。3 is a flowchart for explaining an example of beam monitoring processing. 3次元ビーム画像の一例を示す図である。It is a figure showing an example of a three-dimensional beam image.
 以下、本開示の実施例について図面を参照して説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 図1、本開示の実施例に係るホウ素中性子捕捉療法システムを示す図である。図1に示すホウ素中性子捕捉療法システム999は、患者に放射線を照射して患者の癌などの患部を治療する放射線治療装置の一種である。具体的には、ホウ素中性子捕捉療法システム999は、薬剤によりホウ素を集積させた患者の癌細胞に対して、放射線として熱中性子ビームを照射する。 FIG. 1 is a diagram showing a boron neutron capture therapy system according to an embodiment of the present disclosure. A boron neutron capture therapy system 999 shown in FIG. 1 is a type of radiation therapy apparatus that irradiates a patient with radiation to treat an affected area of the patient, such as cancer. Specifically, the boron neutron capture therapy system 999 irradiates a patient's cancer cells, which have accumulated boron with a drug, with a thermal neutron beam as radiation.
 ホウ素中性子捕捉療法システム999は、加速器室1000、加速器運転室1001及び治療室(図示せず)にわたって配置される。 A boron neutron capture therapy system 999 is arranged across an accelerator room 1000, an accelerator operator room 1001, and a treatment room (not shown).
 加速器室1000は、内部が放射線管理区域となる部屋であり、放射線の漏洩を防止するためにコンクリートによる厚い遮蔽壁1000aを外周に備える。加速器室1000には、人の立ち入りが制限される。また、加速器室1000には、ホウ素中性子捕捉療法システム999の構成要素として、加速器100と、リチウムターゲット107と、ビームモニタ1を構成するCCDカメラ11及びモータ駆動式回転架台12とが設置されている。 The accelerator chamber 1000 is a room whose interior is a radiation controlled area, and is equipped with a thick shielding wall 1000a made of concrete around the outer periphery to prevent leakage of radiation. Entry of people into the accelerator room 1000 is restricted. Further, in the accelerator room 1000, as components of the boron neutron capture therapy system 999, an accelerator 100, a lithium target 107, a CCD camera 11 constituting the beam monitor 1, and a motor-driven rotating frame 12 are installed. .
 加速器運転室1001は、加速器室1000の近傍に配置された非放射線管理区域の部屋である。加速器運転室1001は、ホウ素中性子捕捉療法システム999の構成要素として、ビームモニタ1を構成する計算機13、計算機14、表示装置15、記録装置16及びスピーカ17が設置されている。なお、加速器運転室1001には、放射線治療の際に、ホウ素中性子捕捉療法システム999の運転業務を行う加速器運転者1002が滞在する。加速器運転者1002は、表示装置15からの視覚情報及びスピーカ17からの聴覚情報に基づいてビームの状態を把握して、加速器100の運転業務を行う。 The accelerator operating room 1001 is a room in a non-radiation controlled area located near the accelerator room 1000. The accelerator operating room 1001 is equipped with a computer 13, a computer 14, a display device 15, a recording device 16, and a speaker 17, which constitute the beam monitor 1, as components of the boron neutron capture therapy system 999. Note that an accelerator operator 1002 who operates the boron neutron capture therapy system 999 stays in the accelerator operator's room 1001 during radiation therapy. The accelerator operator 1002 understands the state of the beam based on visual information from the display device 15 and auditory information from the speaker 17, and operates the accelerator 100.
 加速器100は、粒子線ビームを加速して出射する。本実施例では、加速器100は、粒子線ビームとして、荷電粒子ビームである陽子ビーム103を出射する陽子加速器であり、電流が25mA、運動エネルギーが30keVの陽子ビーム103を運動エネルギーが2.5Mevになるまで加速してリチウムターゲット107へ出射する。 The accelerator 100 accelerates and emits a particle beam. In this embodiment, the accelerator 100 is a proton accelerator that emits a proton beam 103, which is a charged particle beam, as a particle beam. It is accelerated until it becomes , and is ejected to the lithium target 107 .
 加速器100は、イオン源110、低エネルギービーム輸送ライン105及び高周波四重極線形加速器106を有する。 The accelerator 100 includes an ion source 110, a low energy beam transport line 105, and a high frequency quadrupole linear accelerator 106.
 イオン源110は、陽子ビームを生成して出射する出射部である。図1の例では、イオン源110は、電子サイクロトロン共鳴(ECR:Electron Cyclotron Resonance)型のイオン源であり、内部にプラズマ室(図示せず)を備え、さらに引き出し電極102及びビーム引き出し電源104を有する。 The ion source 110 is an emission unit that generates and emits a proton beam. In the example of FIG. 1, the ion source 110 is an electron cyclotron resonance (ECR) type ion source, and includes a plasma chamber (not shown) inside, and is further equipped with an extraction electrode 102 and a beam extraction power source 104. have
 プラズマ室内では、水素ガスが高周波電圧にて電離されることで、水素プラズマが生成される。水素プラズマ内の陽子は、引き出し電極102に印加された電圧によってプラズマ室の外部に引き出され、陽子ビーム103として低エネルギービーム輸送ライン105に出射される。陽子ビーム103は、運動量を有する陽子の集合である。また、プラズマ室から引き出される陽子ビーム103は、本実施例では、25mAの電流と30keVの運動エネルギーとを有する。 In the plasma chamber, hydrogen plasma is generated by ionizing hydrogen gas with high-frequency voltage. Protons in the hydrogen plasma are extracted to the outside of the plasma chamber by a voltage applied to the extraction electrode 102 and emitted as a proton beam 103 to a low energy beam transport line 105. The proton beam 103 is a collection of protons that have momentum. Further, the proton beam 103 extracted from the plasma chamber has a current of 25 mA and a kinetic energy of 30 keV in this embodiment.
 引き出し電極102は、具体的には、互いに対向して配置された2枚の平板電極を有し、これらの平板電極の間に30kVの電圧が印加されることで、プラズマ室で発生した水素プラズマ内の陽子が30keVまで加速されて陽子ビーム103として出射される。 Specifically, the extraction electrode 102 has two flat electrodes arranged opposite to each other, and when a voltage of 30 kV is applied between these flat electrodes, hydrogen plasma generated in the plasma chamber is removed. The protons inside are accelerated to 30 keV and emitted as a proton beam 103.
 ビーム引き出し電源104は、高電圧電源であり、引き出し電極102に対して30kVの高電圧を印加する。ビーム引き出し電源104が印加する電圧は、ケーブル54を介して計算機14にて制御される。ケーブル54は、例えば、BNC(Bayonet Neill Concelman)ケーブルである。 The beam extraction power supply 104 is a high voltage power supply and applies a high voltage of 30 kV to the extraction electrode 102. The voltage applied by the beam extraction power source 104 is controlled by the computer 14 via the cable 54. The cable 54 is, for example, a BNC (Bayonet Neill Concelman) cable.
 低エネルギービーム輸送ライン105は、内部が真空引きされており、その内部を低エネルギーのビームが通過する輸送ラインである。本実施例では、低エネルギービーム輸送ライン105は、イオン源110から出射された陽子ビーム103を輸送して高周波四重極線形加速器106に入射する。低エネルギービーム輸送ライン105は、ソレノイド型電磁石1051及び1052と、測定箇所101とを備える。 The low energy beam transport line 105 is a transport line whose interior is evacuated and through which a low energy beam passes. In this embodiment, the low energy beam transport line 105 transports the proton beam 103 emitted from the ion source 110 and enters the high frequency quadrupole linear accelerator 106 . The low energy beam transport line 105 includes solenoid electromagnets 1051 and 1052 and a measurement point 101.
 ソレノイド型電磁石1051及び1052は、陽子ビーム103の進行方向に沿って螺旋状に巻かれた電線を有し、その電線に対してソレノイド電磁石電源1053及び1054から供給される電流によって、陽子ビーム103の進行方向に平行な磁場を誘起する電磁石である。ソレノイド型電磁石1051及び1052は、誘起した磁場によって陽子ビーム103に対して収束力を与え、高周波四重極線形加速器106で加速可能な形状に成形して高周波四重極線形加速器106に出射する。 The solenoid electromagnets 1051 and 1052 have electric wires wound spirally along the traveling direction of the proton beam 103, and the proton beam 103 is powered by currents supplied to the electric wires from the solenoid electromagnet power supplies 1053 and 1054. It is an electromagnet that induces a magnetic field parallel to the direction of travel. The solenoid electromagnets 1051 and 1052 apply converging force to the proton beam 103 using the induced magnetic fields, shape the proton beam into a shape that can be accelerated by the high-frequency quadrupole linear accelerator 106, and emit it to the high-frequency quadrupole linear accelerator 106.
 ソレノイド電磁石電源1053及び1054は、大電流出力電源であり、ソレノイド型電磁石1051及び1052に対して、20A~100Aの範囲の電流を供給する。ソレノイド電磁石電源1053及び1054が供給する電流は、ケーブル56及び57を介して計算機14にて制御され、その値が時間的に変化されることで陽子ビーム103を高周波四重極線形加速器106にて加速可能な形状に成形する。ケーブル56及び57は、例えば、BNCケーブルである。 The solenoid electromagnet power supplies 1053 and 1054 are large current output power supplies, and supply current in the range of 20A to 100A to the solenoid type electromagnets 1051 and 1052. The current supplied by the solenoid electromagnet power supplies 1053 and 1054 is controlled by the computer 14 via cables 56 and 57, and its value is changed over time to direct the proton beam 103 to the high frequency quadrupole linear accelerator 106. Form into a shape that can be accelerated. Cables 56 and 57 are, for example, BNC cables.
 測定箇所101は、低エネルギービーム輸送ライン105において、側壁部が光透過性を有する窓108で形成された箇所である。窓108は、例えば、鉛ガラスなどで形成される。窓108は、低エネルギービーム輸送ライン105内で陽子ビーム103に応じて発生した蛍光を低エネルギービーム輸送ライン105の外部から測定可能にするための部位である。本実施例では、測定箇所101は、陽子ビーム103が低エネルギービーム輸送ライン105から高周波四重極線形加速器106に入射する直前の箇所としているが、別の箇所でもよい。例えば、測定箇所101は、高周波四重極線形加速器106に設けられてもよい。 The measurement location 101 is a location in the low-energy beam transport line 105 where the side wall portion is formed by a window 108 having light transmittance. The window 108 is made of lead glass, for example. The window 108 is a portion that allows fluorescence generated in response to the proton beam 103 within the low-energy beam transport line 105 to be measured from outside the low-energy beam transport line 105. In this embodiment, the measurement location 101 is the location immediately before the proton beam 103 enters the high-frequency quadrupole linear accelerator 106 from the low-energy beam transport line 105, but it may be another location. For example, the measurement point 101 may be provided in a high frequency quadrupole linear accelerator 106.
 高周波四重極線形加速器106は、加速用高周波源1055から供給される加速電圧である高周波電圧を用いて、粒子線ビームを直線に沿って加速する加速器である。本実施例では、高周波四重極線形加速器106は、高周波電圧を用いて、陽子ビーム103を、収束力を加えながら運動エネルギーが2.5MeVになるまで加速して、リチウムターゲット107に出射する。 The high-frequency quadrupole linear accelerator 106 is an accelerator that accelerates a particle beam along a straight line using a high-frequency voltage that is an acceleration voltage supplied from a high-frequency acceleration source 1055. In this embodiment, the high-frequency quadrupole linear accelerator 106 accelerates the proton beam 103 using a high-frequency voltage while applying a focusing force until the kinetic energy reaches 2.5 MeV, and emits the proton beam 103 to a lithium target 107 .
 加速用高周波源1055は、マイクロ波を発生させる真空管を備えた高周波源であり、高周波四重極線形加速器106に対して陽子ビーム103を加速するための高周波電圧を供給する。加速用高周波源1055が供給する高周波電圧は、ケーブル58を介して計算機14にて行われる。このとき、計算機14は、加速周波数などを変調させることができる。ケーブル58は、例えば、BNCケーブルである。 The acceleration high-frequency source 1055 is a high-frequency source equipped with a vacuum tube that generates microwaves, and supplies a high-frequency voltage for accelerating the proton beam 103 to the high-frequency quadrupole linear accelerator 106. The high frequency voltage supplied by the acceleration high frequency source 1055 is applied to the computer 14 via the cable 58. At this time, the computer 14 can modulate the acceleration frequency and the like. Cable 58 is, for example, a BNC cable.
 リチウムターゲット107は、主にリチウム(Li)で構成された円錐型のターゲットであり、底面が高周波四重極線形加速器106側を向くように配置される。リチウムターゲット107は、冷却水による除熱機能を備える。リチウムターゲット107は、加速器100から供給される陽子ビーム103内の陽子とLi(p,n)Be反応を起こすことで熱中性子を発生させて熱中性子ビームとして、治療室にいる患者に対して出射する。 The lithium target 107 is a conical target mainly made of lithium (Li), and is arranged so that its bottom face faces the high-frequency quadrupole linear accelerator 106 side. The lithium target 107 has a heat removal function using cooling water. The lithium target 107 generates thermal neutrons by causing a 7 Li (p, n) 7 Be reaction with protons in the proton beam 103 supplied from the accelerator 100, and sends the thermal neutron beam to patients in the treatment room. and emit light.
 CCDカメラ11、モータ駆動式回転架台12、計算機13、計算機14、表示装置15、記録装置16及びスピーカ17は、ビームモニタ1を構成する。ビームモニタ1は、陽子ビーム103をリアルタイムで監視し、その監視結果に基づいて、ビームの異常を検知するビームモニタ装置である。 The CCD camera 11, the motor-driven rotary frame 12, the computer 13, the computer 14, the display device 15, the recording device 16, and the speaker 17 constitute the beam monitor 1. The beam monitor 1 is a beam monitoring device that monitors the proton beam 103 in real time and detects abnormalities in the beam based on the monitoring results.
 CCDカメラ11及びモータ駆動式回転架台12は、測定箇所101において、陽子ビーム103の進行方向と交差する複数の撮像方向のそれぞれから陽子ビーム103に応じて発生する蛍光を窓108を介して撮像して、各撮像方向に対応した複数の撮像画像を生成する撮像部を構成する。撮像方向は、陽子ビーム103の進行方向であるビーム軸方向と直交することが望ましく、本実施例では、ビーム軸方向と略直交している。 The CCD camera 11 and the motor-driven rotating mount 12 image fluorescence generated in response to the proton beam 103 from each of a plurality of imaging directions intersecting the traveling direction of the proton beam 103 at the measurement location 101 through the window 108. This constitutes an imaging unit that generates a plurality of captured images corresponding to each imaging direction. The imaging direction is desirably perpendicular to the beam axis direction, which is the traveling direction of the proton beam 103, and in this embodiment, it is substantially perpendicular to the beam axis direction.
 CCDカメラ11は、半導体素子であるCCDを撮像素子として用いたカメラであり、測定箇所101において、陽子ビーム103に応じて発生する蛍光の発生位置及び強度を測定する。CCDカメラ11は、ボルトなどによってモータ駆動式回転架台12に固定される。また、CCDカメラ11は、ケーブル50を介して加速器運転室1001内に設置された計算機13に通信可能に接続される。ケーブル50は、例えば、RJ45ケーブルである。 The CCD camera 11 is a camera that uses a CCD, which is a semiconductor element, as an imaging element, and measures the position and intensity of fluorescence generated in response to the proton beam 103 at the measurement location 101. The CCD camera 11 is fixed to a motor-driven rotating frame 12 with bolts or the like. Further, the CCD camera 11 is communicably connected to a computer 13 installed in the accelerator operating room 1001 via a cable 50. The cable 50 is, for example, an RJ45 cable.
 モータ駆動式回転架台12は、陽子ビーム103のビーム軸方向を回転軸方向として、CCDカメラ11を低エネルギービーム輸送ライン105の周りを回転させることで、CCDカメラ11を陽子ビーム103の周りを回転させる駆動部である。モータ駆動式回転架台12は、ガイドレール18と、プレート19と、モータ(図示せず)とを有する。 The motor-driven rotating mount 12 rotates the CCD camera 11 around the proton beam 103 by rotating the CCD camera 11 around the low energy beam transport line 105 with the beam axis direction of the proton beam 103 as the rotation axis direction. This is the drive unit that causes the The motor-driven rotating pedestal 12 includes a guide rail 18, a plate 19, and a motor (not shown).
 ガイドレール18は、アルミ製の環を2つ組み合わせたレールであり、窓108を取り囲むように環状に配置される。プレート19は、ガイドレール18に支持される。また、プレート19には、CCDカメラ11がボルトなどで固定される。プレート19は、モータによって駆動され、ガードレール18に沿って移動する。これにより、プレート19は、自身に固定されたCCDカメラ11と共に、陽子ビーム103の周りを回転し、CCDカメラ11は、陽子ビーム103のビーム軸方向と略直交する複数の撮像方向のそれぞれから陽子ビーム103に応じた蛍光を撮像することが可能となる。 The guide rail 18 is a rail made by combining two aluminum rings, and is arranged in a ring shape so as to surround the window 108. Plate 19 is supported by guide rail 18. Furthermore, the CCD camera 11 is fixed to the plate 19 with bolts or the like. The plate 19 is driven by a motor and moves along the guardrail 18. As a result, the plate 19 rotates around the proton beam 103 together with the CCD camera 11 fixed thereto, and the CCD camera 11 captures protons from each of a plurality of imaging directions substantially perpendicular to the beam axis direction of the proton beam 103. It becomes possible to image fluorescence according to the beam 103.
 計算機13は、電子回路によりデジタルデータの入出力、演算及び変換などの種々の情報処理を行う計算機である。計算機13は、加速器運転室1001内に設置されており、ケーブル51を介して計算機14と通信可能に接続される。ケーブル51は、例えば、RJ45ケーブルである。 The computer 13 is a computer that performs various information processing such as input/output, calculation, and conversion of digital data using electronic circuits. The computer 13 is installed in the accelerator operator's room 1001 and is communicatively connected to the computer 14 via a cable 51. The cable 51 is, for example, an RJ45 cable.
 計算機13は、CCDカメラ11にて取得された複数の撮像画像に基づいて、陽子ビーム103に応じた蛍光の3次元空間内の分布を、陽子ビーム103の3次元空間内の分布である3次元ビーム分布として示す3次元ビーム画像を取得する取得部として機能する。 The computer 13 calculates the distribution of fluorescence in a three-dimensional space according to the proton beam 103 based on a plurality of captured images acquired by the CCD camera 11, and calculates the distribution of fluorescence in a three-dimensional space corresponding to the proton beam 103 into a three-dimensional distribution that is the distribution in the three-dimensional space of the proton beam 103. It functions as an acquisition unit that acquires a three-dimensional beam image shown as a beam distribution.
 計算機14は、電子回路によりデジタルデータの入出力、演算及び変換などの種々の情報処理を行う計算機である。計算機14は、ケーブル52を介して表示装置15と、ケーブル53を介して記録装置16と、ケーブル55を介してスピーカ17と通信可能に接続される。ケーブル52及び53は、例えば、RJ45ケーブルであり、ケーブル55は、例えば、同軸ケーブルである。 The computer 14 is a computer that performs various information processing such as input/output, calculation, and conversion of digital data using electronic circuits. The computer 14 is communicably connected to a display device 15 via a cable 52 , a recording device 16 via a cable 53 , and a speaker 17 via a cable 55 . Cables 52 and 53 are, for example, RJ45 cables, and cable 55 is, for example, a coaxial cable.
 計算機14は、計算機13にて生成された3次元ビーム画像に基づいて、ビーム軸方向と交差(具体的には、略直交)する2方向における陽子ビーム103の位置及び運動量による分散及び共分散を示す分散・共分散行列と、陽子ビーム103のエミッタンスとを算出する算出部として機能する。 Based on the three-dimensional beam image generated by the computer 13, the computer 14 calculates dispersion and covariance due to the position and momentum of the proton beam 103 in two directions intersecting (specifically, approximately orthogonal to) the beam axis direction. It functions as a calculation unit that calculates the dispersion/covariance matrix shown and the emittance of the proton beam 103.
 また、計算機14は、算出結果に基づいて、陽子ビーム103に異常が発生したか否かを判定する。具体的には、計算機14は、分散・共分散行列の各要素が所定の閾値行列の各要素である閾値を超えたか否かと、エミッタンスがエミッタンス閾値を超えたか否かを判定する。計算機14は、その判定結果に基づいて、陽子ビーム103に異常が発生したか否かを判定する。異常が発生したと判定した場合、計算機14は、表示装置15、スピーカ17、ビーム引き出し電源104、ソレノイド電磁石電源1053、1054、及び加速用高周波源1055の出力の制御を行うフィードバック処理を実行する。 Furthermore, the computer 14 determines whether an abnormality has occurred in the proton beam 103 based on the calculation result. Specifically, the computer 14 determines whether each element of the variance/covariance matrix exceeds the threshold value of each element of a predetermined threshold matrix, and whether the emittance exceeds the emittance threshold value. The computer 14 determines whether an abnormality has occurred in the proton beam 103 based on the determination result. If it is determined that an abnormality has occurred, the computer 14 executes feedback processing to control the outputs of the display device 15, speaker 17, beam extraction power source 104, solenoid electromagnet power sources 1053, 1054, and acceleration high frequency source 1055.
 なお、計算機13及び14は、コンピュータプログラムを記録するメモリと、そのメモリに記録されたコンピュータプログラムを読み取り、その読み取ったコンピュータプログラムを実行して上記の機能を実現するプロセッサとを有するコンピュータシステムでもよい。 Note that the computers 13 and 14 may be computer systems having a memory that records a computer program and a processor that reads the computer program recorded in the memory and executes the read computer program to achieve the above functions. .
 分散・共分散行列は、4行4列の実対称行列であり、ビーム軸方向と交差する互いに異なる2方向の位置及び運動量の相関を表す行列である。エミッタンスは、ビームの品質を表す指標(数値)であり、分散・共分散行列の行列式を算出した値である。閾値行列は、4行4列の実対称行列であり、閾値行列のi行j列の要素が分散・共分散行列のi行j列の要素に対応する閾値である。分散・共分散行列及びエミッタンスのより詳細な説明は後述する。 The variance/covariance matrix is a real symmetric matrix with 4 rows and 4 columns, and represents the correlation between the position and momentum in two mutually different directions intersecting the beam axis direction. Emittance is an index (numerical value) representing the quality of the beam, and is a value obtained by calculating the determinant of the variance/covariance matrix. The threshold matrix is a real symmetric matrix with 4 rows and 4 columns, and the element in the i row and j column of the threshold matrix is the threshold corresponding to the element in the i row and j column of the variance/covariance matrix. A more detailed explanation of the variance/covariance matrix and emittance will be given later.
 表示装置15は、文字、図形及びグラフィックなどの種々の情報を表示する装置であり、加速器運転室1001に設置される。表示装置15は、例えば、計算機13にて取得された3次元ビーム画像と、計算機14にて算出された分散・共分散行列及びエミッタンスとをリアルタイムに表示し、加速器運転者1002に通知する。 The display device 15 is a device that displays various information such as characters, figures, and graphics, and is installed in the accelerator cab 1001. The display device 15 displays, for example, the three-dimensional beam image acquired by the computer 13 and the variance/covariance matrix and emittance calculated by the computer 14 in real time, and notifies the accelerator operator 1002 of the three-dimensional beam image.
 記録装置16は、磁気テープのような記録媒体(図示せず)を有し、その記録媒体に情報を書き込む装置である。本実施例では、記録装置16は、計算機13にて取得された3次元ビーム画像と、計算機14にて算出された分散・共分散行列及びエミッタンスを記録媒体に逐次書き込んで記録する。 The recording device 16 is a device that has a recording medium (not shown) such as a magnetic tape and writes information on the recording medium. In this embodiment, the recording device 16 sequentially writes and records the three-dimensional beam image acquired by the computer 13 and the dispersion/covariance matrix and emittance calculated by the computer 14 on a recording medium.
 スピーカ17は、電気信号を音声に変換する音声出力装置であり、加速器運転室1001に設置される。スピーカ17は、陽子ビーム103が異常と判定された異常検知時に、計算機14から電気信号を受け付け、その電気信号に応じたアラーム音を出力することで、加速器運転者1002にアラーム(陽子ビーム103の異常)を通知する通知部として機能する。 The speaker 17 is an audio output device that converts electrical signals into audio, and is installed in the accelerator operator's cab 1001. The speaker 17 receives an electrical signal from the computer 14 when an abnormality is detected in which the proton beam 103 is determined to be abnormal, and outputs an alarm sound according to the electrical signal to alert the accelerator operator 1002 (proton beam 103 Functions as a notification section to notify of abnormalities).
 図2は、陽子ビーム103を監視するビーム監視処理の一例を説明するためのフローチャートである。 FIG. 2 is a flowchart for explaining an example of beam monitoring processing for monitoring the proton beam 103.
 ビーム監視処理では、先ず、計算機14は、加速器運転者1002から閾値行列及びエミッタンスに対する閾値であるエミッタンス閾値を受け付け、その閾値行列及びエミッタンス閾値を自身に設定する(ステップS1)。 In the beam monitoring process, first, the computer 14 receives a threshold matrix and an emittance threshold, which is a threshold for emittance, from the accelerator operator 1002, and sets the threshold matrix and emittance threshold to itself (step S1).
 続いて、計算機14は、加速器運転者1002からの指示に従って、ビーム引き出し電源104を起動し、イオン源110による陽子ビーム103の生成及び出射を開始すると共に、ソレノイド電磁石電源1053、1054及び加速用高周波源1055を制御して、陽子ビーム103の加速を行う(ステップS2)。これにより、イオン源110から出射された陽子ビーム103は、低エネルギービーム輸送ライン105及び高周波四重極線形加速器106を介して加速されてリチウムターゲット107に照射される。その結果、リチウムターゲット107と陽子ビーム103とによってLi(p,n)Be反応が発生し、熱中性子ビームが生成されて治療室にいる患者に照射される。 Subsequently, the computer 14 activates the beam extraction power supply 104 in accordance with the instructions from the accelerator operator 1002, starts the generation and emission of the proton beam 103 by the ion source 110, and also starts the solenoid electromagnet power supplies 1053, 1054 and the acceleration high frequency The source 1055 is controlled to accelerate the proton beam 103 (step S2). Thereby, the proton beam 103 emitted from the ion source 110 is accelerated via the low energy beam transport line 105 and the high frequency quadrupole linear accelerator 106 and is irradiated onto the lithium target 107. As a result, a 7 Li (p, n) 7 Be reaction occurs between the lithium target 107 and the proton beam 103, and a thermal neutron beam is generated and irradiated to the patient in the treatment room.
 CCDカメラ11は、計算機13からの指示に従って、イオン源110から出射された陽子ビーム103に応じた蛍光を撮像して撮像画像を生成し、その撮像画像を計算機13に送信する(ステップS3)。 According to instructions from the computer 13, the CCD camera 11 images fluorescence corresponding to the proton beam 103 emitted from the ion source 110, generates a captured image, and transmits the captured image to the computer 13 (step S3).
 具体的には、陽子ビーム103は、低エネルギービーム輸送ライン105内で、陽子ビーム103自身又は陽子ビーム103にて励起された窒素が電子を捕捉することで蛍光を発生させる。CCDカメラ11は、この蛍光を測定箇所101に設けられた鉛ガラス製の窓108を介して撮像する。また、CCDカメラ11は、モータ駆動式回転架台12のプレート19に固定され、窓108を取り囲むように環状に配置されたガイドレール18に沿って移動する。そして、CCDカメラ11は、陽子ビーム103の周りを回転しながら複数の方向から陽子ビーム103に応じた蛍光を撮像する。撮像により取得した撮像画像は、計算機13に逐次送信される。本実施例では、CCDカメラ11は、少なくとも4つの異なる撮像方向から蛍光を撮像する。 Specifically, the proton beam 103 generates fluorescence when the proton beam 103 itself or nitrogen excited by the proton beam 103 captures electrons in the low energy beam transport line 105. The CCD camera 11 images this fluorescence through a window 108 made of lead glass provided at the measurement location 101. Further, the CCD camera 11 is fixed to a plate 19 of a motor-driven rotary frame 12 and moves along a guide rail 18 arranged in an annular manner so as to surround the window 108. Then, the CCD camera 11 images fluorescence corresponding to the proton beam 103 from a plurality of directions while rotating around the proton beam 103. The captured images acquired by imaging are sequentially transmitted to the computer 13. In this embodiment, the CCD camera 11 images fluorescence from at least four different imaging directions.
 計算機13は、CCDカメラ11から複数の撮像画像を受信し、その複数の撮像画像に基づいて、3次元ビーム画像を生成し、その3次元ビーム画像を計算機14に送信する(ステップS4)。このとき、計算機13は、例えば、複数の撮影画像に対して逆ラドン変換を実行することで、3次元ビーム画像を生成することができる。 The computer 13 receives a plurality of captured images from the CCD camera 11, generates a three-dimensional beam image based on the plurality of captured images, and transmits the three-dimensional beam image to the computer 14 (step S4). At this time, the computer 13 can generate a three-dimensional beam image by, for example, performing inverse Radon transformation on a plurality of captured images.
 計算機14は、計算機13から3次元ビーム画像を受信し、その3次元ビーム画像に基づいて、陽子ビーム103の分散・共分散行列及びエミッタンスを算出する。計算機14は、その算出結果である分散・共分散行列及びエミッタンスを表示装置15及び記録装置16に送信する(ステップS5)。表示装置15は、算出結果を受信すると、その算出結果を表示し、記録装置16は、算出結果を受信すると、その算出結果を記録する(ステップS6)。 The computer 14 receives the three-dimensional beam image from the computer 13, and calculates the dispersion/covariance matrix and emittance of the proton beam 103 based on the three-dimensional beam image. The computer 14 transmits the variance/covariance matrix and emittance that are the calculation results to the display device 15 and the recording device 16 (step S5). When the display device 15 receives the calculation result, it displays the calculation result, and when the recording device 16 receives the calculation result, it records the calculation result (step S6).
 また、計算機14は、分散・共分散行列の各要素と閾値行列の各要素である閾値とを比較し、かつ、エミッタンスとエミッタンス閾値とを比較して、陽子ビーム103に異常が発生したか否かを判定する(ステップS7)。本実施例では、計算機14は、いずれかの値が閾値(エミッタンス閾値を含む)を超えている場合、陽子ビーム103に異常が発生したと判定し、全ての値が閾値を超えていない場合、陽子ビーム103に異常が発生していないと判定する。 The computer 14 also compares each element of the dispersion/covariance matrix with the threshold value of each element of the threshold matrix, and also compares the emittance with the emittance threshold value to determine whether an abnormality has occurred in the proton beam 103. (Step S7). In this embodiment, the computer 14 determines that an abnormality has occurred in the proton beam 103 if any value exceeds the threshold (including the emittance threshold), and if all values do not exceed the threshold, It is determined that no abnormality has occurred in the proton beam 103.
 異常が発生していない場合(ステップS7:No)、ステップS3の処理に戻る。一方、異常が発生している場合(ステップS7:Yes)、計算機14は、ビーム停止信号をスピーカ17及びビーム引き出し電源104に送信する。スピーカ17は、ビーム停止信号を受信すると、陽子ビーム103に異常が発生したためにビームを停止することを通知するアラーム音を出力する。ビーム引き出し電源104は、ビーム停止信号を受信すると、引き出し電極102への電力の供給を停止して、イオン源110による陽子ビーム103の出射を停止させ(ステップS8)、処理を終了する。 If no abnormality has occurred (step S7: No), the process returns to step S3. On the other hand, if an abnormality has occurred (step S7: Yes), the computer 14 transmits a beam stop signal to the speaker 17 and the beam extraction power source 104. When the speaker 17 receives the beam stop signal, it outputs an alarm sound to notify that the beam will be stopped because an abnormality has occurred in the proton beam 103. When the beam extraction power supply 104 receives the beam stop signal, it stops supplying power to the extraction electrode 102, stops the ion source 110 from emitting the proton beam 103 (step S8), and ends the process.
 次に計算機14によるステップS5の処理をより詳細に説明する。 Next, the process of step S5 by the computer 14 will be explained in more detail.
 図3は、計算機14にて使用される3次元ビーム画像の一例を示す図である。図3に示す3次元ビーム画像201は、陽子ビーム103に応じた蛍光の3次元分布を示す画像であり、本実施例では、陽子ビーム103の3次元分布を示す画像とみなされる。 FIG. 3 is a diagram showing an example of a three-dimensional beam image used by the computer 14. A three-dimensional beam image 201 shown in FIG. 3 is an image showing a three-dimensional distribution of fluorescence according to the proton beam 103, and in this embodiment, it is regarded as an image showing the three-dimensional distribution of the proton beam 103.
 図3の例では、陽子ビーム103が左から右に向かって輸送されている状態を示す。また、図3では、陽子ビーム103のビーム軸方向をs軸方向、ビーム軸方向から見て水平方向左向きをx軸の正の向き、ビーム軸方向に直交する鉛直方向上向きをx軸の正の向きとしている。また、3次元ビーム画像201の輝度分布ρ(x,x,s)を用いて数1から算出される陽子ビーム103の輝度中心(x,x,s)centerを原点とする。
Figure JPOXMLDOC01-appb-M000001
The example in FIG. 3 shows a state in which the proton beam 103 is being transported from left to right. In addition, in FIG. 3, the beam axis direction of the proton beam 103 is the s-axis direction, the left direction in the horizontal direction when viewed from the beam axis direction is the positive direction of the x1 axis, and the upward direction in the vertical direction perpendicular to the beam axis direction is the x3 axis direction. The direction is positive. Further, the brightness center (x 1 , x 3 , s) center of the proton beam 103 calculated from Equation 1 using the brightness distribution ρ (x 1 , x 3 , s) of the three-dimensional beam image 201 is set as the origin.
Figure JPOXMLDOC01-appb-M000001
 陽子ビーム103の分散・共分散行列Σ(s)は数2で定義され、エミッタンスε(s)は数3で定義される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
The dispersion/covariance matrix Σ(s) of the proton beam 103 is defined by Equation 2, and the emittance ε(s) is defined by Equation 3.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 分散・共分散行列Σ(s)は実対称行列であり、エミッタンスε(s)は分散・共分散行列Σ(s)の行列式である。数2及び数3において、x(s)は陽子ビーム103を構成する粒子(陽子)のx軸方向の位置、x(s)は当該粒子のx軸方向の位置、x(s)は、当該粒子の軌道のx軸方向の傾き、xは当該粒子の軌道のx軸方向の傾きをそれぞれビーム軸方向sの関数として表したものである。傾きx(s)は、当該粒子のx方向の運動量に対応し、傾きx(s)は、当該粒子のx方向の運動量に対応する。したがって、変数x(s)~x(s)は、陽子ビーム103のビーム軸方向sと交差(具体的には、直交)する異なる2方向の位置と運動量とで構成される4次元位相空間の座標に対応する。また、分散・共分散行列Σ(s)における対角成分<x (s)>は、変数x(s)の分散を示し、非対角成分<x(s)x(s)>は、変数x(s)と変数x(s)の共分散を示す。なお、x(s)の2乗({x(s)})をx (s)と表記している。 The variance/covariance matrix Σ(s) is a real symmetric matrix, and the emittance ε(s) is the determinant of the variance/covariance matrix Σ(s). In Equations 2 and 3, x 1 (s) is the position of the particle (proton) constituting the proton beam 103 in the x 1 axis direction, x 3 (s) is the position of the particle in the x 3 axis direction, and x 2 ( s) is the inclination of the trajectory of the particle in the x1 - axis direction, and x4 is the inclination of the trajectory of the particle in the x2 - axis direction, each expressed as a function of the beam axis direction s. The slope x 2 (s) corresponds to the momentum of the particle in the x 1 direction, and the slope x 4 (s) corresponds to the momentum of the particle in the x 3 direction. Therefore, the variables x 1 (s) to x 4 (s) are four-dimensional phases composed of positions and momentums in two different directions intersecting (specifically, orthogonal to) the beam axis direction s of the proton beam 103. Corresponds to coordinates in space. In addition, the diagonal component <x i 2 (s)> in the variance/covariance matrix Σ(s) indicates the variance of the variable x i (s), and the off-diagonal component <x i (s) x j (s )> indicates the covariance of the variable x i (s) and the variable x j (s). Note that the square of x i (s) ({x i (s)} 2 ) is expressed as x i 2 (s).
 分散・共分散行列Σ(s)における傾きx(s)及びx(s)を含まないi行j列(i≠j)の要素Σij(s)は、数4で示すように、3次元ビーム画像201の輝度分布ρ(x,x,s)を重みとした関数x(s)x(s)の重み付き平均にて算出される。なお、輝度分布ρ(x,x,s)及び位置x(s)及びx(s)は、3次元ビーム画像201から算出される。
Figure JPOXMLDOC01-appb-M000004
As shown in Equation 4, the element Σ ij (s) in the i row and j column (i≠j) that does not include the slopes x 2 (s) and x 4 (s) in the variance/covariance matrix Σ (s) is It is calculated by a weighted average of a function x i (s) x j (s) weighted by the brightness distribution ρ (x 1 , x 3 , s) of the three-dimensional beam image 201. Note that the brightness distribution ρ(x 1 , x 3 , s) and the positions x 1 (s) and x 3 (s) are calculated from the three-dimensional beam image 201.
Figure JPOXMLDOC01-appb-M000004
 また、分散・共分散行列Σ(s)における傾きx(s)及びx(s)を含むi行j列の要素Σij(s)は、以下のステップS11~S13にて算出される。 In addition, the element Σ ij (s) in the i-th row and the j-th column including the slopes x 2 (s) and x 4 (s) in the variance/covariance matrix Σ (s) is calculated in steps S11 to S13 below. .
 ステップS11:計算機14は、3次元ビーム画像201に基づいて、s軸に沿って所定の間隔Δsごとに、変数x(s)及びx(s)の分散<x >及び<x >を算出する。間隔Δsは、例えば、3次元ビーム画像のs軸方向の全長LsとCCDカメラ11のs軸方向のピクセル数NpHとに応じて、Δs=Ls/NpHで定められ、例えば、0.05mm~0.1mm程度である。 Step S11: Based on the three-dimensional beam image 201, the computer 14 calculates the variances <x 1 2 > and <x 3 2 > is calculated. The interval Δs is determined by Δs=Ls/NpH, for example, depending on the total length Ls of the three-dimensional beam image in the s-axis direction and the number of pixels NpH in the s-axis direction of the CCD camera 11, and is, for example, 0.05 mm to 0. It is about .1mm.
 ステップS12:計算機14は、間隔Δsごとに算出された<x >及び<x >を、数5で示されるエンベロープ方程式にフィッティングすることで、変数x(s)及びx(s)の分散<x (s)>及び<x (s)>を変数sの関数として取得する。なお、数5で示されるエンベロープ方程式は、自由空間における陽子ビーム自身の空気電荷のみを考慮したエンベロープ方程式である。また、数5において、p1~p4はフィッティングパラメータである。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-I000006
Step S12: The calculator 14 fits the variables x 1 ( s) and x 3 ( Obtain the variances <x 1 2 (s)> and <x 3 2 (s)> of s) as functions of the variable s. Note that the envelope equation shown by Equation 5 is an envelope equation that takes into account only the air charge of the proton beam itself in free space. Furthermore, in Equation 5, p1 to p4 are fitting parameters.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-I000006
 ステップS13:計算機14は、数6で示すように、分散<x (s)>及び<x (s)>に対してs軸方向の1階微分を行うことで、共分散<x(s)x(s)>及び<x(s)x(s)>を算出する。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-I000008
Step S13: As shown in Equation 6, the computer 14 performs first-order differentiation in the s-axis direction for the variances <x 1 2 (s)> and <x 3 2 (s)>, so that the covariance < x 1 (s)x 2 (s)> and <x 3 (s)x 4 (s)> are calculated.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-I000008
 また、傾きx(s)及びx(s)の分散<x (s)>及び<x (s)>については、計算機14は、数7に示すように、分散<x (s)>及び<x (s)>に対してs軸方向の2階微分を行うことで算出する。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-I000010
Further, regarding the variances <x 2 2 ( s)> and <x 4 2 (s)> of the slopes x 2 (s) and x 4 (s), the computer 14 calculates the variance <x 1 2 (s)> and <x 3 2 (s)> by performing second-order differentiation in the s-axis direction.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-I000010
 また、位置x(s)及びx(s)と傾きx(s)及びx(s)の共分散<x(s)x(s)>及び<x(s)x(s)>は、数8に示すように、s軸方向を回転軸とした回転の角速度ωを用いて、位置x(s)及びx(s)の分散<x (s)>及び<x (s)>と関連づけられる。また、角速度ωは、数9に示すように、位置x(s)及びx(s)の共分散<x(s)x(s)>のs軸方向の1階微分と関係づけられる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-M000013
Also, the covariances of the positions x 1 (s) and x 3 (s) and the slopes x 2 (s) and x 4 (s) are <x 1 (s)x 4 (s)> and <x 2 (s)x 3 (s)>, the variance of the positions x 1 (s) and x 3 (s) < x 1 2 (s )> and <x 3 2 (s)>. Furthermore, as shown in Equation 9, the angular velocity ω is related to the first differential in the s-axis direction of the covariance <x 1 (s) x 3 (s)> of the positions x 1 (s) and x 3 (s). Can be attached.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-M000013
 このため、計算機14は、共分散<x(s)x(s)>及び<x(s)x(s)>を、共分散<x(s)x(s)>のs軸方向の依存性に基づいて算出する。 Therefore, the computer 14 calculates the covariances <x 1 (s)x 4 (s)> and <x 2 (s)x 3 (s)> from the covariances <x 1 (s)x 3 (s)> Calculated based on the dependence of the s-axis direction.
 具体的には、計算機14は、先ず、s軸に沿って所定の間隔Δsごとに、変数x(s)及びx(s)の共分散<x>を算出する。続いて、計算機14は、間隔Δsごとに算出された<x>、<x (s)>及び<x (s)>を、数9の微分方程式でフィッティングすることで、フィッティングパラメータとしてωを取得する。そして、計算機14は、そのフィッティングパラメータωと数8とを用いて、共分散<x(s)x(s)>及び<x(s)x(s)>を算出する。また、分散<x (s)>及び<x (s)>としては、上述のステップS12で算出された関数が使用される。 Specifically, the computer 14 first calculates the covariance <x 1 x 3 > of the variables x 1 (s) and x 3 (s) at predetermined intervals Δs along the s-axis. Next, the calculator 14 fits <x 1 x 3 >, <x 1 2 (s)>, and <x 3 2 (s)> calculated for each interval Δs using the differential equation shown in Equation 9. , obtain ω as a fitting parameter. Then, the computer 14 uses the fitting parameter ω and Equation 8 to calculate covariances <x 1 (s)x 4 (s)> and <x 2 (s)x 3 (s)>. Furthermore, the functions calculated in step S12 described above are used as the variances <x 1 2 (s)> and <x 3 2 (s)>.
 また、計算機14は、s軸に沿った所定の間隔Δsごとの共分散<x>の変化量Δ<x>/Δsの変化量Δ(Δ<x>)/Δsを間隔Δsごとに算出する。この値は傾き間の共分散<x(s)x(s)>と数10に示される関係を満たすため、計算機14は、数10を用いて<x(s)x(s)>を算出する。
Figure JPOXMLDOC01-appb-M000014
Further, the calculator 14 calculates the amount of change Δ<x 1 x 3 > in the covariance <x 1 x 3 >/the amount of change Δ in Δs at each predetermined interval Δs along the s-axis (Δ<x 1 x 3 >) /Δs 2 is calculated for each interval Δs. Since this value satisfies the relationship shown in Equation 10 with the covariance between the slopes <x 2 (s) x 4 (s)>, the calculator 14 calculates <x 2 (s) )> is calculated.
Figure JPOXMLDOC01-appb-M000014
 以上により、分散・共分散行列の全ての要素を算出することができ、さらにエミッタンスは分散・共分散行列の行列式として算出される。 With the above, all elements of the variance/covariance matrix can be calculated, and furthermore, the emittance is calculated as the determinant of the variance/covariance matrix.
 次に計算機14によるステップS7の処理をより詳細に説明する。 Next, the process of step S7 by the computer 14 will be explained in more detail.
 計算機14は、分散・共分散行列及びエミッタンスの変数sに所定値(ここでは、0とする)を代入する。さらに、分散・共分散行列及び閾値行列は、共に実対称行列であるため、計算機14は、例えば、分散・共分散行列及び閾値行列におけるi<jの場合のi行j列の成分を0とした上で閾値行列から分散・共分散行列を差し引いた行列を差行列として算出する。計算機14は、差行列における、i≧jとなるi行j列の各要素について正負判定を行う。計算機14は、負の判定が出た時点で異常が発生したと判断する。また、同様に、計算機14は、エミッタンス閾値からエミッタンスを差し引いた差分値の正負判定を行い、差分値が負の場合、異常が発生したと判断する。 The computer 14 assigns predetermined values (here, 0) to the variance/covariance matrix and the emittance variable s. Furthermore, since both the variance/covariance matrix and the threshold matrix are real symmetric matrices, the computer 14 sets the element in the i row and j column to 0 when i<j in the variance/covariance matrix and the threshold matrix. Then, the difference matrix is calculated by subtracting the variance/covariance matrix from the threshold matrix. The calculator 14 determines whether each element in row i and column j, where i≧j, in the difference matrix is positive or negative. The computer 14 determines that an abnormality has occurred when a negative determination is obtained. Similarly, the calculator 14 determines whether the difference value obtained by subtracting the emittance from the emittance threshold value is positive or negative, and if the difference value is negative, it is determined that an abnormality has occurred.
 以上説明した構成、機能及び動作は、単なる一例であってこれに限定されるものではない。例えば、本実施例では、ビームモニタ1は、ホウ素中性子捕捉療法システム999用の加速器100のビーム監視を行っているが、ビーム監視を行う加速器は、この例に限らず、例えば、核変換・核融合用の加速器でもよいし、粒子線治療用の加速器でもよい。また、加速器100は直線加速器であるが、ビーム監視を行う加速器は、円形加速器などでもよい。 The configuration, functions, and operations described above are merely examples and are not limited thereto. For example, in this embodiment, the beam monitor 1 monitors the beam of the accelerator 100 for the boron neutron capture therapy system 999, but the accelerator that performs beam monitoring is not limited to this example. It may be an accelerator for fusion or an accelerator for particle beam therapy. Further, although the accelerator 100 is a linear accelerator, the accelerator for beam monitoring may be a circular accelerator or the like.
 また、ビームモニタ1のカメラとしてCCDカメラ11が使用されていたが、CCDカメラ11の代わりに、例えば、CMOS(Complementary Metal Oxide Semiconductor)カメラ、マルチチャンネル光電子増倍管又はシリコン光電子増倍管(SIPM:Silicon Photomultiplier)アレイなどが使用されてもよい。また、CCDカメラ11とモータ駆動式回転架台12とを用いて複数の方向のそれぞれから撮像画像を取得していたが、複数台のカメラを測定箇所101の窓108を囲むように配置することで、複数の方向のそれぞれから撮像画像を取得してもよい。また、計算機13及び14の機能は、1つの計算機で実現されてもよいし、3つ以上の計算機で実現されてもよい。 Further, the CCD camera 11 was used as the camera of the beam monitor 1, but instead of the CCD camera 11, for example, a CMOS (Complementary Metal Oxide Semiconductor) camera, a multi-channel photomultiplier tube, or a silicon photomultiplier tube (SIPM) can be used. :Silicon Photomultiplier) array etc. may be used. Furthermore, although the CCD camera 11 and the motor-driven rotary mount 12 were used to acquire captured images from each of a plurality of directions, it is possible to arrange multiple cameras to surround the window 108 of the measurement point 101. , captured images may be acquired from each of a plurality of directions. Moreover, the functions of the computers 13 and 14 may be realized by one computer, or may be realized by three or more computers.
 また、陽子ビーム103に異常が発生した場合、計算機14は、ソレノイド電磁石電源1053、1054及び加速用高周波源1055などを制御することで、陽子ビーム103の状態を調整してもよい。例えば、計算機14は、ソレノイド電磁石電源1053及び1054からソレノイド型電磁石1051及び1052に供給する電磁石電流の値及び周期や、加速用高周波源1055から高周波四重極線形加速器106に供給する加速電圧の値及び周期などを示す制御信号をソレノイド電磁石電源1053、1054及び加速用高周波源1055に送信して、ソレノイド電磁石電源1053、1054及び加速用高周波源1055を制御する。 Further, when an abnormality occurs in the proton beam 103, the computer 14 may adjust the state of the proton beam 103 by controlling the solenoid electromagnet power supplies 1053, 1054, the acceleration high-frequency source 1055, etc. For example, the calculator 14 calculates the value and period of the electromagnet current supplied from the solenoid electromagnet power supplies 1053 and 1054 to the solenoid type electromagnets 1051 and 1052, and the value of the acceleration voltage supplied from the acceleration high frequency source 1055 to the high frequency quadrupole linear accelerator 106. A control signal indicating the period and the like is transmitted to the solenoid electromagnet power supplies 1053, 1054 and the acceleration high frequency source 1055, thereby controlling the solenoid electromagnet power supplies 1053, 1054 and the acceleration high frequency source 1055.
 このとき、計算機14は、制御信号が示す電磁石電流及び加速電圧を、分散・共分散行列及びエミッタンスに基づいて決定する。例えば、計算機14は、分散・共分散行列の各要素及びエミッタンスと電磁石電流及び加速電圧との関係を示すルックアップテーブルを保持しておき、ルックアップテーブルに基づいて、閾値を超えた分散・共分散行列の要素又はエミッタンスに応じた電磁石電流及び加速電圧を決定する。 At this time, the computer 14 determines the electromagnet current and accelerating voltage indicated by the control signal based on the dispersion/covariance matrix and emittance. For example, the computer 14 maintains a lookup table showing the relationship between each element of the dispersion/covariance matrix and emittance, and the electromagnet current and accelerating voltage, and based on the lookup table, calculates the dispersion/covariance that exceeds a threshold value. Determine the electromagnet current and accelerating voltage according to the elements of the dispersion matrix or emittance.
 また、撮像画像は、互いに異なる2方向から取得されればよい。この場合、陽子ビーム103の形状に対称性を過程することで3次元ビーム画像を生成することができる。 Furthermore, the captured images only need to be acquired from two different directions. In this case, a three-dimensional beam image can be generated by creating symmetry in the shape of the proton beam 103.
 以上説明したように本実施例によれば、撮像部は、陽子ビーム103の進行方向と交差する複数の方向のそれぞれから陽子ビーム103に応じて発生する蛍光を撮像した複数の撮像画像を生成する。計算機13は、複数の撮像画像に基づいて、3次元空間内の陽子ビーム103の分布である3次元ビーム分布を取得する。計算機14は、3次元ビーム分布に基づいて、陽子ビーム103の進行方向と交差する2方向における陽子ビーム103の位置及び運動量による分散及び共分散を算出する。したがって、陽子ビーム103の位置及び運動量による分散及び共分散はビームの3次元的な構造を表すため、ビームの3次元的な構造を把握することが可能となる。 As described above, according to this embodiment, the imaging unit generates a plurality of captured images of fluorescence generated according to the proton beam 103 from each of a plurality of directions intersecting the traveling direction of the proton beam 103. . The computer 13 obtains a three-dimensional beam distribution, which is a distribution of the proton beam 103 in a three-dimensional space, based on a plurality of captured images. The computer 14 calculates the dispersion and covariance due to the position and momentum of the proton beam 103 in two directions intersecting the traveling direction of the proton beam 103 based on the three-dimensional beam distribution. Therefore, since the dispersion and covariance due to the position and momentum of the proton beam 103 represent the three-dimensional structure of the beam, it is possible to grasp the three-dimensional structure of the beam.
 また、本実施例では、上記の分散及び共分散に基づいて、陽子ビーム103のエミッタンスが算出されるため、ビームの3次元的な構造をより正確に把握することが可能となる。 Furthermore, in this embodiment, the emittance of the proton beam 103 is calculated based on the above-mentioned dispersion and covariance, so it is possible to more accurately understand the three-dimensional structure of the beam.
 また、本実施例では、CCDカメラ11が陽子ビーム103の周りを回転することで、複数の方向から撮像画像が取得される。このため、CCDカメラ11を複数台用意する必要がないため、コストを軽減しつつビームの3次元的な構造を把握することが可能となる。 Furthermore, in this embodiment, the CCD camera 11 rotates around the proton beam 103, so that captured images are acquired from multiple directions. Therefore, since it is not necessary to prepare a plurality of CCD cameras 11, it is possible to understand the three-dimensional structure of the beam while reducing costs.
 また、本実施例では、計算機14は、分散及び共分散に基づいて、陽子ビーム103に異常が発生したか否かを判定する。このため、ビームの3次元的な構造に基づいて、ビームの異常を正確に判定することが可能となる。 Furthermore, in this embodiment, the computer 14 determines whether an abnormality has occurred in the proton beam 103 based on the dispersion and covariance. Therefore, it is possible to accurately determine abnormalities in the beam based on the three-dimensional structure of the beam.
 また、本実施例では、陽子ビーム103に異常が発生した場合、アラームが通知されるため、加速器運転者1002が陽子ビーム103の異常を把握することが可能となる。 Furthermore, in this embodiment, if an abnormality occurs in the proton beam 103, an alarm is notified, so that the accelerator operator 1002 can understand the abnormality in the proton beam 103.
 また、本実施例では、陽子ビーム103に異常が発生した場合、陽子ビーム103の出射が停止されるため、異常な陽子ビーム103が出射されることを抑制することが可能となる。 Furthermore, in this embodiment, when an abnormality occurs in the proton beam 103, the emission of the proton beam 103 is stopped, so it is possible to suppress the abnormal proton beam 103 from being emitted.
 また、本実施例では、陽子ビーム103に異常が発生した場合、分散及び共分散に基づいて、陽子ビームの状態が調整されるため、異常な陽子ビーム103が出射されることを抑制することが可能となる。 Furthermore, in this embodiment, when an abnormality occurs in the proton beam 103, the state of the proton beam is adjusted based on the dispersion and covariance, so that it is possible to suppress the abnormal proton beam 103 from being emitted. It becomes possible.
 上述した本開示の実施例は、本開示の説明のための例示であり、本開示の範囲をそれらの実施形態にのみ限定する趣旨ではない。当業者は、本開示の範囲を逸脱することなしに、他の様々な態様で本開示を実施することができる。 The embodiments of the present disclosure described above are examples for explaining the present disclosure, and are not intended to limit the scope of the present disclosure only to those embodiments. Those skilled in the art can implement the present disclosure in various other ways without departing from the scope of the disclosure.
 1:ビームモニタ 11:CCDカメラ 12:モータ駆動式回転架台 13:計算機 14:計算機 15:表示装置 16:記録装置 17:スピーカ 18:ガイドレール 19:プレート 100:加速器 101:測定箇所 102:引き出し電極 103:陽子ビーム 104:ビーム引き出し電源 105:低エネルギービーム輸送ライン 106:高周波四重極線形加速器 107:リチウムターゲット 108:窓 110:イオン源 999:ホウ素中性子捕捉療法システム 1000:加速器室 1000a:遮蔽壁 1001:加速器運転室 1002:加速器運転者 1051:ソレノイド型電磁石 1053:ソレノイド電磁石電源 1054:ソレノイド電磁石電源 1055:加速用高周波源

 
1: Beam monitor 11: CCD camera 12: Motor-driven rotating frame 13: Computer 14: Computer 15: Display device 16: Recording device 17: Speaker 18: Guide rail 19: Plate 100: Accelerator 101: Measurement point 102: Extraction electrode 103: Proton beam 104: Beam extraction power supply 105: Low energy beam transport line 106: High frequency quadrupole linear accelerator 107: Lithium target 108: Window 110: Ion source 999: Boron neutron capture therapy system 1000: Accelerator room 1000a: Shielding wall 1001: Accelerator operator's room 1002: Accelerator operator 1051: Solenoid electromagnet 1053: Solenoid electromagnet power supply 1054: Solenoid electromagnet power supply 1055: High frequency source for acceleration

Claims (10)

  1.  荷電粒子ビームを監視するビームモニタ装置であって、
     前記荷電粒子ビームの進行方向と交差する複数の方向のそれぞれから前記荷電粒子ビームに応じて発生する蛍光を撮像した複数の撮像画像を生成する撮像部と、
     前記複数の撮像画像に基づいて、3次元空間内の前記荷電粒子ビームの分布である3次元ビーム分布を取得する取得部と、
     前記3次元ビーム分布に基づいて、前記進行方向と交差する2方向における前記荷電粒子ビームの位置及び運動量による分散及び共分散を算出する算出部と、を有するビームモニタ装置。
    A beam monitoring device for monitoring a charged particle beam,
    an imaging unit that generates a plurality of images of fluorescence generated in response to the charged particle beam from each of a plurality of directions intersecting the traveling direction of the charged particle beam;
    an acquisition unit that acquires a three-dimensional beam distribution that is a distribution of the charged particle beam in a three-dimensional space based on the plurality of captured images;
    A beam monitoring device comprising: a calculation unit that calculates variance and covariance due to the position and momentum of the charged particle beam in two directions intersecting the traveling direction, based on the three-dimensional beam distribution.
  2.  前記算出部は、前記分散及び前記共分散に基づいて、前記荷電粒子ビームのエミッタンスを算出する、請求項1に記載のビームモニタ装置。 The beam monitoring device according to claim 1, wherein the calculation unit calculates the emittance of the charged particle beam based on the dispersion and the covariance.
  3.  前記撮像部は、
     前記蛍光を撮像して前記撮像画像を生成するカメラと、
     前記荷電粒子ビームの進行方向を回転軸方向として、前記カメラを前記荷電粒子ビームの周りを回転させる駆動部と、を有する、請求項1に記載のビームモニタ装置。
    The imaging unit includes:
    a camera that images the fluorescence to generate the captured image;
    The beam monitoring device according to claim 1, further comprising: a drive unit that rotates the camera around the charged particle beam with the traveling direction of the charged particle beam as a rotation axis direction.
  4.  前記算出部は、前記分散及び前記共分散に基づいて、前記荷電粒子ビームに異常が発生したか否かを判定する、請求項1に記載のビームモニタ装置。 The beam monitor device according to claim 1, wherein the calculation unit determines whether an abnormality has occurred in the charged particle beam based on the variance and the covariance.
  5.  前記荷電粒子ビームに異常が発生した場合、アラームを通知する通知部をさらに有する請求項4に記載のビームモニタ装置。 The beam monitoring device according to claim 4, further comprising a notification unit that notifies an alarm when an abnormality occurs in the charged particle beam.
  6.  荷電粒子ビームを加速して出射する加速器であって、
     前記荷電粒子ビームを生成する出射部と
     前記出射部にて生成された荷電粒子ビームを輸送する輸送ラインと、
     請求項1に記載のビームモニタ装置と、を有し、
     前記輸送ラインは、壁面部が光透過性を有する窓で形成された測定箇所を有し、
     前記ビームモニタ装置の撮像部は、前記窓を介して前記蛍光を撮像する、加速器。
    An accelerator that accelerates and emits a charged particle beam,
    an emission section that generates the charged particle beam; a transport line that transports the charged particle beam generated in the emission section;
    The beam monitor device according to claim 1,
    The transport line has a measurement point whose wall portion is formed of a window having light transmittance,
    The imaging unit of the beam monitor device is an accelerator that images the fluorescence through the window.
  7.  前記ビームモニタ装置の算出部は、前記分散及び前記共分散に基づいて、前記荷電粒子ビームに異常が発生したか否かを判定し、前記荷電粒子ビームに異常が発生した場合、前記出射部からの前記荷電粒子ビームの出射を停止させる、請求項6に記載の加速器。 The calculation unit of the beam monitoring device determines whether or not an abnormality has occurred in the charged particle beam based on the variance and the covariance, and when an abnormality has occurred in the charged particle beam, the calculation unit determines whether or not an abnormality has occurred in the charged particle beam. The accelerator according to claim 6, wherein emission of the charged particle beam is stopped.
  8.  前記ビームモニタ装置の算出部は、前記分散及び前記共分散に基づいて、前記荷電粒子ビームに異常が発生したか否かを判定し、前記荷電粒子ビームに異常が発生した場合、前記分散及び前記共分散に基づいて、前記荷電粒子ビームの状態を調整する、請求項6に記載の加速器。 The calculation unit of the beam monitoring device determines whether an abnormality has occurred in the charged particle beam based on the dispersion and the covariance, and when an abnormality has occurred in the charged particle beam, the calculation unit determines whether or not an abnormality has occurred in the charged particle beam. 7. The accelerator of claim 6, wherein the state of the charged particle beam is adjusted based on covariance.
  9.  請求項6に記載の加速器と、
     前記加速器からの前記荷電粒子ビームを照射する照射装置と、を有する放射線治療装置。
    The accelerator according to claim 6,
    A radiation therapy apparatus comprising: an irradiation device that irradiates the charged particle beam from the accelerator.
  10.  荷電粒子ビームを監視するビームモニタ装置によるビーム測定方法であって、
     前記荷電粒子ビームの進行方向と交差する複数の方向のそれぞれから前記荷電粒子ビームに応じて発生する蛍光を撮像した複数の撮像画像を生成し、
     前記複数の撮像画像に基づいて、3次元空間内の前記荷電粒子ビームの分布である3次元ビーム分布を取得し、
     前記3次元ビーム分布に基づいて、前記進行方向と交差する2方向における前記荷電粒子ビームの位置及び運動量の分散及び共分散を算出する、ビーム測定方法。

     
    A beam measurement method using a beam monitor device for monitoring a charged particle beam, the method comprising:
    generating a plurality of captured images capturing fluorescence generated in response to the charged particle beam from each of a plurality of directions intersecting the traveling direction of the charged particle beam;
    Obtaining a three-dimensional beam distribution that is a distribution of the charged particle beam in a three-dimensional space based on the plurality of captured images;
    A beam measurement method that calculates variance and covariance of the position and momentum of the charged particle beam in two directions intersecting the traveling direction based on the three-dimensional beam distribution.

PCT/JP2023/005535 2022-06-15 2023-02-16 Beam monitor device, accelerator, radiation treatment device, and beam measurement method WO2023243143A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-096690 2022-06-15
JP2022096690A JP2023183194A (en) 2022-06-15 2022-06-15 Beam monitor device, accelerator, radiotherapy device and beam measurement method

Publications (1)

Publication Number Publication Date
WO2023243143A1 true WO2023243143A1 (en) 2023-12-21

Family

ID=89192602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005535 WO2023243143A1 (en) 2022-06-15 2023-02-16 Beam monitor device, accelerator, radiation treatment device, and beam measurement method

Country Status (2)

Country Link
JP (1) JP2023183194A (en)
WO (1) WO2023243143A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204298A (en) * 1998-01-20 1999-07-30 Toshiba Corp Beam transportation system
JP2019195408A (en) * 2018-05-08 2019-11-14 株式会社日立製作所 Scanning irradiation device and particle beam therapy system, and adjustment method of scanning irradiation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204298A (en) * 1998-01-20 1999-07-30 Toshiba Corp Beam transportation system
JP2019195408A (en) * 2018-05-08 2019-11-14 株式会社日立製作所 Scanning irradiation device and particle beam therapy system, and adjustment method of scanning irradiation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WELSCH CARSTEN: "Non-destructive Beam Profile Monitors", PROCEEDINGS OF IPAC2017, JACOW, GENEVA, SWITZERLAND, COPENHAGEN, DENMARK, 1 May 2017 (2017-05-01) - 19 May 2017 (2017-05-19), Copenhagen, Denmark, pages 1234 - 1239, XP093117514, DOI: 10.18429/jacow-ipac2017-tuxb1 *

Also Published As

Publication number Publication date
JP2023183194A (en) 2023-12-27

Similar Documents

Publication Publication Date Title
US8874385B2 (en) Radiation detector and verification technique of positioning accuracy for radiation detector
JP5791546B2 (en) Calibration method of radiation measuring apparatus and particle beam therapy apparatus
JP6829837B2 (en) Neutron capture therapy system and gamma ray detector for neutron capture therapy
JP2014195505A (en) Neutron capture therapy device
JP2015072243A (en) Radiation measuring device, particle beam therapeutic apparatus with radiation measuring device, and particle beam dose distribution calculation method
Kutsaev et al. Compact X-Band electron linac for radiotherapy and security applications
EP2946809B1 (en) Neutron capture therapy apparatus and nuclear transformation apparatus
Gu et al. The electron lens test bench for the relativistic heavy ion collider at Brookhaven National Laboratory
WO2023243143A1 (en) Beam monitor device, accelerator, radiation treatment device, and beam measurement method
JP2728986B2 (en) Radiation monitor
US20230241413A1 (en) Dose rate monitor, system and method
JP7084758B2 (en) Neutron beam detector and anomaly detection method for neutron beam detector
JP7021989B2 (en) Neutron capture therapy system and neutron detector
Mießner et al. An Ionization Profile Monitor for the determination of the FLASH photon beam parameter
JP7430044B2 (en) radiation therapy equipment
Bulut et al. An irradiation system for nuclear and materials research in a medical cyclotron
JP6875265B2 (en) Neutron beam detector
Chen et al. Prototype development of the beam diagnostic system of a proton therapy facility based on a superconducting cyclotron
Ohmi et al. Optics measurement at the interaction point using nearby position monitors in KEKB
Amaglobeli et al. Experimental Estimation of the Charm-Production Cross Section in pp Interactions at 70 GeV/c with the Aid of the SVD Setup
Badano et al. Secondary emission monitor for low-interception monitoring (SLIM): an innovative nondestructive beam monitor for the extraction lines of a hadrontherapy center
CN113840441B (en) X-ray beam position information detector based on ion beam high-order ionization principle
Corner et al. Laserwire: A high resolution non-invasive beam profiling diagnostic
Afonin et al. Apparatus for crystal extraction system at the U-70 synchrotron of IHEP
Haouat et al. Experimental study of the ELSA electron‐beam halo

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823448

Country of ref document: EP

Kind code of ref document: A1