JPH0540677Y2 - - Google Patents

Info

Publication number
JPH0540677Y2
JPH0540677Y2 JP5680087U JP5680087U JPH0540677Y2 JP H0540677 Y2 JPH0540677 Y2 JP H0540677Y2 JP 5680087 U JP5680087 U JP 5680087U JP 5680087 U JP5680087 U JP 5680087U JP H0540677 Y2 JPH0540677 Y2 JP H0540677Y2
Authority
JP
Japan
Prior art keywords
zero
phase
signal
section
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5680087U
Other languages
Japanese (ja)
Other versions
JPS63164334U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5680087U priority Critical patent/JPH0540677Y2/ja
Publication of JPS63164334U publication Critical patent/JPS63164334U/ja
Application granted granted Critical
Publication of JPH0540677Y2 publication Critical patent/JPH0540677Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【考案の詳細な説明】 A 産業上の利用分野 本考案は、電力系統の地絡保護に使用される地
絡方向継電器に係り、特に配電系統に設置される
残留保障式の地絡方向継電器に関するものであ
る。
[Detailed description of the invention] A. Industrial application field The present invention relates to a ground-fault directional relay used for ground-fault protection in power systems, and particularly relates to a residual-protection type ground-fault directional relay installed in a power distribution system. It is something.

B 考案の概要 本考案は、残留保障式の地絡方向継電器におい
て、零相電圧、零相電流を夫々検出し、この検出
信号を出力させる手段としてトリガ信号をしや断
器の投入条件信号との論理積信号によつて出力さ
せることによつて、事故の誤判断を防止するよう
にしたものである。
B. Summary of the invention The present invention detects zero-sequence voltage and zero-sequence current in a residual protection type ground fault relay, and uses a trigger signal as a closing condition signal for a circuit breaker as a means for outputting these detection signals. By outputting the logical product signal, erroneous judgment of an accident is prevented.

C 従来の技術 近年、保護継電器としてアナログ方式のものに
代えてデイジタル方式のものが採用されている
が、このデイジタル方式採用にともなう利点の一
つとして、アナログ方式では実現しにくかつた残
留保障式の地絡方向継電器の実現が可能となつた
ことである。この継電器は、常時の残留零相電圧
や残留零相電流が大きくとも誤動作や誤不動作の
可能性が少ない。
C. Conventional technology In recent years, digital systems have been adopted as protective relays instead of analog systems. One of the advantages of adopting this digital system is that it provides residual protection, which is difficult to achieve with analog systems. This means that it has become possible to realize a ground-fault directional relay of the formula. This relay is less likely to malfunction or malfunction even if the residual zero-sequence voltage or residual zero-sequence current is large.

実用化されている継電器の一つとして第2図で
示すような変化分検出方式がある。同図におい
て、配電系統に発生した零相電流Ip、電圧Vp
夫々デイジタル信号に変換された後に変化分検出
手段1,2に導入されサンプリングされた前後の
変化分が検出される。検出された各変化分は、例
えば零相電圧が所定値より上昇したことをトリガ
ーとし、各変化分のレベル検出部3,4および位
相判定部5に出力する。両信号の位相関係、およ
び各信号が所定レベル以上になつたことを条件と
して論理積部6は保護出力を発生する。
One type of relay that has been put into practical use is a change detection method as shown in FIG. In the figure, the zero-sequence current I p and voltage V p generated in the power distribution system are respectively converted into digital signals and then introduced into change detection means 1 and 2, where the changes before and after sampling are detected. Each detected change is output to the level detecting sections 3 and 4 and the phase determining section 5, using, for example, a rise in the zero-phase voltage from a predetermined value as a trigger. The AND section 6 generates a protection output based on the phase relationship between both signals and on the condition that each signal reaches a predetermined level or higher.

D 考案が解決しようとする問題点 ところが、この種従来のものはあるフイーダの
しや断器を何等かの理由でしや断した場合、その
フイーダに事故が発生したと誤判断する現象が生
ずる。この原因を以下に詳述する。
D. Problems that the invention aims to solve However, with this kind of conventional system, if a feeder's shield or disconnector is disconnected for some reason, a phenomenon occurs in which it is mistakenly determined that an accident has occurred at that feeder. . The cause of this will be explained in detail below.

今、地絡方向継電器の判定条件を次のように仮
定する。
Now, the judgment conditions for the ground fault direction relay are assumed as follows.

ΔIp≧0.1A ΔVp≧100V 判相条件: ΔIpのVpに対する位相が+150°〜
−30°内 トリガー条件:Vp>100Vとなつた時点 (但しΔIpは零相電流の変化分、Vpは零相電圧
の変化分) また、残留零相電圧Vp、残留零相電流Ipを発生
させる目的で、第3図で示す配電系統の条件を次
の通りとする。
ΔI p ≧0.1A ΔV p ≧100V Phase condition: Phase of ΔI p with respect to V p is +150°~
Within -30° Trigger condition: When V p >100V (where ΔI p is the change in zero-sequence current, V p is the change in zero-sequence voltage) Also, residual zero-sequence voltage V p , residual zero-sequence current For the purpose of generating I p , the conditions of the power distribution system shown in Figure 3 are as follows.

R相電圧 ER=6600/√3 〔V〕 S相電圧 ES=(6600/√)×(−1/2−j√3/2)〔V
〕 T相電圧 ET=(6600/√3)×(−1/2−j√3/2)〔V
〕 中接地アドミタンスYo=1/20000 〔S〕 フイーダ1(F1)のR相、S相、T相の対地ア
ドミタンスを各々 YR1=YT1=j2×π×50×0.4×10-6 〔S〕 YS1=j2×π×50×0.6×10-6 〔S〕 フイーダ2(F2)の各相アドミタンスを各々 YR2=YT2=j2×π×50×0.3×10-6 〔S〕 YS2=j2×π×50×0.2×10-6 〔S〕 フイーダ3(F3)の各相アドミタンスを各々 YR3=YS3=YT3=j2×π×50×0.9×10-6〔S〕 各相アドミタンスを YR=YR1+YR2+YR3 YS=YS1+YS2+YS3 YT=YT1+YT2+YT3 各フイーダの零相電流をI01+I02+I03とし、
各々の変化分をΔI01,ΔI02,ΔI03とすると、 Vp=YR・ER+YS・ES+YT・ET/YR+YS+YT+YN I01=YR1(ER−Vp)+YS1(ES−Vp)+YT1(ET
Vp) I02=YR2(ER−Vp)+YS2(ES−Vp)+YT2(ET
Vp) I03=YR3(ER−Vp)+YS3(ES−Vp)+YT3(ET
Vp) で求められる。
R phase voltage E R = 6600/√3 [V] S phase voltage E S = (6600/√ 3 ) × (-1/2-j√3/2) [V
] T-phase voltage E T = (6600/√3)×(-1/2-j√3/2) [V
] Medium ground admittance Y o = 1/20000 [S] Ground admittance of R phase, S phase, and T phase of feeder 1 (F 1 ), respectively Y R1 = Y T1 = j2×π×50×0.4×10 -6 [S] Y S1 = j2×π×50×0.6×10 -6 [S] Each phase admittance of feeder 2 (F 2 ) is calculated as follows: Y R2 = Y T2 = j2×π×50×0.3×10 -6 [S] S] Y S2 = j2×π×50×0.2×10 -6 [S] Each phase admittance of feeder 3 (F 3 ) is determined as follows: Y R3 = Y S3 = Y T3 = j2×π×50×0.9×10 - 6 [S] Let each phase admittance be Y R = Y R1 + Y R2 + Y R3 Y S = Y S1 + Y S2 + Y S3 Y T = Y T1 + Y T2 + Y T3 , and the zero-sequence current of each feeder be I 01 + I 02 + I 03 .
Assuming that the respective changes are ΔI 01 , ΔI 02 , ΔI 03 , V p =Y R・E R +Y S・E S +Y T・E T /Y R +Y S +Y T +Y N I 01 =Y R1 (E R −V p )+Y S1 (E S −V p )+Y T1 (E T
V p ) I 02 =Y R2 (E R −V p )+Y S2 (E S −V p )+Y T2 (E T
V p ) I 03 =Y R3 (E R −V p )+Y S3 (E S −V p )+Y T3 (E T
V p ).

上式に前記した具体的数値を代入すると、 Vp=77.7〔V〕〓118°(ERを基準位相として表
現) I01=0.205〔A〕∠88°(Vpを 〃
) I02=0.139〔A〕〓92°( 〃
) I03=0.066〔A〕〓90°( 〃
) となりVp<100〔V〕のためトリガーはかからず、
地絡方向継電器は不動作状態である。このような
正常状態において、今、フイダ2のR相で10kΩ
の地絡事故があつたとすると、 YR=(1/10000)=j2×π×50×1.6×10-6
〔S〕 YR2=(1/10000)=j2×π×50×0.2×10-6
〔S〕 となり、他の定数はもとのままで前式に代入する
と、 Vp=315.7〔V〕〓91°(ERを基準位相として表
現) I01=0.135〔A〕∠32°(Vpを 〃
) I02=0.220〔A〕∠25°( 〃
) I03=0.268〔A〕〓90°( 〃
) となり、Vp>100〔V〕となるので ΔVp=248.7〔V〕〓83°(ERを基準位相として表
現) ΔI01=0.109〔A〕〓90°(ΔVpを 〃
) ΔI02=0.321〔A〕∠88°( 〃
) ΔI03=0.211〔A〕〓90°( 〃
) となり、地絡方向継電器はF2を事故フイーダと
し、F1,F3を健全フイーダとして正常判断する。
すなわち、上記各列では継電器は正常に対応して
いることになる。
Substituting the specific numerical values mentioned above into the above formula, V p = 77.7 [V] 〓118° (expressed with E R as the reference phase) I 01 = 0.205 [A] ∠88° (V p
) I 02 =0.139〓〓92°(〃
) I 03 =0.066〓〓90°(〃
), and the trigger is not activated because V p <100 [V].
The earth fault direction relay is inactive. In this normal state, the R phase of feeder 2 is now 10kΩ.
If there is a ground fault, Y R = (1/10000) = j2×π×50×1.6×10 -6
[S] Y R2 = (1/10000) = j2×π×50×0.2×10 -6
[S], and substituting it into the previous equation with the other constants as they are, V p = 315.7 [V] 91° (expressed with E R as the reference phase) I 01 = 0.135 [A] ∠ 32° ( V p
) I 02 =0.220〔A〕∠25°(〃
) I 03 =0.268〓〓90°(〃
), and V p > 100 [V], so ΔV p = 248.7 [V] 〓83° (expressed with E R as the reference phase) ∆I 01 = 0.109 [A] 〓 90° (∆V p as 〃
) ΔI 02 = 0.321 [A] ∠88° ( 〃
) ΔI 03 = 0.211 [A] 〓90° ( 〃
), the ground fault direction relay treats F 2 as the fault feeder and F 1 and F 3 as the normal feeders and determines normality.
In other words, the relays in each of the above columns correspond normally.

次に、通常状態において、人為的に、あるいは
過電流などによつて例えばフイーダF2のしや断
器が開路した場合を考えると、 YR=YT=j2×π×50×1.3×10-6 〔S〕 YS=j2×π×50×1.5×10-6 〔S〕 YR2=YS2=YT2=j∞ となり、他の定数はもとのままであるので、これ
らを前式に代入すると、 Vp=185.7〔V〕〓118°(ERを基準位相として表
現) I01=0.158〔A〕∠84°(Vpを 〃
) I02=0〔A〕 I03=0.158A〓90°( 〃
) となり、Vp>100〔V〕となるので ΔVp=108.0〔V〕〓118°(ERを基準位相として表
現) ΔI01=0.048〔A〕〓90°(ΔVpを 〃
) ΔI02=0.139〔A〕∠88°( 〃
) ΔI03=0.092〔A〕〓90°( 〃
) となり、しや断器が開路したフイーダF2に事故
が発生したと判断するため、継電器は誤動作する
ことになる。
Next, if we consider a case where, for example, the feeder F2 's cutter or disconnector is opened artificially or due to overcurrent under normal conditions, Y R = Y T = j2 x π x 50 x 1.3 x 10 -6 [S] Y S = j2 × π × 50 × 1.5 × 10 -6 [S] Y R2 = Y S2 = Y T2 = j∞, and the other constants remain as before, so Substituting into the formula, V p = 185.7 [V] 〓 118° (E R is expressed as the reference phase) I 01 = 0.158 [A] ∠ 84° (V p
) I 02 =0 [A] I 03 =0.158A〓90°( 〃
), and V p > 100 [V], so ΔV p = 108.0 [V] 〓118° (expressed with E R as the reference phase) ΔI 01 = 0.048 [A] 〓 90° (∆V p as 〃
) ΔI 02 = 0.139 [A] ∠88° ( 〃
) ΔI 03 = 0.092 [A] 〓90° ( 〃
), it is determined that an accident has occurred at feeder F2 , where the circuit breaker has opened, and the relay will malfunction.

本考案はこのような欠点の除去を目的としてな
されたものである。
The present invention has been made with the aim of eliminating these drawbacks.

E 問題点を解決するための手段 本考案は、零相電圧、零相電流の各変化分検出
手段がトリガ発生時に夫々出力を発生して所定の
保護演算を行う地絡方向継電器において、トリガ
信号としや断器の投入条件信号との論理積信号を
各変化分検出手段の出力指令とする。
E Means for Solving Problems The present invention provides a ground fault direction relay in which each change detection means for zero-sequence voltage and zero-sequence current generates an output when a trigger occurs and performs a predetermined protection calculation. The AND signal with the closing condition signal of the breaker is used as the output command of each change detection means.

F 作用 残留零相電圧、電流を検出する各変化分検出手
段は、トリガが発生し、且つしや断器が閉路状態
時のみ出力を出し、位相判定および各レベル検出
が行なわれる。
F Effect Each change detection means for detecting the residual zero-sequence voltage and current outputs an output only when a trigger occurs and the circuit breaker is in a closed circuit state, and phase determination and level detection are performed.

G 実施例 第1図は本考案の一実施例を示したもので、第
2図と同符号のものは同一部分を示す。すなわち
本考案は論理積部7を設けたものである。論理積
部7の一方のゲートには零相電圧が所定値より大
きくなつたとき生成されるトリガが印加され、ま
た他のインヒビツトゲートにはフイーダに配置さ
れるしや断器の投入条件信号、例えばしや断器の
パレツト条件信号あるいはフイーダの電圧信号が
印加される。
G. Embodiment FIG. 1 shows an embodiment of the present invention, and the same reference numerals as in FIG. 2 indicate the same parts. That is, the present invention is provided with a logical product section 7. A trigger that is generated when the zero-sequence voltage becomes larger than a predetermined value is applied to one gate of the AND section 7, and a closing condition signal for a line breaker placed in the feeder is applied to the other inhibit gate. , for example, a pallet condition signal of a breaker or a voltage signal of a feeder.

以上のように構成された本考案においてその動
作を説明する。
The operation of the present invention configured as above will be explained.

変化分検出手段1,2は配電系統に発生あるい
は残留している零相電流Ip、電圧Vpを時々刻々導
入し変化分を検出しているが、論理積部7より出
力指令が印加されないため検出信号は出力されな
い。
The change detection means 1 and 2 momentarily introduce the zero-sequence current I p and voltage V p generated or remaining in the power distribution system to detect the change, but no output command is applied from the logical product section 7. Therefore, no detection signal is output.

今、トリガが発生して論理積部7のゲートに入
力されると、この論理積部7はしや断器が開路状
態であるか否かを判断し、しや断器が開路状態で
ある場合には、各変化分検出手段1,2にトリガ
がかからないようロツクする。また、しや断器が
投入状態であればトリガ信号を変化分検出手段に
出力する。したがつて、各検出手段1,2は夫々
変化分のレベル検出部3,4および位相判定部5
に出力信号を送出して所定の演算、判断を施し、
論理積部6より保護出力を発生する。
Now, when a trigger occurs and is input to the gate of the AND section 7, this AND section 7 judges whether or not the circuit breaker is in the open circuit state. In this case, the change detection means 1 and 2 are locked so that they are not triggered. Further, if the breaker is in the closed state, a trigger signal is output to the change detection means. Therefore, each detecting means 1, 2 includes a change level detecting section 3, 4 and a phase determining section 5, respectively.
sends an output signal to perform predetermined calculations and judgments,
The AND section 6 generates a protection output.

H 考案の効果 本考案によれば、零相電圧、電流の変化分検出
手段の出力用トリガをしや断器の開路時にはロツ
クするようにしたものであるから、あるフイーダ
のしや断器を開路しても、地絡方向継電器は誤判
断することはない。
H. Effects of the invention According to the invention, the output trigger of the zero-sequence voltage and current change detection means is locked when the disconnector is opened. Even if the circuit is opened, the ground fault direction relay will not make a false judgment.

また、残留分が大きい系統では、時々刻々変化
する残留分や位相によつて異常判断することもあ
るが、本考案はこのような場合でも異常判断を起
こさせない利点を有する。
Furthermore, in a system with a large residual amount, an abnormality may be determined based on the residual amount or phase that changes from time to time, but the present invention has the advantage of not causing an abnormality determination even in such a case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す構成図、第2
図は従来の地絡方向継電器の構成図、第3図は説
明のための配電系統の等価図である。 1は零相電流の変化分検出手段、2は零相電圧
の変化分検出手段、3,4は変化分のレベル検出
部5は位相判定部、6,7は論理積部。
Fig. 1 is a configuration diagram showing one embodiment of the present invention;
The figure is a configuration diagram of a conventional ground fault directional relay, and FIG. 3 is an equivalent diagram of a power distribution system for explanation. Reference numeral 1 denotes means for detecting a change in zero-phase current; 2, means for detecting a change in zero-phase voltage; 3 and 4, a change level detecting section; 5, a phase determining section; and 6, 7, an AND section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電力系統に発生した零相電圧、零相電流の各変
化を夫々変化分検出手段にて検出し、検出された
各信号をトリガ信号印加時に夫々レベル検出部お
よび位相判定部に出力し、これら各レベル検出
部、位相判定部の出力論理積成立時に動作出力を
発生するようにしたものにおいて、前記トリガ信
号としや断器の投入条件信号との論理積信号を前
記各変化分検出手段に印加するよう構成したこと
を特徴とする地絡方向継電器。
Each change in the zero-sequence voltage and zero-sequence current that occurs in the power system is detected by the change detection means, and each detected signal is output to the level detection section and the phase judgment section, respectively, when a trigger signal is applied. An operation output is generated when the output logical product of the level detection section and the phase determination section is established, wherein an AND signal of the trigger signal and the closing condition signal of the shimmer breaker is applied to each of the change detection means. A ground fault directional relay characterized by being configured as follows.
JP5680087U 1987-04-15 1987-04-15 Expired - Lifetime JPH0540677Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5680087U JPH0540677Y2 (en) 1987-04-15 1987-04-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5680087U JPH0540677Y2 (en) 1987-04-15 1987-04-15

Publications (2)

Publication Number Publication Date
JPS63164334U JPS63164334U (en) 1988-10-26
JPH0540677Y2 true JPH0540677Y2 (en) 1993-10-15

Family

ID=30885938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5680087U Expired - Lifetime JPH0540677Y2 (en) 1987-04-15 1987-04-15

Country Status (1)

Country Link
JP (1) JPH0540677Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635177B2 (en) * 1989-08-17 1997-07-30 九州電力株式会社 Failure prediction device for distribution system
JP2635176B2 (en) * 1989-08-17 1997-07-30 九州電力株式会社 Circuit breaker / switch operation detector

Also Published As

Publication number Publication date
JPS63164334U (en) 1988-10-26

Similar Documents

Publication Publication Date Title
EP1279213B1 (en) Sensitive ground fault detection system for use in compensated electric power distribution networks
JPH0540677Y2 (en)
US4314301A (en) Protective relaying devices
EP0319151A3 (en) Circuit to prevent uncontrolled tripping of a protective relay
US4819119A (en) Faulted phase selector for single pole tripping and reclosing schemes
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JP3028179B2 (en) Bidirectional protective relay system and bidirectional protective distance relay in electric line
JP2002118954A (en) Directional ground relay
JPH08265957A (en) Matrix operation type system protector
JP2003092825A (en) Ground fault protective relay
JP2916148B2 (en) Line selection relay
SU1101958A1 (en) Device for overall protecting of electric installations
JPH0145224Y2 (en)
Sevov et al. Differential Protection in Low-Voltage Buses: An Exploration of Principles and Models
JPH01274616A (en) Current differential relay
JP2002101549A (en) Ground directional relay
JPS62207123A (en) Grounding protective apparatus for parallel banks
JPH04161023A (en) Detector of ground fault section of distribution line
JPH0112510Y2 (en)
JPH04236124A (en) Method for detecting small ground fault of high-voltage distribution line
JPH0542211B2 (en)
JPS63287322A (en) Relay for detecting ground fault section in distribution line
JP2001177977A (en) Digital protective relay
JPH0125295B2 (en)
JPH09261844A (en) Ground fault circuit selecting relay equipment