JPH0540486A - Active muffling device - Google Patents

Active muffling device

Info

Publication number
JPH0540486A
JPH0540486A JP3196513A JP19651391A JPH0540486A JP H0540486 A JPH0540486 A JP H0540486A JP 3196513 A JP3196513 A JP 3196513A JP 19651391 A JP19651391 A JP 19651391A JP H0540486 A JPH0540486 A JP H0540486A
Authority
JP
Japan
Prior art keywords
muffling
memory
coefficient
noise
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3196513A
Other languages
Japanese (ja)
Other versions
JP2886709B2 (en
Inventor
Masaki Eguchi
政樹 江口
Hiroyuki Iida
弘之 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3196513A priority Critical patent/JP2886709B2/en
Priority to DE69224780T priority patent/DE69224780T2/en
Priority to EP92113366A priority patent/EP0530523B1/en
Publication of JPH0540486A publication Critical patent/JPH0540486A/en
Application granted granted Critical
Publication of JP2886709B2 publication Critical patent/JP2886709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17819Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the output signals and the reference signals, e.g. to prevent howling
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17825Error signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • G10K11/17833Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions by using a self-diagnostic function or a malfunction prevention function, e.g. detecting abnormal output levels
    • G10K11/17835Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions by using a self-diagnostic function or a malfunction prevention function, e.g. detecting abnormal output levels using detection of abnormal input signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3012Algorithms
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3045Multiple acoustic inputs, single acoustic output
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3214Architectures, e.g. special constructional features or arrangements of features
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/503Diagnostics; Stability; Alarms; Failsafe

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To prevent howling, and to quickly return to a stable operation, in the case howling is generated. CONSTITUTION:In addition to a coefficient train for a muffling signal operation used by a digital signal processor 14, an optimal coefficient train saved in a memory is provided. In the course of muffling operation, updating of the operation coefficient train, saving to the memory 15, and loading of the coefficient train in the memory 15 to an arithmetic memory of the digital signal processor 14 can be executed. In accordance with an increase and a decrease of average power of a muffling error signal. e(n), loading and saving of the coefficient train are executed. Also, by detecting abnormality of input and output signals and the coefficient train, the coefficient train saved in the memory 15 is loaded to the arithmetic memory of the digital signal processor 14, set to a state of the time of stable control, and also, a noise input signal buffer is cleared, by which a feedback loop is disconnected instantaneously and howling is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、送風機やエンジン等の
回転機の騒音を消去するアクティブ消音装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active muffler for eliminating noise from rotating machines such as blowers and engines.

【0002】[0002]

【従来の技術】送風機やエンジン等の回転機の騒音を抑
制するものの1つに、アクティブ消音装置が挙げられ
る。アクティブ消音装置は、騒音と180゜位相のずれ
た同振幅の音波を、消音用発音手段から放射し音波干渉
を起こすことによって、騒音を抑制するものであり、図
4は、その基本構成を示す。
2. Description of the Related Art An active silencer is one of those that suppress noise from rotating machines such as blowers and engines. The active silencer suppresses noise by emitting sound waves having the same amplitude, which is 180 ° out of phase with the noise, from the sound deadening sounding means to cause sound wave interference, and FIG. 4 shows its basic configuration. ..

【0003】図4において、たとえば、ダクト内の騒音
検出マイク3で検出される騒音信号列u(n)は、適応
型ディジタルフィルタ4で所定の係数列h(i)と下記
の(1)式の畳込み演算が行なわれる。
In FIG. 4, for example, a noise signal sequence u (n) detected by the noise detection microphone 3 in the duct is given by the adaptive digital filter 4 as a predetermined coefficient sequence h (i) and the following equation (1). The convolution operation of is performed.

【0004】[0004]

【数1】 [Equation 1]

【0005】演算結果y(n)を、消音信号としてスピ
ーカ6に出力させる。
The calculation result y (n) is output to the speaker 6 as a muffling signal.

【0006】(1)式において、Nは、ディジタルフィ
ルタのタップ数を示す。適応型ディジタルフィルタ4の
係数列h(i)は、参照点における消音誤差検出マイク
5で検出される消音誤差信号e(n)に応じて、図示さ
れていない係数制御部により、消音誤差が最小となるよ
うに調整される。
In the equation (1), N represents the number of taps of the digital filter. The coefficient sequence h (i) of the adaptive digital filter 4 has a minimum muffling error by a coefficient control unit (not shown) according to the muffling error signal e (n) detected by the muffling error detection microphone 5 at the reference point. Is adjusted so that

【0007】図4に示すシステム構成においては、スピ
ーカ6から放射された音が、騒音検出マイク3にフィー
ドバックされ、ハウリングを起こす危険性がある。ま
た、消音誤差検出マイク5に外部から雑音が混入するこ
とにより、係数列h(i)の誤調整を生じ、この場合も
ハウリングを起こす危険性が生じる。従来の技術では、
マイクロホンアレイにより指向性を強化し、音響フィー
ドバックや、外部雑音の影響を軽減する方法が用いられ
ている。
In the system configuration shown in FIG. 4, the sound radiated from the speaker 6 is fed back to the noise detection microphone 3 and there is a risk of howling. Further, noise is mixed into the muffling error detection microphone 5 from the outside, so that the coefficient sequence h (i) is erroneously adjusted, and in this case also, there is a risk of howling. With conventional technology,
A microphone array is used to enhance directivity and reduce the effects of acoustic feedback and external noise.

【0008】また、音響フィードバックの抑圧を目的と
して、図5に示されるように、騒音検出マイク3と消音
誤差検出マイク5を、スピーカを中心に等距離に配置
し、各々の検出信号の差を減算器7で求め、その差を適
応型ディジタルフィルタ4の入力信号u(n)として用
い、音響フィードバックをキャンセルしている例が報告
されている。
Further, for the purpose of suppressing acoustic feedback, as shown in FIG. 5, the noise detection microphone 3 and the silencing error detection microphone 5 are arranged at equal distances with the speaker at the center, and the difference between the respective detection signals is calculated. It has been reported that the subtraction 7 is used and the difference is used as the input signal u (n) of the adaptive digital filter 4 to cancel the acoustic feedback.

【0009】[0009]

【発明が解決しようとする課題】図4に示されるような
構成のアクティブ消音装置においては、マイクロホンの
指向性を少々強化しても、また図5の構成を用いたとし
ても、ハウリングの危険性が常につきまとう。さらに、
騒音検出マイク3とスピーカ4の距離を短くし、システ
ムの小型化を図る場合、音響フィードバックの原因が増
加するため、ハウリングの危険性はさらに増し、ハウリ
ングに対する対策は、アクティブ消音装置を構成する上
で重要な課題となる。さらに、適応型ディジタルフィル
タ4の係数の適応アルゴリズムとして広く用いられてい
るLMSアルゴリズムで係数更新を行なう場合、入力信
号が狭帯域であると係数列h(i)が徐々に発散し、オ
ーバーフローを起こす危険性がある。係数列h(i)の
オーバーフローは、消音精度の劣化やハウリング発生の
原因となる。そこで、本発明の目的は、アクティブ消音
システム動作時にハウリングが発生した場合、あるいは
ハウリングが発生しそうになった場合、即座にハウリン
グを抑制し、正常な消音制御状態に移行できるアクティ
ブ消音装置を提供することにある。
In the active muffler having the structure shown in FIG. 4, there is a risk of howling even if the directivity of the microphone is slightly enhanced or the structure shown in FIG. 5 is used. Always keep up. further,
When the distance between the noise detection microphone 3 and the speaker 4 is shortened to reduce the size of the system, the cause of acoustic feedback increases, which further increases the risk of howling, and the countermeasure against howling is to configure an active silencer. Will be an important issue. Further, when the coefficient is updated by the LMS algorithm widely used as the adaptive algorithm of the coefficient of the adaptive digital filter 4, the coefficient sequence h (i) gradually diverges when the input signal is in a narrow band, causing an overflow. There is a risk. The overflow of the coefficient sequence h (i) causes deterioration of muffling accuracy and howling. Therefore, an object of the present invention is to provide an active muffling device that can immediately suppress howling when a howling occurs during the operation of the active muffling system, or when the howling is likely to occur, and shift to a normal muffling control state. Especially.

【0010】[0010]

【課題を解決するための手段】音波検出手段で検出した
騒音信号列と所定の係数列を、畳込み演算することによ
って消音信号を作成し、これを消音用発音手段に出力
し、音波干渉によって参照点における騒音を消音し、か
つ、参照点で検出した消音誤差信号に基づいて前記係数
列を適応変化させるアクティブ消音装置において、消音
動作中の係数列の最適なものを保存し、必要に応じて前
記の保存しておいた係数列を呼出すようにした。
SOLUTION: The noise signal sequence detected by the sound wave detecting means and a predetermined coefficient sequence are convoluted to create a muffling signal, which is output to the sounding means for muffling to generate a noise canceling signal. In an active muffling device that muffles noise at a reference point and adaptively changes the coefficient sequence based on the muffling error signal detected at the reference point, saves the optimum coefficient sequence during muffling operation, and stores it as necessary. Then, the previously stored coefficient sequence is recalled.

【0011】[0011]

【作用】必要なとき、たとえば、入出力信号の規定を越
える異常な値や、演算処理中のオーバーフロー等の検出
により、ハウリングの発生等のシステムの異常を検出し
た場合、予め保存しておいた最適の係数列を呼出し、現
在の係数列と入替え、さらに係数列h(i)と畳込み演
算される騒音信号列u(n)を格納したバッファをクリ
アしてゼロにすることにより、システムのフィードバッ
クループを一瞬に切断することができるため、ハウリン
グを瞬時に止めることができる。また、係数列h(i)
は、上記のとおり安定な状態のものと入替えが行なわれ
るため、瞬時に消音状態への移行が実現できる。さら
に、所定の時間間隔で消音誤差信号のレベルをモニタ
し、現在のレベルと以前のレベルを比較し、現在のレベ
ルが小さければ係数列の保存、大きければ係数列呼出
し、および必要に応じて騒音信号列u(n)を格納した
バッファのゼロクリアを行なって、より効果的にハウリ
ングの抑制が行なえる。
When necessary, for example, when an abnormal value exceeding the regulation of the input / output signal or an abnormality in the system such as howling is detected by detecting an overflow during arithmetic processing, it is stored in advance. By calling the optimum coefficient sequence, replacing it with the current coefficient sequence, and further clearing the buffer storing the coefficient sequence h (i) and the noise signal sequence u (n) to be convolved to zero, the system Since the feedback loop can be disconnected at once, howling can be stopped at once. Also, the coefficient sequence h (i)
As described above, since the replacement with the stable one is performed as described above, the transition to the mute state can be realized instantaneously. Furthermore, the level of the mute error signal is monitored at predetermined time intervals, the current level and the previous level are compared, the coefficient sequence is saved if the current level is small, the coefficient sequence is called if the current level is large, and noise is generated if necessary. The howling can be suppressed more effectively by clearing the buffer storing the signal sequence u (n) to zero.

【0012】[0012]

【実施例】図1は、本発明の一実施例のブロック図であ
る。
FIG. 1 is a block diagram of an embodiment of the present invention.

【0013】同図において、一方に開口部を有する容器
2内に騒音源1があり、それに対向して騒音検出マイク
3、参照点に消音誤差検出マイク5、およびそれらの中
間に消音用スピーカ6が、図のように配置されている。
In the figure, there is a noise source 1 in a container 2 having an opening on one side, a noise detecting microphone 3 facing the noise source, a silence error detecting microphone 5 at a reference point, and a silence speaker 6 in the middle thereof. Are arranged as shown.

【0014】消音検出マイク3で検出され、アンプ11
を介してA/D変換器9でディジタル信号に変換された
騒音信号u(n)は、データバス16を介してディジタ
ルシグナルプロセッサ(DSP)14に送られ、ここで
所定の係数列h(i)と、前述の(1)式に示す畳込み
演算がなされ、その演算結果y(n)がデータバス16
を介して消音信号としてD/A変換器8に出力される。
図示されていないが、DSP14には、係数列h(i)
を記憶する畳込み演算用係数メモリと、たとえばFIR
型のディジタルフィルタと、騒音信号u(n)格納用メ
モリが接続されている。
The sound is detected by the mute detecting microphone 3 and the amplifier 11
The noise signal u (n) converted into a digital signal by the A / D converter 9 via the A / D converter 9 is sent to the digital signal processor (DSP) 14 via the data bus 16, where a predetermined coefficient sequence h (i ) And the convolution operation shown in the above equation (1) is performed, and the operation result y (n) is obtained by the data bus 16
Is output to the D / A converter 8 as a mute signal.
Although not shown, the DSP 14 has a coefficient sequence h (i)
And a coefficient memory for convolution calculation for storing
Type digital filter and a noise signal u (n) storage memory are connected.

【0015】D/A変換器8でアナログ信号に変換され
た消音信号は、アンプ12を介してスピーカ6に出力さ
れる。消音した結果は、消音誤差検出マイク5で検出さ
れ、アンプ13,A/D変換器10,データバス16を
介してDSP14に取込まれ、この消音誤差信号e
(n)が最小となるように係数列h(i)が更新され
る。
The mute signal converted into an analog signal by the D / A converter 8 is output to the speaker 6 via the amplifier 12. The result of the muffling error is detected by the muffling error detection microphone 5 and taken into the DSP 14 via the amplifier 13, the A / D converter 10 and the data bus 16, and the muffling error signal e
The coefficient sequence h (i) is updated so that (n) is minimized.

【0016】(1)式から明らかなように、消音信号y
(n)の算出には現在からN単位時間前までの騒音信号
が必要であり、これら過去のデータは、消音に最適の係
数列h(i)とともに、データバス16を介してメモリ
15にセーブされている。
As is clear from the equation (1), the mute signal y
The noise signal from the present to N unit time ago is required for the calculation of (n), and these past data are saved in the memory 15 via the data bus 16 together with the optimum coefficient sequence h (i) for silencing. Has been done.

【0017】係数列h(i)を常に最適なものに保つた
めには、これを更新することが必要であり、図2は、本
発明における係数列h(i)の制御形態の概略を、時間
軸に沿って表わした図である。係数列h(i)は、最初
の状態では、安定な動作中の係数列または予め測定した
最適の係数列を設定しておくことができる。同図におい
て、Tは係数列h(i)の更新を行なうための期間であ
り、t1〜t10は各動作の時間を示す。t1からt2
に到る期間Tの間に係数列h(i)の更新を行ない、t
2からt3の間に消音誤差信号の平均電力wを計算し、
さらにこのときの係数列h(i)のメモリ15にセーブ
す。その後、さらにt3からt4に到る期間Tの間に係
数列h(i)の更新が行なわれる。次に、t4からt5
の間に再び消音誤差信号の平均電力wを計算し、前回の
平均電力よりも小さければ、このときの係数列h(i)
をメモリ15にセーブする。これは、この期間における
最適な係数列である。もし、大きくなっていれば、前回
メモリ15にセーブした係数列h(i)を、DSP14
に接続された畳込み演算用係数メモリにコピーする。ま
た、必要により騒音信号u(n)格納用メモリをクリア
する。その後、また時間Tが経過するまで、係数列h
(i)の更新が行なわれ、以下同様の処理が連続して行
なわれる。さらに、係数更新期間中も入出力信号の規定
値を越える異常な値や、演算処理中のオーバーフローの
チェックを常に行ない、これらの異常が検出された場合
t8には、時間Tの経過の如何にかかわらず、t8から
t9の間に、前回メモリ15にセーブした係数列h
(i)を呼出して畳込み演算用係数メモリへコピーし、
騒音信号u(n)格納用メモリをクリアしてゼロにす
る。
In order to always keep the coefficient sequence h (i) optimum, it is necessary to update it, and FIG. 2 shows an outline of the control form of the coefficient sequence h (i) in the present invention. It is the figure represented along the time axis. As the coefficient sequence h (i), in the initial state, a coefficient sequence in stable operation or an optimal coefficient sequence measured in advance can be set. In the figure, T is a period for updating the coefficient sequence h (i), and t1 to t10 show the time of each operation. t1 to t2
The coefficient sequence h (i) is updated during the period T reaching
Calculate the average power w of the silencing error signal between 2 and t3,
Further, the coefficient sequence h (i) at this time is saved in the memory 15. After that, the coefficient sequence h (i) is updated during the period T from t3 to t4. Next, from t4 to t5
During this period, the average power w of the muffling error signal is calculated again. If it is smaller than the previous average power, the coefficient sequence h (i) at this time is calculated.
Is saved in the memory 15. This is the optimum coefficient sequence in this period. If it becomes larger, the coefficient sequence h (i) saved in the memory 15 last time is set to the DSP 14
Copy to the coefficient memory for convolution operation connected to. Further, the noise signal u (n) storage memory is cleared if necessary. After that, until the time T elapses again, the coefficient sequence h
(I) is updated, and then the same processing is continuously performed. Further, even during the coefficient update period, an abnormal value exceeding the specified value of the input / output signal and an overflow during the arithmetic processing are constantly checked, and when these abnormalities are detected, at t8, it is determined whether the time T has elapsed. Regardless, the coefficient sequence h previously saved in the memory 15 between t8 and t9
(I) is called and copied to the coefficient memory for convolution calculation,
The memory for storing the noise signal u (n) is cleared to zero.

【0018】図3は、上述の処理の流れをフローチャー
トに表わした一例である。動作が開始すると、DSP1
4に騒音信号u(n)および誤差信号e(n)が入力さ
れる(ステップS101)。
FIG. 3 is an example showing a flow chart of the above-mentioned processing. When the operation starts, DSP1
The noise signal u (n) and the error signal e (n) are input to 4 (step S101).

【0019】次に、係数列h(i)の更新が行なわれる
(ステップS102)。次に、オーバーフローの有無を
検討する(ステップS103)。
Next, the coefficient sequence h (i) is updated (step S102). Next, the presence or absence of overflow is examined (step S103).

【0020】オーバーフローがない場合は、消音信号y
(n)を計算する(ステップS104)。
If there is no overflow, the mute signal y
(N) is calculated (step S104).

【0021】消音信号y(n)が規定値の範囲内かどう
かを検討する(ステップS105)。
It is examined whether the mute signal y (n) is within the specified value range (step S105).

【0022】消音信号y(n)が規定値の範囲内であれ
ばそれをスピーカに出力する(ステップS106)。
If the mute signal y (n) is within the specified range, it is output to the speaker (step S106).

【0023】更新の時間Tが経過する(ステップS10
7)。これは、動作開始の直後であるから図2のt2の
時点である。
The update time T has elapsed (step S10).
7). This is at time t2 in FIG. 2 since it is immediately after the start of operation.

【0024】次に、誤差信号e(n)の平均電力wを計
算する(ステップS108)。平均電力wが前回よりも
増加しているかどうかを検討する(ステップS10
9)。
Next, the average power w of the error signal e (n) is calculated (step S108). It is examined whether the average power w has increased from the previous time (step S10).
9).

【0025】平均電力wが前回よりも増加していない場
合、または動作開始直後の場合は、係数列h(i)を保
存する(ステップS110)。
When the average power w has not increased from the previous time or immediately after the start of the operation, the coefficient string h (i) is stored (step S110).

【0026】ステップS103においてオーバーフロー
があった場合、ステップS105において消音出力y
(n)が規定値の範囲外である場合、およびステップS
109において平均電力wが前回よりも増加している場
合は、メモリ15に保存されている最適の係数列h
(i)を呼出し、騒音信号u(n)格納用メモリをクリ
アする(ステップS111)。
If there is an overflow in step S103, the mute output y is output in step S105.
If (n) is out of the specified range, and step S
If the average power w has increased more than the previous time in 109, the optimum coefficient sequence h stored in the memory 15
(I) is called to clear the noise signal u (n) storage memory (step S111).

【0027】このようにして一連の更新および平均電力
wの計算に関連した時間Tをカウントするタイムカウン
ターをクリアした場合(ステップS112)、およびス
テップS107の過程において、タイムカウンターが時
間Tに満たない場合は、再びステップS101に戻る。
In this way, when the time counter for counting the time T related to the series of updates and the calculation of the average power w is cleared (step S112), and in the process of step S107, the time counter does not reach the time T. In that case, it returns to step S101 again.

【0028】[0028]

【発明の効果】本発明によれば、音波検出手段で検出し
た信号列と所定の係数列を、畳込み演算することによっ
て消音信号を作成し、これを消音用発音手段に出力し、
音波干渉によって参照点における騒音を消音し、かつ参
照点で検出した消音誤差信号に基づいて前記係数列を適
応変化させるアクティブ消音装置において、安定な消音
動作中の係数列もしくは予め測定した求めた係数列のよ
うな最適な係数列h(i)を保存し、入出力の規定を越
える異常な値や、演算処理中のオーバーフロー等の検出
により、ハウリングの発生等のシステム異常を検出した
場合、予め保存しておいた最適の係数列を呼出し、現在
の係数列と入替え、さらに係数列h(i)と畳込み演算
される騒音信号列u(n)を格納したバッファをクリア
してゼロにすることにより、システムのフィードバック
ループが一瞬断切られるため、ハウリングを瞬時に止め
ることができる。また、係数列h(i)は、上記のとお
り、安定な状態のものと入替えが行なわれるため、瞬時
に消音状態への移行が実現できる。さらに、本発明の実
施においては、従来のアクティブ消音装置のハードウェ
ア構成の変更を必要とせず、コスト面で有利になる他、
制御用のソフトウェアの改良だけで効果的なハウリング
抑制ができ、常に安定な制御が可能なため、従来のアク
ティブ消音システムへの適応性が高い。
According to the present invention, a silencing signal is created by performing a convolution operation on the signal sequence detected by the sound wave detecting means and a predetermined coefficient sequence, and the silencing signal is output to the silencing means.
In an active silencer that silences noise at a reference point by sound wave interference and adaptively changes the coefficient sequence based on a silencing error signal detected at the reference point, a coefficient sequence during stable silencing operation or a previously measured coefficient When an optimal coefficient sequence h (i) such as a sequence is stored and a system abnormality such as howling is detected by detecting an abnormal value exceeding the input / output regulation or an overflow during arithmetic processing, The saved optimum coefficient string is called, replaced with the current coefficient string, and the buffer storing the coefficient string h (i) and the noise signal string u (n) to be convoluted is cleared to zero. As a result, the feedback loop of the system is interrupted for a moment, so howling can be stopped instantaneously. Further, the coefficient sequence h (i) is replaced with that in a stable state as described above, so that the transition to the mute state can be realized instantly. Furthermore, in the practice of the present invention, it is not necessary to change the hardware configuration of the conventional active silencer, which is advantageous in terms of cost.
Effective feedback suppression can be achieved only by improving the control software, and stable control is always possible, so it is highly adaptable to conventional active noise reduction systems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】係数列の制御状態を説明する図である。FIG. 2 is a diagram illustrating a control state of a coefficient string.

【図3】図2における制御の一例のフローチャートであ
る。
FIG. 3 is a flowchart of an example of control in FIG.

【図4】アクティブ消音装置の基本構成図である。FIG. 4 is a basic configuration diagram of an active silencer.

【図5】ハウリング防止を目的とした従来の一例のシス
テム構成図である。
FIG. 5 is a system configuration diagram of a conventional example for the purpose of preventing howling.

【符号の説明】[Explanation of symbols]

1 騒音源 3 騒音検出マイク 5 消音誤差検出マイク 6 消音用スピーカ 8 D/A変換器 9,10 A/D変換器 11,12,13 アンプ 14 ディジタルシグナルプロセッサ(DSP) 15 メモリ 1 Noise Source 3 Noise Detection Microphone 5 Noise Reduction Error Detection Microphone 6 Noise Reduction Speaker 8 D / A Converter 9,10 A / D Converter 11, 12, 13 Amplifier 14 Digital Signal Processor (DSP) 15 Memory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 音波検出手段で検出した騒音信号列と所
定の係数列を、畳込み演算することによって消音信号を
作成し、これを消音用発音手段に出力し、音波干渉によ
って参照点における騒音を消音し、かつ、参照点で検出
した消音誤差信号に基づいて前記係数列を適応変化させ
るアクティブ消音装置において、消音動作中の前記係数
列の最適なものを保存し必要に応じて消音動作中に呼出
しをする手段を備えたアクティブ消音装置。
1. A noise signal sequence detected by a sound wave detecting means and a predetermined coefficient sequence are convoluted to generate a sound deadening signal, which is output to a sound deadening sounding means, and noise at a reference point is generated by sound wave interference. In the active muffling device that muffles the noise, and adaptively changes the coefficient sequence based on the muffling error signal detected at the reference point, the optimum one of the coefficient sequences in the muffling operation is saved and the muffling operation is performed when necessary. An active silencer equipped with a means for calling a person.
JP3196513A 1991-08-06 1991-08-06 Active silencer Expired - Fee Related JP2886709B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3196513A JP2886709B2 (en) 1991-08-06 1991-08-06 Active silencer
DE69224780T DE69224780T2 (en) 1991-08-06 1992-08-05 Active silencer with improved procedure for coefficient sequence selection
EP92113366A EP0530523B1 (en) 1991-08-06 1992-08-05 Active silencer with improved method of selecting coefficient sequence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3196513A JP2886709B2 (en) 1991-08-06 1991-08-06 Active silencer

Publications (2)

Publication Number Publication Date
JPH0540486A true JPH0540486A (en) 1993-02-19
JP2886709B2 JP2886709B2 (en) 1999-04-26

Family

ID=16358999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3196513A Expired - Fee Related JP2886709B2 (en) 1991-08-06 1991-08-06 Active silencer

Country Status (3)

Country Link
EP (1) EP0530523B1 (en)
JP (1) JP2886709B2 (en)
DE (1) DE69224780T2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994009480A2 (en) * 1992-10-21 1994-04-28 Lotus Cars Limited Adaptive control system
WO1996002910A1 (en) * 1994-07-15 1996-02-01 Noise Cancellation Technologies, Inc. Active duct silencer kit
JP2003177761A (en) * 2002-08-26 2003-06-27 Toa Corp Adaptive filter
US11875768B2 (en) 2020-03-06 2024-01-16 Bose Corporation Wearable active noise reduction (ANR) device having low frequency feedback loop modulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475189A (en) * 1992-11-16 1995-12-12 Carrier Corporation Condition responsive muffler for refrigerant compressors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225983A (en) * 1989-02-28 1990-09-07 Toshiba Corp Noise suppressor for cooling device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827313A (en) * 1981-08-11 1983-02-18 Hitachi Ltd Method of reducing oscillation of stationary electric induction apparatus
GB8404494D0 (en) * 1984-02-21 1984-03-28 Swinbanks M A Attenuation of sound waves
US5022082A (en) * 1990-01-12 1991-06-04 Nelson Industries, Inc. Active acoustic attenuation system with reduced convergence time

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225983A (en) * 1989-02-28 1990-09-07 Toshiba Corp Noise suppressor for cooling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994009480A2 (en) * 1992-10-21 1994-04-28 Lotus Cars Limited Adaptive control system
WO1994009480A3 (en) * 1992-10-21 1994-06-09 Lotus Car Adaptive control system
US5768124A (en) * 1992-10-21 1998-06-16 Lotus Cars Limited Adaptive control system
WO1996002910A1 (en) * 1994-07-15 1996-02-01 Noise Cancellation Technologies, Inc. Active duct silencer kit
JP2003177761A (en) * 2002-08-26 2003-06-27 Toa Corp Adaptive filter
US11875768B2 (en) 2020-03-06 2024-01-16 Bose Corporation Wearable active noise reduction (ANR) device having low frequency feedback loop modulation

Also Published As

Publication number Publication date
EP0530523B1 (en) 1998-03-18
EP0530523A3 (en) 1993-11-24
JP2886709B2 (en) 1999-04-26
EP0530523A2 (en) 1993-03-10
DE69224780D1 (en) 1998-04-23
DE69224780T2 (en) 1998-10-29

Similar Documents

Publication Publication Date Title
JPH07325588A (en) Muffler
JPH06202669A (en) Active sound eliminating device
JPH0540486A (en) Active muffling device
JP2923476B2 (en) Adaptive active silencer
JP2872545B2 (en) Silencer
JP2001282254A (en) Active type noise removing device
JP2989379B2 (en) Active control device using adaptive IIR digital filter
JP4137401B2 (en) Active noise eliminator
JPH0619482A (en) Method and device for active sound elimination
JP3461513B2 (en) Active silencer
JPH06318083A (en) Active muffler device
JP2001056692A (en) Noise reducing device
JPH09171388A (en) Adaptive filter
JPH0774590A (en) Electronic muffler
JP2000089768A (en) Active muffler
JPH0720878A (en) Control device of active muffler
JPH11175073A (en) Noise elimination device
JPH07239688A (en) Method and device for actively muffling
JPH07160271A (en) Adaptive active silencer
JPH06324686A (en) Method and device for active control
JPH0635482A (en) Method and device for active noise elimination
JPH07334168A (en) Active noise control system
JP2001355428A (en) Active muffler
JP3363254B2 (en) Noise control device
JPH06332468A (en) Active silencer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990202

LAPS Cancellation because of no payment of annual fees