JPH0540226A - Transmission illuminator for stereo-microscope - Google Patents

Transmission illuminator for stereo-microscope

Info

Publication number
JPH0540226A
JPH0540226A JP3197615A JP19761591A JPH0540226A JP H0540226 A JPH0540226 A JP H0540226A JP 3197615 A JP3197615 A JP 3197615A JP 19761591 A JP19761591 A JP 19761591A JP H0540226 A JPH0540226 A JP H0540226A
Authority
JP
Japan
Prior art keywords
light beam
pair
beam splitting
illumination
optical systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3197615A
Other languages
Japanese (ja)
Inventor
Takeshi Fujino
健 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3197615A priority Critical patent/JPH0540226A/en
Publication of JPH0540226A publication Critical patent/JPH0540226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To provide the transmission illuminator for a stereo-microscope so as to eliminate illumination nonuniformity and to supply illumination luminous flux with satisfactory illumination efficiency. CONSTITUTION:This transmission illuminator is equipped with a light source 1, collector lens 2, luminous flux splitting prism 13 and capacitor lens 4. The luminous flux splitting prism 13 splits and deflects the luminous flux, which is made almost parallel by the collector lens 2, from the light source 1 into the luminous flux in two directions parallel to optical axes 9a and 9b of a pair of observation optical systems. Therefore, since a sample S is illuminated by the almost parallel luminous flux from the directions along the respective optical axes 9a and 9b, the illumination range is considerably enlarged and the illumination nonuniformity is eliminated for this transmission illuminator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、双眼実体顕微鏡の透過
照明装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transillumination device for a binocular stereomicroscope.

【0002】[0002]

【従来技術】従来の双眼実体顕微鏡は、図5に示すよう
に、光源1とコレクタレンズ2と拡散板3とコンデンサ
レンズ4とからなる照明光学系と、試料Sを保持するス
テージ5と、対物レンズ6とズームレンズ7a,7bと
接眼レンズ8a,8bとからなり左右対称に配置された
一対の観察光学系と、から構成される。また、一対の観
察光学系のそれぞれの光軸9aと9bとは、照明光学系
の光軸10に対してそれぞれ角度α/2だけ傾斜してい
る。すなわち、光軸9aと9bとは、光軸10の延長線
を対称軸として対称に位置している。
2. Description of the Related Art A conventional binocular stereomicroscope, as shown in FIG. 5, includes an illumination optical system including a light source 1, a collector lens 2, a diffusion plate 3 and a condenser lens 4, a stage 5 for holding a sample S, and an objective. The lens 6 and the zoom lenses 7a and 7b and the eyepieces 8a and 8b are arranged to be symmetrical, and a pair of observation optical systems are arranged. The optical axes 9a and 9b of the pair of observation optical systems are respectively inclined by an angle α / 2 with respect to the optical axis 10 of the illumination optical system. That is, the optical axes 9a and 9b are symmetrically positioned with the extension line of the optical axis 10 as the axis of symmetry.

【0003】このような双眼実体顕微鏡の透過照明光学
系は、光源1からの照明光束をコレクタレンズ2で略平
行光束にし、コレクタレンズ2からの光束を拡散板3に
よって拡散させ、コンデンサレンズ4を介して試料Sを
透過照明する。また、一対の観察光学系は、前記照明光
学系によって照明された試料を実体観察する。
In the transmission illumination optical system of such a binocular stereomicroscope, the illumination light flux from the light source 1 is made into a substantially parallel light flux by the collector lens 2, the light flux from the collector lens 2 is diffused by the diffuser plate 3, and the condenser lens 4 is set. The sample S is transmitted and illuminated via the light. Further, the pair of observation optical systems stereoscopically observes the sample illuminated by the illumination optical system.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記照
明光学系の拡散板3は、図6に示すような指向性を有し
ている為に、図7に示すように、一対の観察光学系のそ
れぞれの視野の外側が暗くなるという照明ムラが生じ
る。これは、拡散板の指向性が照明光学系の光軸方向に
強い指向性を示し、拡散する光束の偏向角が大きくなく
につれて光強度が著しく減衰することに起因する。この
照明ムラを解決するには、拡散板の拡散度を高めた、す
なわち指向性の小さな拡散板を用いれはよいが、しかし
ながら、拡散板の拡散度を高めると照明効率が著しく低
下し、観察光学系の視野が全体的に暗くなってしまう。
However, since the diffusing plate 3 of the illumination optical system has the directivity as shown in FIG. 6, as shown in FIG. Illumination unevenness occurs in which the outside of each field of view becomes dark. This is because the directivity of the diffusing plate exhibits a strong directivity in the optical axis direction of the illumination optical system, and the light intensity is significantly reduced as the deflection angle of the diffusing light beam is not large. In order to solve this uneven illumination, it is good to use a diffuser with a high diffusivity, that is, a diffuser with a small directivity. The field of view of the system becomes dark as a whole.

【0005】また、拡散板のかわりに1対のレンズを用
いて観察光学系の光軸に沿った2方向に分割することが
特開昭60−112011に開示されている。しかしな
がら、一対のレンズを用いると、集光レンズからの光束
のうちの一部の光束しか、2方向に分割することかでき
ないので、照明効率が低下してしまう。本発明の目的
は、このような問題に鑑み、照明ムラがなく、かつ、照
明効率の良い双眼実体顕微鏡の透過照明装置を提供する
ことである。
Further, it is disclosed in Japanese Patent Laid-Open No. 60-111201 that a pair of lenses is used instead of a diffusion plate to divide the observation optical system into two directions along the optical axis. However, if a pair of lenses is used, only a part of the light flux from the condenser lens can be split in two directions, and the illumination efficiency will be reduced. In view of such a problem, an object of the present invention is to provide a transillumination device for a binocular stereomicroscope having no illumination unevenness and good illumination efficiency.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明によ
る透過照明装置は、照明用光源(1)とこの光源からの
光束を略平行光束にし試料保持手段(5)によって保持
された試料を透過照明する集光レンズ(2)とを有する
照明光学系と、それぞれの光軸が対称に配置され、前記
試料を実体観察する一対の観察光学系(6,7a,7
b,8a,8b)とを具備し、前記照明光学系の光軸
(10)が前記一対の観察光学系のそれぞれの光軸(9
a,9b)の対称軸(9)と略一致している双眼実体顕
微鏡において、前記集光レンズと前記試料保持手段との
間に設けられ、前記集光レンズからの光束を前記一対の
観察光学系のそれぞれの光軸と略平行な方向に分割偏向
する単一の光束分割偏向手段(13)を有するものであ
る。
According to a first aspect of the present invention, there is provided a transmissive illumination device which comprises an illumination light source (1) and a sample held by a sample holding means (5) which makes a light beam from the light source substantially parallel. An illumination optical system having a condensing lens (2) for transmitting illumination, and a pair of observation optical systems (6, 7a, 7) in which respective optical axes are symmetrically arranged and the sample is substantially observed.
b, 8a, 8b), and the optical axis (10) of the illumination optical system is the optical axis (9) of each of the pair of observation optical systems.
a, 9b), a binocular stereomicroscope that is substantially coincident with the symmetry axis (9), is provided between the condenser lens and the sample holding means, and transmits the light flux from the condenser lens to the pair of observation optics. It has a single beam splitting and deflecting means (13) for splitting and deflecting in a direction substantially parallel to each optical axis of the system.

【0007】請求項2記載の発明による透過照明装置
は、前記光束分割偏向手段を、所定の傾角の傾斜面(1
1a,11b)によって形成された複数の平行な山形列
(11)を有する光束分割プリズム(13)とし、前記
光束分割プリズムは、前記各山形列の稜線(12)が前
記一対の観察光学系の光軸を含む面に対して垂直な方向
に延びるように配置したものである。
According to a second aspect of the present invention, there is provided a transillumination device in which the light beam splitting / deflecting means is provided with an inclined surface (1) having a predetermined inclination angle.
1a, 11b) is a beam splitting prism (13) having a plurality of parallel chevron rows (11), the ridgeline (12) of each chevron row of the pair of observing optical systems. It is arranged so as to extend in a direction perpendicular to the plane including the optical axis.

【0008】請求項3記載の発明の透過照明装置は、前
記光束分割偏向手段を前記集光レンズと前記試料保持手
段との間の設置位置から着脱可能に構成し、かつ、偏向
角の異なる複数の光束分割手段が用意されており、前記
一対の観察光学系はある倍率をもった前記対物レンズ
(6)と一対の接眼レンズ(8a,8b)とを有し、前
記対物レンズが異なった倍率の対物レンズ(8′)に交
換された時に、前記光束分割偏向手段は前記対物レンズ
の倍率に応じたもの(13′)に交換するものである。
According to a third aspect of the present invention, there is provided a transillumination device in which the light beam splitting / deflecting means is detachable from an installation position between the condenser lens and the sample holding means, and a plurality of deflection angles are different. Beam splitting means is provided, and the pair of observation optical systems have the objective lens (6) having a certain magnification and a pair of eyepieces (8a, 8b), and the objective lenses have different magnifications. When the objective lens (8 ') is replaced, the luminous flux splitting / deflecting means is replaced with an objective lens (13') corresponding to the magnification of the objective lens.

【0009】[0009]

【作用】本発明の透過照明装置では、集光レンズを経た
光源からの光束が、光束分割偏向手段によって一対の観
察光学系のそれぞれの光軸とほぼ平行な方向に分割偏向
される。したがって、この光束分割偏向手段によって分
割偏向される光束は、一対の観察光学系のそれぞれの光
軸に沿った方向に進み、同方向から試料を照明する。
In the transillumination device of the present invention, the light flux from the light source that has passed through the condenser lens is split and deflected by the light flux splitting and deflecting means in the directions substantially parallel to the respective optical axes of the pair of observation optical systems. Therefore, the light beams split and deflected by the light beam splitting and deflecting means travel in the directions along the respective optical axes of the pair of observation optical systems, and illuminate the sample from the same directions.

【0010】[0010]

【実施例】本発明の双眼実体顕微鏡の透過照明装置の実
施例について、従来例に用いた同一部材には同一番号を
付与して、詳細に説明する。図1に示すように、実施例
の透過照明装置は、照明用光源1とコレクタレンズ2と
光束分割プリズム13とコンデンサレンズ4とからな
る。また、双眼実体顕微鏡は、前記透過照明装置と、試
料Sを保持するステージ5と、一対の観察光学系とから
なる。この一対の観察光学系は、開き角αで設定された
それぞれの光軸9a,9b上に配置された共通の対物レ
ンズ6と一対のズームレンズ7a,7bと一対の接眼レ
ンズ8a,8bとからなり、光軸9aと9bとは、透過
照明装置の光軸10の延長線である対称軸9を中心とし
て対称に位置する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a transillumination device for a binocular stereomicroscope of the present invention will be described in detail by giving the same numbers to the same members used in the conventional example. As shown in FIG. 1, the transillumination device of the embodiment includes an illumination light source 1, a collector lens 2, a light beam splitting prism 13 and a condenser lens 4. Further, the binocular stereomicroscope includes the transillumination device, the stage 5 holding the sample S, and a pair of observation optical systems. This pair of observation optical systems includes a common objective lens 6 arranged on the respective optical axes 9a and 9b set at an opening angle α, a pair of zoom lenses 7a and 7b, and a pair of eyepieces 8a and 8b. Therefore, the optical axes 9a and 9b are located symmetrically with respect to the symmetry axis 9 which is an extension of the optical axis 10 of the transillumination device.

【0011】図2に示すように、前記透過照明装置の光
束分割プリズム13は、複数の山形列11が刻設された
表面と、平面に形成された裏面とを有し、複数の山形列
11は互いに同一形状であり、互いに平行に配列されて
いる。各山形列11は、一対の傾斜面11aと11bと
から構成され、これらの傾斜面11aと11bとの交線
は山形列の稜線12である。光束分割プリズム13は、
山形列11の稜線12が光軸9aと9bとを含む平面に
対して垂直となるように、透過照明装置のコレクタレン
ズレンズ2とコンデンサレンズ4との間に配置され、図
3に示すように平行光束が入射すると、射出光束は偏角
θだけ偏向される。
As shown in FIG. 2, the light beam splitting prism 13 of the transillumination device has a front surface on which a plurality of mountain-shaped rows 11 are engraved and a back surface formed on a plane, and the plurality of mountain-shaped rows 11 is formed. Have the same shape and are arranged in parallel with each other. Each chevron array 11 is composed of a pair of slanted surfaces 11a and 11b, and the line of intersection between these slanted surfaces 11a and 11b is the ridgeline 12 of the chevron array. The light beam splitting prism 13 is
It is arranged between the collector lens lens 2 and the condenser lens 4 of the transillumination device so that the ridgeline 12 of the chevron array 11 is perpendicular to the plane including the optical axes 9a and 9b, and as shown in FIG. When the parallel light flux enters, the outgoing light flux is deflected by the deflection angle θ.

【0012】つぎに、この双眼実体顕微鏡の動作を説明
する。光源1からの照明光束は、コレクタレンズ2で集
光され、略平行光束になる。光束分割プリズム13は、
前記コレクタレンズ2からの略平行光束を分割し、か
つ、一対の観察光学系のそれぞれの光軸9a,9bに略
沿った方向の光束に偏向する。このようにして分割偏向
された光束は、コンデンサレンズ4を介して試料Sを一
対の観察光学系の光軸に沿った方向から照明する。この
ようにして、透過照明装置で照明された試料の像は、そ
れぞれの光軸9a,9b上に設けられた一対の観察光学
系で実体観察する。
Next, the operation of this binocular stereomicroscope will be described. The illumination light flux from the light source 1 is condensed by the collector lens 2 and becomes a substantially parallel light flux. The light beam splitting prism 13 is
The substantially parallel light flux from the collector lens 2 is split, and is deflected to a light flux in a direction substantially along the optical axes 9a and 9b of the pair of observation optical systems. The light beam thus divided and deflected illuminates the sample S from the direction along the optical axes of the pair of observation optical systems via the condenser lens 4. In this way, the image of the sample illuminated by the transillumination device is stereoscopically observed by the pair of observation optical systems provided on the respective optical axes 9a and 9b.

【0013】光束分割プリズム13における分割偏向
は、観察光学系の光軸9aと9bとを含む平面(紙面)
及びこの紙面に平行な面内において分割偏向されるので
あって、光軸9aを含み前記紙面と直交する垂直平面
内、または光軸9bを含み前記紙面と直交する垂直平面
内においては、分割や偏向はされない。したがって、従
来のように拡散板3を用いた透過照明装置は、四方八方
に拡散し、また、一対のレンズを用いた透過照明装置は
集光レンズからの光束の一部しか分割偏向しないために
照明効率が悪いのに対して、光束分割プリズム13を用
いた実施例の透過照明装置は、集光レンズ2からの光束
のほぼ全光束を光軸9a,9bに対して略平行な方向に
のみ偏向するため、極めて照明効率が良いし、偏向され
た照明光束は略光軸9a,9bに沿った照明光束となる
ので照明ムラもない。また、双眼実体顕微鏡の全体の構
成を考えた場合に拡散板3を光束分割プリズム13を変
更するだけの簡単な構成で済むため、安価に製造でき
る。
The split deflection in the light beam splitting prism 13 is a plane (paper surface) including the optical axes 9a and 9b of the observation optical system.
And is deflected in a plane parallel to the plane of the drawing, and in the vertical plane including the optical axis 9a and orthogonal to the plane of the paper, or in the vertical plane including the optical axis 9b and orthogonal to the plane of the paper, division or There is no bias. Therefore, the conventional transillumination device using the diffusion plate 3 diffuses in all directions, and the transillumination device using a pair of lenses divides and deflects only part of the light beam from the condenser lens. While the illumination efficiency is poor, the transmissive illumination device of the embodiment using the light beam splitting prism 13 allows almost all of the light beams from the condenser lens 2 to be in a direction substantially parallel to the optical axes 9a and 9b. Since it is deflected, the illumination efficiency is extremely good, and since the deflected illumination light flux becomes the illumination light flux substantially along the optical axes 9a and 9b, there is no illumination unevenness. Further, in consideration of the overall configuration of the binocular stereomicroscope, the diffuser plate 3 can be manufactured at a low cost because it has a simple configuration in which only the light beam splitting prism 13 is changed.

【0014】尚、前述した実施例では、複数の山形列か
らなる光束分割プリズムを用いたが、それぞれの山形列
はV字形列で形成してよく、また、プリズムの表面は一
対の斜面が少なくとも一つ形成されていればよいが、一
対の斜面にすると試料上での照明面積は狭くなる。ま
た、光束分割プリズム13の各傾斜面の傾角は、プリズ
ム13の偏角θがθ=α/2となるように、光軸9aと
9bとの開き角αや材料の屈折率等を考慮して設定す
る。
In the above-mentioned embodiment, the beam splitting prism consisting of a plurality of chevron rows is used, but each chevron row may be formed in a V-shaped row, and the surface of the prism has at least a pair of slopes. It is only necessary to form one, but if a pair of slopes is used, the illumination area on the sample becomes narrow. In addition, the inclination angle of each inclined surface of the light beam splitting prism 13 is determined by considering the opening angle α between the optical axes 9a and 9b and the refractive index of the material so that the deviation angle θ of the prism 13 becomes θ = α / 2. To set.

【0015】つぎに、上記実施例において、対物レンズ
の倍率を変えることによって観察光学系の観察倍率を変
更する場合を説明する。図4に示すように、対物レンズ
6の倍率の変更は、対物レンズ6に補助レンズ6′を加
えることにより行う。ところが、この場合、観察倍率と
ともに試料Sと対物レンズ6までの距離が変わるため、
光軸9aと9bとの開き角αが観察倍率交換前と交換後
で変化する。したがって、倍率変更前の光軸9a,9b
に沿った照明光束は、倍率変更後の光軸の方向からずれ
てしまい、照明ムラが生じる。このように観察倍率を交
換することにより光軸9aと9bとの開き角αが変化す
る場合、光束分割プリズム13を倍率変更後の光軸9a
と9bとの開き角α′に応じた偏向角θ=α′/2とな
るプリズム13′に交換し、倍率変更後のそれぞれの光
軸の方向に沿った照明光束にする。具体的には、前記光
束分割プリズム13と13′とは不図示のスライダーで
連結されており、前記スライダーを矢印方向にスライド
させて交換する。この交換は、複数のプリズムをターレ
ット状の金物に収め、前記ターレットを回転させてもよ
い。また、当然のことながら、前記対物レンズ6を外
し、倍率の異なる別の対物レンズに交換することによっ
て観察倍率を変更する場合も、同様に、倍率交換後の開
き角α′に応じてプリズムを交換する。
Next, in the above embodiment, the case where the observation magnification of the observation optical system is changed by changing the magnification of the objective lens will be described. As shown in FIG. 4, the magnification of the objective lens 6 is changed by adding an auxiliary lens 6 ′ to the objective lens 6. However, in this case, since the distance between the sample S and the objective lens 6 changes with the observation magnification,
The opening angle α between the optical axes 9a and 9b changes before and after exchanging the observation magnification. Therefore, the optical axes 9a and 9b before the magnification change
The illumination light flux along the line is displaced from the direction of the optical axis after the magnification is changed, and uneven illumination occurs. If the opening angle α between the optical axes 9a and 9b changes by exchanging the observation magnification in this way, the light beam splitting prism 13 is moved to the optical axis 9a after the magnification is changed.
And 9b are replaced with prisms 13 'having a deflection angle .theta. =. Alpha.' / 2 according to the opening angle .alpha. ', And the illumination light fluxes are changed in the respective optical axis directions after the magnification is changed. Specifically, the light beam splitting prisms 13 and 13 'are connected by a slider (not shown), and the slider is replaced by sliding it in the direction of the arrow. For this exchange, a plurality of prisms may be housed in a turret-shaped metal object and the turret may be rotated. Further, as a matter of course, when the observation magnification is changed by removing the objective lens 6 and exchanging it with another objective lens having a different magnification, similarly, the prism is changed according to the opening angle α ′ after the magnification is changed. Exchange.

【0016】このようにして、予め、偏向角が異なる複
数のプリズムを交換可能にしておくことで、対物レンズ
を交換し、一対の観察光学系の開き角が変化する場合
に、照明ムラを除くことができる。
In this way, the plurality of prisms having different deflection angles can be exchanged in advance so that the objective lens is exchanged and the illumination unevenness is eliminated when the opening angle of the pair of observation optical systems changes. be able to.

【0017】[0017]

【発明の効果】以上のように本発明の双眼実体顕微鏡の
透過照明装置は、光源からの照明光束を一対の観察光学
系のそれぞれの光軸に沿った方向に分割偏向する。した
がって、拡散板を用いた従来の透過照明装置と比べる
と、無駄となる方向に拡散しないので照明効率が良く、
しかも、照明ムラのない照明を行なうことができる。
As described above, the transillumination device of the binocular stereomicroscope of the present invention divides and deflects the illumination light beam from the light source in the directions along the optical axes of the pair of observation optical systems. Therefore, compared with the conventional transillumination device using the diffusion plate, since it does not diffuse in a wasteful direction, the illumination efficiency is good,
Moreover, it is possible to perform illumination without uneven illumination.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の透過照明装置を用いた双眼
実体顕微鏡の主要構成を示す光路図である。
FIG. 1 is an optical path diagram showing a main configuration of a binocular stereomicroscope using a transillumination device according to an embodiment of the present invention.

【図2】 本発明の実施例の光束分割プリズムを示す斜
視図である。
FIG. 2 is a perspective view showing a light beam splitting prism of an embodiment of the present invention.

【図3】 本発明の光束分割プリズムの作用を示す断面
図である。
FIG. 3 is a cross-sectional view showing the operation of the light beam splitting prism of the present invention.

【図4】 本発明の実施例の透過照明装置を用いた双眼
実体顕微鏡の対物レンズ交換時の説明図である。
FIG. 4 is an explanatory diagram when the objective lens of the binocular stereomicroscope using the transillumination device of the embodiment of the present invention is exchanged.

【図5】 従来の双眼実体顕微鏡の主要構成を示す光路
図である。
FIG. 5 is an optical path diagram showing a main configuration of a conventional binocular stereomicroscope.

【図6】 従来の双眼実体顕微鏡の拡散板の指向性を示
す図である。
FIG. 6 is a diagram showing the directivity of a diffusion plate of a conventional binocular stereomicroscope.

【図7】 従来の双眼実体顕微鏡の照明ムラを示す概略
図である。
FIG. 7 is a schematic diagram showing illumination unevenness of a conventional binocular stereomicroscope.

【符号の説明】[Explanation of symbols]

1…光源 2…コレクタレンズ(集光レンズ) 5…ステージ(試料保持手段) 6、7a、7b、8a,8b…一対の観察光学系(それ
ぞれ6は対物レンズ、7a、7bはズームレンズ、8
a,8bは接眼レンズである) 9a,9b…一対の観察光学系の光軸 9…光軸9a,9bの対称軸 10…照明光学系の光軸 11…山形列 11a,11b…傾斜面 12…山形列の稜線 13、13′…光束分割プリズム(光束分割偏向手段) S…試料
DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Collector lens (condensing lens) 5 ... Stage (sample holding means) 6, 7a, 7b, 8a, 8b ... A pair of observation optical systems (6 is an objective lens, 7a, 7b is a zoom lens, 8 respectively)
a and 8b are eyepieces) 9a, 9b ... Optical axis of pair of observation optical system 9 ... Symmetrical axis of optical axes 9a and 9b 10 ... Optical axis of illumination optical system 11 ... Angle array 11a, 11b ... Inclined surface 12 ... ridge lines of chevron array 13, 13 '... light beam splitting prism (light beam splitting and deflecting means) S ... sample

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】照明用光源とこの光源からの光束を略平行
光束にし試料保持手段によって保持された試料を透過照
明する集光レンズとを有する照明光学系と、それぞれの
光軸が対称に配置され、前記試料を実体観察する一対の
観察光学系とを具備し、前記照明光学系の光軸が前記一
対の観察光学系のそれぞれの光軸の対称軸と略一致して
いる双眼実体顕微鏡において、 前記集光レンズと前記試料保持手段との間に設けられ、
前記集光レンズからの光束を前記一対の観察光学系のそ
れぞれの光軸と略平行な方向に分割偏向する単一の光束
分割偏向手段を有することを特徴とする双眼実体顕微鏡
の透過照明装置。
1. An illuminating optical system having an illuminating light source and a condenser lens for converting a light beam from the light source into a substantially parallel light beam and transmitting and illuminating a sample held by a sample holding means, and optical axes thereof are symmetrically arranged. In a binocular stereomicroscope, which comprises a pair of observation optical systems for stereoscopically observing the sample, and the optical axis of the illumination optical system is substantially coincident with the symmetry axis of each optical axis of the pair of observation optical systems. Provided between the condenser lens and the sample holding means,
A transillumination device for a binocular stereomicroscope, comprising a single light beam splitting / deflecting means for splitting and deflecting a light beam from the condenser lens in a direction substantially parallel to each optical axis of the pair of observation optical systems.
【請求項2】前記光束分割偏向手段は、所定の傾角の傾
斜面によって形成された複数の平行な山形列を有する光
束分割プリズムからなり、 前記光束分割プリズムは、前記各山形列の稜線が前記一
対の観察光学系の光軸を含む面に対して垂直な方向に延
びるように、配置されていることを特徴とする請求項1
記載の双眼実体顕微鏡の透過照明装置。
2. The light beam splitting / deflecting means comprises a light beam splitting prism having a plurality of parallel chevron rows formed by inclined surfaces having a predetermined tilt angle, and in the light flux dividing prism, the ridge line of each chevron row is The pair of observation optical systems are arranged so as to extend in a direction perpendicular to a plane including an optical axis of the pair of observation optical systems.
A transillumination device for the binocular stereomicroscope described.
【請求項3】前記光束分割偏向手段は前記集光レンズと
前記試料保持手段と間の設置位置から着脱可能に構成さ
れ、かつ、偏向角の異なる複数の光束分割手段が用意さ
れており、 前記一対の観察光学系は、ある倍率をもった対物レンズ
と一対の接眼レンズとを有し、 前記対物レンズが異なった倍率の対物レンズに交換され
た時に、前記光束分割偏向手段は前記対物レンズの倍率
に応じた偏向角を持つ光束分割プリズムに交換されるこ
とを特徴とする請求項1記載の双眼実体顕微鏡の透過照
明装置。
3. The light beam splitting / deflecting means is configured to be attachable / detachable from an installation position between the condenser lens and the sample holding means, and a plurality of light beam splitting means having different deflection angles are prepared. The pair of observation optical systems has an objective lens having a certain magnification and a pair of eyepieces, and when the objective lens is replaced with an objective lens having a different magnification, the light beam splitting / deflecting means is The transillumination device for a binocular stereomicroscope according to claim 1, wherein the transmissive illumination device is replaced with a light beam splitting prism having a deflection angle according to a magnification.
JP3197615A 1991-08-07 1991-08-07 Transmission illuminator for stereo-microscope Pending JPH0540226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197615A JPH0540226A (en) 1991-08-07 1991-08-07 Transmission illuminator for stereo-microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197615A JPH0540226A (en) 1991-08-07 1991-08-07 Transmission illuminator for stereo-microscope

Publications (1)

Publication Number Publication Date
JPH0540226A true JPH0540226A (en) 1993-02-19

Family

ID=16377422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197615A Pending JPH0540226A (en) 1991-08-07 1991-08-07 Transmission illuminator for stereo-microscope

Country Status (1)

Country Link
JP (1) JPH0540226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114377A1 (en) * 2011-09-23 2013-03-28 Carl Zeiss Microscopy Gmbh Apparatus and method for transmitted light illumination for light microscopes and microscope system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114377A1 (en) * 2011-09-23 2013-03-28 Carl Zeiss Microscopy Gmbh Apparatus and method for transmitted light illumination for light microscopes and microscope system

Similar Documents

Publication Publication Date Title
US4991947A (en) Two optomechanically coupled surgical microscopes with coaxial illumination
US4657357A (en) Illumination system for single objective lens binocular microscope
US8014065B2 (en) Microscope apparatus with fluorescence cube for total-internal-reflection fluorescence microscopy
US4640588A (en) Stereoscopic microscope including a rotatable light beam distributing means with a surface having distributing and non-distributing areas
JPH08190056A (en) Optical observation device
EP0033946A2 (en) Binocular night telescope
US4232933A (en) Optical system of colposcope
CA2140654A1 (en) Illumination system and method for a high definition light microscope
US20070146872A1 (en) Invertible light-optical microscope
US3963353A (en) Monolithic beam splitter mirror arrangement
US5521755A (en) Epi-illumination system for microscopes
US5255026A (en) Stereo eye fundus camera
US6407800B1 (en) Focus detection unit and optical measuring instrument having the same
CA1036852A (en) Comparison microscope
US7085045B2 (en) Stereoscopic microscope
JPH0540226A (en) Transmission illuminator for stereo-microscope
GB2076176A (en) Focusing Optical Apparatus
US4406526A (en) Focusing of optical viewing apparatus
US4783160A (en) Stereoscopic microscope
EP0173345B1 (en) Method and apparatus for simultaneously observing a transparent object from two directions
US4417789A (en) Observation device
JP2001121281A (en) Laser emitting optical part for laser working
JPH02188711A (en) Laser optical device
JP2000056232A (en) Microscope
US3547513A (en) Split field optical comparison system