JPH054010B2 - - Google Patents

Info

Publication number
JPH054010B2
JPH054010B2 JP19440585A JP19440585A JPH054010B2 JP H054010 B2 JPH054010 B2 JP H054010B2 JP 19440585 A JP19440585 A JP 19440585A JP 19440585 A JP19440585 A JP 19440585A JP H054010 B2 JPH054010 B2 JP H054010B2
Authority
JP
Japan
Prior art keywords
amplification
amplification degree
feedback
operational amplifier
changeover switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19440585A
Other languages
Japanese (ja)
Other versions
JPS6254130A (en
Inventor
Rie Ootsuka
Shigeru Horii
Osamu Yamada
Hideo Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19440585A priority Critical patent/JPS6254130A/en
Publication of JPS6254130A publication Critical patent/JPS6254130A/en
Publication of JPH054010B2 publication Critical patent/JPH054010B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、低電流域から高電流域までの広い範
囲にわたり、正確な測光が行なえる測光装置に関
するものである。 従来の技術 近年、測光装置においては、低電流域から高電
流域までの広い範囲にわたる検出が必要となつて
きている。一方、受光素子においても広い範囲に
わたつて直線性の存在する素子が実現されてき
た。 従来の測光装置において、低電流域から高電流
域までの広い範囲にわたり測光を行なおうとする
場合、第4図aに示すように、抵抗値の異なる帰
還抵抗19,20,21を用い、増幅度切り換え
スイツチ22を切り換えることで帰還量を変え、
演算増幅器18の増幅度を変えることで対応して
いた。また、第4図aと同じだけの増幅度が得ら
れしかも帰還抵抗の数を減少させることのできる
ものとして第4図bがある。この回路は抵抗値の
異なる帰還抵抗26,27と、演算増幅器24の
出力を分圧する分圧器25を用い、増幅度切り換
えスイツチ28,29を切り変えることで帰還量
を変え、演算増幅器24の増幅度を変えるもので
ある。 発明が解決しようとする問題点 しかしながら、このような従来の測光装置にお
いて、第4図aのように、帰還抵抗19,20,
21の抵抗値を変えることにより増幅度を変えよ
うとした場合、広い入射光領域の測光に対応させ
るためには、帰還抵抗19,20,21の抵抗値
の変化範囲を大きくする必要があり、抵抗値の最
大値が大きくなる。抵抗値が大きくなりすぎる
と、周囲のノイズを拾いやすくなつたり、漏れ電
流の影響を受けるため、正確な増幅度切り換えが
行なえなくなるため増幅度の切り換えによる測光
範囲には、おのずから限界が生じてくる。 このような問題点を改善した例として第4図b
に示すような測光回路がある。第4図bにおいて
増幅度の切り換えは以下のような方法で行なえ
る。仮に帰還抵抗26,27、分圧抵抗25a,
25bの抵抗値の比率をそれぞれ10:1、99:1
と設定したとする。この時最も低い増幅度は増幅
度切り換えスイツチ28ではb点に、増幅度切り
換えスイツチ29ではc点に接点のある状態で得
られる。次に増幅度切り換えスイツチ28をa点
に切り換えることによつて10倍の増幅度が得られ
る。さらに100倍1000倍の増幅度を得ようとした
場合、第4図aでは100倍1000倍の抵抗値を持つ
た帰還抵抗を必要としたが、第4図bでは分圧抵
抗25aと25bの抵抗値の比率が99:1である
ことから、増幅度切り換えスイツチ29の切り換
えによつて、100倍1000倍の増幅度が得られる。
よつて、第2図aのように帰還抵抗の抵抗値を大
きくすることなく増幅度の切り換えが行なえる。
しかしこの時帰還抵抗26,27の抵抗値が分圧
抵抗25bの抵抗値よりはるかに大きくなければ
分圧抵抗25bが帰還抵抗26,27に影響を及
ぼす。例えば帰還抵抗26二分圧抵抗25bであ
る場合には、演算増幅器24のフイードバツクル
ープにおける帰還量は1/2となるため、分圧抵抗
25a,25bの切り換えにより増幅度を変える
ことが正確に行なえなくなる。そこで、分圧抵抗
25bの影響を帰還抵抗26,27に与えない程
度にまで帰還抵抗26,27の抵抗値を大きくす
ると、第4図aと同じように、周囲のノイズを拾
いやすくなつたり、漏れ電流の影響を受けるた
め、正確な増幅は望めない。 本発明は上記問題点を解消するもので、低電流
域から高電流域までの広い範囲にわたり、正確な
測光が行なえるものである。 問題点を解決するための手段 本発明はこのような従来の問題点を解消するも
ので、入射光量に応じた電流を発生する光電変換
素子と、光電変換素子の光電流を増幅する演算増
幅器と、演算増幅器の出力を分圧する分圧器と、
一端を前記演算増幅器の入力に接続した複数の帰
還抵抗と、複数の帰還抵抗を切り換える切り換え
スイツチと、前記演算増幅器出力と分圧器出力と
を切り換える切り換えスイツチと、前記両切り換
えスイツチの間に設けたインピーダンス変換手段
とから構成することにより、前記帰還抵抗をノイ
ズや漏れ電流の影響を受けない抵抗値とすること
ができるとともに、低電流域から高電流域までの
広い範囲にわたり、正確な測光が行なえるもので
ある。 作 用 本発明は測光装置を上記のような構成とするこ
とにより、光電変換素子に入射し演算増幅器で増
幅された出力を分圧抵抗で制御し、インピーダン
ス変換手段を通り帰還抵抗で帰還するという増幅
手段の際に、分圧抵抗が帰還抵抗に及ぼす影響を
インピーダンス変換手段によつてなくし、低電流
域から高電流までの広い範囲にわたり、正確な測
光を行なう。 実施例 第1図に本発明の実施例における測光装置を示
す。第1図において、1は光電変換素子、2は演
算増幅器、3は分圧器、4,5は帰還抵抗、6,
7は増幅度切り換えスイツチa,b、8はインピ
ーダンス変換手段、9は増幅度切り換えスイツチ
a6,b7の制御回路、10,11は抵抗であ
る。第1図では、インピーダンス変換手段として
演算増幅器を用いた非反転増幅回路を用いた例を
示している。また、第1図は増幅度を4段階に切
り換える時の測光回路であり、入射光のレベルに
より増幅度を切り換えて行く際の増幅度切り換え
スイツチa6と増幅度切り換えスイツチb7の関
係を第2図に示す。 このような測光回路において光電変換素子1に
光が入射すると、入射した光量に応じた光電流が
発生する。発生した光電流は演算増幅器2で増幅
し、電圧値に変換する。演算増幅器2の出力は、
分圧器3で分圧抵抗3a,3bの抵抗値の比率に
応じて分圧され、インピーダンス変換手段8を通
り、帰還抵抗4,5で帰還する。このときの増幅
度は、分圧抵抗3a,3bの抵抗値の比率と、帰
還抵抗4,5で帰還する帰還量によつてきまる。
以下に増幅度の切り換え方法について詳細を説明
する。 第1図において、帰還抵抗4と5、分圧抵抗3
aと3bの抵抗値の比率を各々10:1、99:1と
設定する。また第2図および下表において、低電
流域から高電流域に変化するにつれて増幅度を下
げて行くとき、その切り換えて行くレンジを低電
流域から順に1、2、3、4と設定する。 低電流域の測光には高い増幅度が必要とされ
る。したがつて最も低いレンジ1の時は、増幅度
切り換えスイツチa6の接点をa点に、増幅度切
り換えスイツチb7の接点をd点とし、最も高い
増幅度を得る。次に電流域が高くなるにつれて増
幅度を下げることを行なうので、レンジ2の時に
は増幅度切り換えスイツチa6の接点をb点に切
り換えることにより、帰還抵抗4と5の抵抗値の
比率が10:1であることから増幅度を1/10に下げ
る。次にレンジ3の時には、増幅度切り換えスイ
ツチa6の接点をa点に、増幅度切り換えスイツ
チb7の接点をc点に切り換えることにより、分
圧抵抗3aと3bと抵抗値の比率が99:1である
ことから、増幅度は初期値の1/100に下がる。さ
らにレンジ4の時も、増幅度切り換えスイツチa
6の接点をb点に切り換えることで、増幅度を初
期値の1/1000にできる。このようにして、電流域
に応じて増幅度を変化させることで、常に一定の
出力範囲を保ちなながら測光を行う。またこのと
き、インピーダンス変換手段8が入力インピーダ
ンスが無限大とみなせるほど大きく出力インピー
ダンスが0とみなせるほど小さいため、分圧抵抗
3bの抵抗値の影響を帰還抵抗4,5に与えず、
分圧抵抗3aと3bの抵抗値の比率による分圧が
正確に行なえる。なお本発明の実施例では、イン
ピーダンス変換手段として、入力インピーダンス
が無限大とみなせるほど大きく出力インピーダン
スが0とみなせるほど小さいような演算増幅器を
使用したが、各々の抵抗値の関係が、入力インピ
ーダンスが分圧抵抗3bよりはるかに大きく、帰
還抵抗4,5が出力インピーダンスよりはるかに
大きくなるものであれば、本発明の実施例のよう
な演算増幅器を使用せず、他のものに置き換える
ことも可能である。
INDUSTRIAL APPLICATION FIELD The present invention relates to a photometry device that can perform accurate photometry over a wide range from low current range to high current range. 2. Description of the Related Art In recent years, it has become necessary for photometric devices to detect over a wide range from low current ranges to high current ranges. On the other hand, light-receiving elements have also been realized that exhibit linearity over a wide range. In a conventional photometry device, when performing photometry over a wide range from a low current range to a high current range, feedback resistors 19, 20, and 21 with different resistance values are used as shown in Figure 4a. By changing the degree changeover switch 22, the amount of feedback is changed,
This was handled by changing the amplification degree of the operational amplifier 18. Further, as shown in FIG. 4(b), the same level of amplification as that in FIG. 4(a) can be obtained and the number of feedback resistors can be reduced. This circuit uses feedback resistors 26 and 27 with different resistance values and a voltage divider 25 that divides the output of the operational amplifier 24, and changes the amount of feedback by changing the amplification changeover switches 28 and 29. It changes the degree. Problems to be Solved by the Invention However, in such a conventional photometric device, as shown in FIG. 4a, the feedback resistors 19, 20,
When attempting to change the degree of amplification by changing the resistance value of feedback resistors 19, 20, and 21, it is necessary to widen the range of change in the resistance values of feedback resistors 19, 20, and 21 in order to accommodate photometry of a wide incident light area. The maximum resistance value increases. If the resistance value becomes too large, it will easily pick up surrounding noise and will be affected by leakage current, making it impossible to accurately switch the amplification level, which will naturally limit the photometry range by switching the amplification level. . Figure 4b shows an example of improving such problems.
There is a photometric circuit shown in the figure below. In FIG. 4b, the amplification degree can be switched in the following manner. Suppose that the feedback resistors 26, 27, the voltage dividing resistor 25a,
The resistance value ratio of 25b is 10:1 and 99:1, respectively.
Suppose we set At this time, the lowest amplification degree is obtained with the amplification degree changeover switch 28 at point b and the amplification degree changeover switch 29 at point c. Next, by switching the amplification degree changeover switch 28 to point a, an amplification degree of 10 times can be obtained. Furthermore, when trying to obtain an amplification degree of 100 times 1000 times, a feedback resistor with a resistance value of 100 times 1000 times is required in Figure 4a, but in Figure 4b, a feedback resistor with a resistance value of 100 times 1000 times is required. Since the ratio of the resistance values is 99:1, by switching the amplification degree changeover switch 29, an amplification degree of 100 times 1000 times can be obtained.
Therefore, the amplification degree can be changed without increasing the resistance value of the feedback resistor as shown in FIG. 2a.
However, at this time, unless the resistance values of the feedback resistors 26 and 27 are much larger than the resistance value of the voltage dividing resistor 25b, the voltage dividing resistor 25b will affect the feedback resistors 26 and 27. For example, in the case of the feedback resistor 26 and the voltage dividing resistor 25b, the amount of feedback in the feedback loop of the operational amplifier 24 is 1/2, so it is possible to accurately change the amplification degree by switching the voltage dividing resistors 25a and 25b. I can't do it anymore. Therefore, if the resistance values of the feedback resistors 26 and 27 are increased to such an extent that the influence of the voltage dividing resistor 25b is not exerted on the feedback resistors 26 and 27, it becomes easier to pick up surrounding noise, as shown in Fig. 4a. Accurate amplification cannot be expected because it is affected by leakage current. The present invention solves the above problems and enables accurate photometry over a wide range from low current ranges to high current ranges. Means for Solving the Problems The present invention solves these conventional problems, and includes a photoelectric conversion element that generates a current according to the amount of incident light, an operational amplifier that amplifies the photocurrent of the photoelectric conversion element, and an operational amplifier that amplifies the photocurrent of the photoelectric conversion element. , a voltage divider that divides the output of the operational amplifier;
a plurality of feedback resistors having one end connected to the input of the operational amplifier, a changeover switch for switching the plurality of feedback resistances, a changeover switch for switching between the operational amplifier output and the voltage divider output, and a switch provided between the two changeover switches. By configuring the feedback resistor with impedance conversion means, it is possible to set the feedback resistor to a resistance value that is not affected by noise or leakage current, and to perform accurate photometry over a wide range from low current range to high current range. It is something that Effect The present invention has a photometric device configured as described above, so that the output that is incident on the photoelectric conversion element and amplified by the operational amplifier is controlled by a voltage dividing resistor, and is fed back through the impedance conversion means and the feedback resistor. In the case of the amplification means, the influence of the voltage dividing resistor on the feedback resistance is eliminated by the impedance conversion means, and accurate photometry is performed over a wide range from low current to high current. Embodiment FIG. 1 shows a photometric device in an embodiment of the present invention. In FIG. 1, 1 is a photoelectric conversion element, 2 is an operational amplifier, 3 is a voltage divider, 4 and 5 are feedback resistors, 6,
Reference numeral 7 denotes amplification changeover switches a and b, 8 an impedance conversion means, 9 a control circuit for the amplification changeover switches a6 and b7, and 10 and 11 resistors. FIG. 1 shows an example in which a non-inverting amplifier circuit using an operational amplifier is used as the impedance conversion means. Also, Figure 1 shows the photometry circuit when switching the amplification degree in four stages, and Figure 2 shows the relationship between the amplification degree changeover switch a6 and the amplification degree changeover switch b7 when changing the amplification degree depending on the level of incident light. Shown below. When light is incident on the photoelectric conversion element 1 in such a photometric circuit, a photocurrent is generated depending on the amount of incident light. The generated photocurrent is amplified by an operational amplifier 2 and converted into a voltage value. The output of operational amplifier 2 is
The voltage is divided by the voltage divider 3 according to the ratio of the resistance values of the voltage dividing resistors 3a and 3b, passes through the impedance converting means 8, and is fed back by the feedback resistors 4 and 5. The degree of amplification at this time is determined by the ratio of the resistance values of the voltage dividing resistors 3a and 3b and the amount of feedback fed back by the feedback resistors 4 and 5.
The method for switching the amplification degree will be described in detail below. In Figure 1, feedback resistors 4 and 5, voltage dividing resistor 3
The ratio of the resistance values of a and 3b is set to 10:1 and 99:1, respectively. Further, in FIG. 2 and the table below, when the amplification degree is lowered as the current range changes from the low current range to the high current range, the ranges to be switched are set as 1, 2, 3, and 4 in order from the low current range. High amplification is required for photometry in the low current range. Therefore, in the lowest range 1, the contact point of the amplification degree changeover switch a6 is set to the point a, and the contact point of the amplification degree changeover switch b7 is set to the point d, thereby obtaining the highest amplification degree. Next, as the current range increases, the amplification degree is lowered, so when in range 2, by switching the contact point of amplification changeover switch a6 to point b, the ratio of the resistance values of feedback resistors 4 and 5 is set to 10:1. Therefore, the amplification degree is lowered to 1/10. Next, when in range 3, the ratio of the resistance values of the voltage dividing resistors 3a and 3b is set to 99:1 by switching the contact of the amplification changeover switch a6 to point a and the contact of the amplification changeover switch b7 to point c. For some reason, the amplification level drops to 1/100 of its initial value. Furthermore, when in range 4, the amplification changeover switch a
By switching contact point 6 to point b, the amplification degree can be reduced to 1/1000 of the initial value. In this way, by changing the amplification degree according to the current range, photometry is performed while always maintaining a constant output range. Also, at this time, since the input impedance of the impedance conversion means 8 is so large that it can be considered infinite and the output impedance is so small that it can be considered 0, the resistance value of the voltage dividing resistor 3b does not affect the feedback resistors 4 and 5.
It is possible to accurately divide the voltage based on the ratio of the resistance values of the voltage dividing resistors 3a and 3b. In the embodiment of the present invention, an operational amplifier whose input impedance is so large that it can be regarded as infinite and whose output impedance is so small that it can be regarded as 0 is used as the impedance conversion means. As long as it is much larger than the voltage dividing resistor 3b and the feedback resistors 4 and 5 are much larger than the output impedance, it is possible to replace it with another one without using the operational amplifier as in the embodiment of the present invention. It is.

【表】 次に、増幅度切り換えスイツチa6およびb7
の動作を制御する制御回路9の一例について第3
図を用いて説明する。第3図において12,13
はボルテージコンパレータ、14はアツプダウン
カウンタ、15,16はリレーである。ボルテー
ジコンパレータ12は増幅度を減少させるレベル
を検出する役目を持ち、アツプダウンカウンタ1
4のカウントアップ端子(CU)に接続されてい
る。一方ボルテージコンパレータ13は増幅度を
増加させるレベルを検出する役目を持ち、アツプ
ダウンカウンタ14のカウントダウン端子(CD)
に接続されている。アツプダウンカウンタ14は
コード化された増幅度信号を発生させる役目を持
つ。この増幅度信号によつてリレー15,16を
動作させ増幅度切り換えスイツチa6およびb7
の切り換えを行ない増幅度を変化させる。次に、
光電流が変化した時の動作を第1図、第2図、第
3図を用いて説明する。 第1図において、光電変換素子1の光電流が増
加すると、演算増幅器2の出力電圧が増加する。
これが一定値に達すると増幅度を下げるためボル
テージコンパレータ12が動作し、アツプダウン
カウンタ14のカウントを1つアツプさせる。ア
ツプダウンカウンタ14の出力を初期設定で、コ
ード化増幅度信号A=0、B=0とし、この状態
を増幅度切り換えスイツチa6の接点がa点に増
幅度切り換えスイツチb7の接定がd点にある状
態に決めておく。ボルテージコンパレータ12か
らのカウント入力がアツプダウンカウンタ14に
入るとコード化増幅度信号A=1、B=0と変化
する。A=1と変化したことによつて、リレー1
5が動作し、増幅度切り換えスイツチa6の接点
をb点に切り換える。この動作により帰還抵抗4
と5の抵抗値の関係から増幅度は1/10となる。 さらに光電流が増加してゆくと、ボルテージコ
ンパレータ12が同様に動作し、アツプダウンカ
ウンタ14を1つカウントアツプさせ、コード化
増幅度信号A=0、B=1が得られる。この信号
に対応し、リレー15,16が動作し、増幅度切
り換えスイツチa6の接点はa点に、増幅度切り
換えスイツチb7の接点はc点になり、初期の増
幅度の1/100となる。さらに光電流が増加すると
同様な動作から増幅度切り換えスイツチa6の接
点はb点に、増幅度切り換えスイツチb7の接点
はc点になり、初期の増幅度の1/1000となる。
(増幅度切り換えスイツチa6とb7の関係を第
2図に示す) このようにして、光電流のレベルに応じて増幅
度を変えることができる。また本実施例では増幅
度が4段階の場合について説明したが、測光範囲
が広くなり増幅度の切り換えを増やす必要が生じ
た場合には、演算増幅器2の帰還抵抗を増加し、
分圧抵抗3aと3bの比率を換え増幅度切り換え
スイツチa6を増設し、アツプダウンカウンタ1
4のコード化増幅度信号のビツト数を増加すれば
よい。 なおこの実施例ではインピーダンス変換手段8
として用いた演算増幅器の非反転回路において、
抵抗10,11を設けているが、この抵抗値を変
えることによつて、演算増幅器の増幅度を変える
ことができることから、測光回路の増幅出力に補
正係数をかけることができ、光電変換素子1の汚
れや劣化による測定誤差を補償できる。 発明の効果 以上のように、本発明は帰還抵抗の数を増やし
たり、抵抗値をあげるなど測定誤差の要因となる
ことを行なわずに、低電流域から高電流域までの
広に範囲にわたつて、増幅度を切り換えながら正
確な測光が行なえるものである。
[Table] Next, select the amplification degree changeover switches a6 and b7.
The third example of the control circuit 9 that controls the operation of the
This will be explained using figures. 12, 13 in Figure 3
is a voltage comparator, 14 is an up/down counter, and 15 and 16 are relays. The voltage comparator 12 has the role of detecting the level at which the amplification degree is decreased, and the up-down counter 1
It is connected to the count up terminal (CU) of 4. On the other hand, the voltage comparator 13 has the role of detecting the level that increases the amplification degree, and the countdown terminal (CD) of the up-down counter 14
It is connected to the. The up-down counter 14 serves to generate a coded amplification signal. This amplification degree signal operates relays 15 and 16, and amplification changeover switches a6 and b7 are operated.
The degree of amplification is changed by switching. next,
The operation when the photocurrent changes will be explained using FIGS. 1, 2, and 3. In FIG. 1, when the photocurrent of the photoelectric conversion element 1 increases, the output voltage of the operational amplifier 2 increases.
When this reaches a certain value, the voltage comparator 12 operates to lower the amplification degree, and the up-down counter 14 increments the count by one. By default, the output of the up-down counter 14 is set to the coded amplification signal A=0, B=0, and in this state, the contact of the amplification changeover switch a6 is at point a and the contact of amplification changeover switch b7 is at point d. Set the state to be . When the count input from the voltage comparator 12 enters the up-down counter 14, the coded amplification signal changes to A=1 and B=0. By changing A=1, relay 1
5 operates and switches the contact point of the amplification degree changeover switch a6 to point b. This operation causes feedback resistance 4
From the relationship between the resistance values of and 5, the amplification degree is 1/10. When the photocurrent further increases, the voltage comparator 12 operates in the same manner, causing the up-down counter 14 to count up by one, and coded amplification signals A=0 and B=1 are obtained. In response to this signal, relays 15 and 16 operate, and the contact point of the amplification degree changeover switch a6 becomes the point a, and the contact point of the amplification degree changeover switch b7 becomes the point c, and the amplification degree becomes 1/100 of the initial amplification degree. When the photocurrent further increases, the contact point of the amplification degree changeover switch a6 becomes the point b and the contact point of the amplification degree changeover switch b7 becomes the point c due to the same operation, and the amplification degree becomes 1/1000 of the initial amplification degree.
(The relationship between the amplification degree changeover switches a6 and b7 is shown in FIG. 2) In this way, the amplification degree can be changed depending on the level of the photocurrent. Furthermore, in this embodiment, the case where the amplification degree is four stages has been explained, but if the photometry range becomes wider and it becomes necessary to increase the number of amplification changes, the feedback resistance of the operational amplifier 2 can be increased.
By changing the ratio of the voltage dividing resistors 3a and 3b and adding an amplification switching switch a6, the up-down counter 1
The number of bits of the coded amplification signal of 4 may be increased. In this embodiment, the impedance conversion means 8
In the non-inverting circuit of the operational amplifier used as
Resistors 10 and 11 are provided, and by changing the resistance value, the amplification degree of the operational amplifier can be changed, so a correction coefficient can be applied to the amplified output of the photometric circuit, and the photoelectric conversion element 1 Measurement errors due to dirt or deterioration can be compensated for. Effects of the Invention As described above, the present invention can be applied over a wide range from low current range to high current range without increasing the number of feedback resistors or increasing the resistance value, which may cause measurement errors. Therefore, accurate photometry can be performed while switching the amplification degree.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における測光装置の回
路図、第2図は同装置の測定範囲による増幅度切
り換えと、増幅度切り換えスイツチの状態を示し
た図、第3図は同装置の増幅度切り換えスイツチ
の制御回路を示したブロツク図、第4図a,bは
従来の測光装置の回路図である。 1……光電変換素子、2……演算増幅器、3…
…分圧器、4……帰還抵抗、5……帰還抵抗、6
……増幅度切り換えスイツチa、7……増幅度切
り換えスイツチb、8……インピーダンス変換手
段、9……制御回路、10……抵抗、11……抵
抗。
Fig. 1 is a circuit diagram of a photometric device according to an embodiment of the present invention, Fig. 2 is a diagram showing amplification switching according to the measurement range of the device and the state of the amplification switching switch, and Fig. 3 is a diagram showing the amplification of the device. FIGS. 4a and 4b are block diagrams showing a control circuit for a degree changeover switch, and FIGS. 4a and 4b are circuit diagrams of a conventional photometric device. 1...Photoelectric conversion element, 2...Operation amplifier, 3...
...Voltage divider, 4...Feedback resistor, 5...Feedback resistor, 6
...Amplification degree changeover switch a, 7...Amplification degree changeover switch b, 8...Impedance conversion means, 9...Control circuit, 10...Resistor, 11...Resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 入射光量に応じた電流を発生する光電変換素
子と、光電変換素子の光電流を増幅する演算増幅
器と、演算増幅器の出力を分圧する分圧器と、一
端を前記演算増幅器の入力に接続した複数の帰還
抵抗と、これらの複数の帰還抵抗を切り換える切
り換えスイツチと、前記演算増幅器出力と分圧器
出力とを切り換える切り換えスイツチと、前記両
切り換えスイツチの間に設けたインピーダンス変
換手段とからなる測光装置。
1. A photoelectric conversion element that generates a current according to the amount of incident light, an operational amplifier that amplifies the photocurrent of the photoelectric conversion element, a voltage divider that divides the output of the operational amplifier, and a plurality of devices having one end connected to the input of the operational amplifier. A photometric device comprising: a feedback resistor; a switch for switching between the plurality of feedback resistors; a switch for switching between the operational amplifier output and the voltage divider output; and impedance conversion means provided between the switch.
JP19440585A 1985-09-03 1985-09-03 Photometric device Granted JPS6254130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19440585A JPS6254130A (en) 1985-09-03 1985-09-03 Photometric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19440585A JPS6254130A (en) 1985-09-03 1985-09-03 Photometric device

Publications (2)

Publication Number Publication Date
JPS6254130A JPS6254130A (en) 1987-03-09
JPH054010B2 true JPH054010B2 (en) 1993-01-19

Family

ID=16324054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19440585A Granted JPS6254130A (en) 1985-09-03 1985-09-03 Photometric device

Country Status (1)

Country Link
JP (1) JPS6254130A (en)

Also Published As

Publication number Publication date
JPS6254130A (en) 1987-03-09

Similar Documents

Publication Publication Date Title
US5198660A (en) Optical sensing circuit including an integral capacity
EP0340443A2 (en) Light signal reception circuit for photoelectric switch
JPS5911215B2 (en) optical receiver circuit
US4639134A (en) Process and circuit arrangement for amplifying an input current
JPH054010B2 (en)
JPH0553371B2 (en)
US4302668A (en) Variably biased photoelectric circuit
JP2928616B2 (en) Photodetector
JP7403488B2 (en) Current signal processing device
JPH0663738B2 (en) Photoelectric positioning tap circuit structure
US4529928A (en) Automatic control circuit for a current translating device
JP2674468B2 (en) Distance detection device
JPH07114330B2 (en) Light receiving circuit range switching circuit
JPS6227688A (en) Photoelectric switch for setting distance
JP2002168781A (en) Gloss sensor
JP2544913Y2 (en) Photoelectric switch
KR950009826Y1 (en) Signal proceseur apparatus
JPH0528827Y2 (en)
JP2526474B2 (en) Automatic gain control circuit
JPH055465Y2 (en)
JP2848495B2 (en) Optical receiver
JP2001211125A (en) Detector circuit
JPH04326806A (en) Programmable-gain amplifier
SU1385258A1 (en) Amplifying device
JPH0619048Y2 (en) Data recording device