JPH0539660Y2 - - Google Patents
Info
- Publication number
- JPH0539660Y2 JPH0539660Y2 JP9747889U JP9747889U JPH0539660Y2 JP H0539660 Y2 JPH0539660 Y2 JP H0539660Y2 JP 9747889 U JP9747889 U JP 9747889U JP 9747889 U JP9747889 U JP 9747889U JP H0539660 Y2 JPH0539660 Y2 JP H0539660Y2
- Authority
- JP
- Japan
- Prior art keywords
- transfer plate
- heat transfer
- plate body
- heat
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012546 transfer Methods 0.000 claims description 48
- 239000012530 fluid Substances 0.000 claims description 25
- 238000001816 cooling Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
本考案は、たとえば各種電子機器、装置等にお
いて発熱部を有してなる筺体内温度を冷却するた
めに用いて好適な熱交換器の改良に関する。[Detailed description of the invention] [Industrial application field] The present invention is an improvement of a heat exchanger suitable for use in cooling the temperature inside a housing having a heat generating part in various electronic devices, devices, etc. Regarding.
多数の電子部品等を実装したプリント基板群や
電源等を内蔵してなる各種の電子機器、装置にあ
つては、通電による内部発熱量が大きく、筺体内
温度の上昇による電子部品等に対する熱影響を防
止すべく、何らかの冷却手段を付設することが必
要とされる。このような冷却手段としては、フア
ン等により筺体内に外気を強制的に供給し、さら
に内部を循環させて排出する強制空冷式のものが
最も一般的であるが、このような方法では筺体内
への塵埃等の侵入をフイルタ等で防止することが
必要であり、しかもこのフイルタの目詰りによる
保守、点検作業を頻繁に行なわねばならないとい
う問題を生じる。また、このようなフイルタでは
濾過性能の面で確実性に欠けるばかりでなく、湿
気等に対しては全く無防備であるといつた欠点も
ある。特に、この種の電子機器、装置にあつて
は、内部電子部品等の性能を維持するために、筺
体内への塵埃や湿気等の侵入を可能な限り防止し
なければならない。
In the case of various electronic devices and devices that are made up of printed circuit boards with a large number of electronic components mounted on them, power supplies, etc., the amount of internal heat generated by energization is large, and the rise in temperature inside the housing may have a thermal effect on the electronic components. In order to prevent this, it is necessary to provide some kind of cooling means. The most common type of cooling method is a forced air cooling system, which uses a fan or the like to forcefully supply outside air into the housing, and then circulates the air inside the housing before exhausting it. It is necessary to use a filter or the like to prevent the entry of dust and the like, and furthermore, this creates a problem in that maintenance and inspection work must be performed frequently due to clogging of the filter. Moreover, such a filter not only lacks reliability in terms of filtration performance, but also has the disadvantage that it is completely defenseless against moisture and the like. In particular, for this type of electronic equipment and devices, in order to maintain the performance of internal electronic components, etc., it is necessary to prevent dust, moisture, etc. from entering the housing as much as possible.
このため、この種の電子機器、装置において、
筺体内空気と外気とを流通させる通路溝を交互に
形成しこれら通路溝間で熱交換を行なう熱交換器
用エレメントを内設し、これにより筺体内を冷却
する放熱用の熱交換器ユニツトを、筺体の一部
(たとえば側壁部や天井部等)に付設し、かつ各
通路溝間を仕切り、それぞれを筺体内と筺体外と
に連通させることで筺体内への塵埃、湿気等の侵
入を防止するようにしたものが、従来から多数提
案されている。このような従来の熱交換器として
最も一般には、溝幅が薄く溝深さが深くなるよう
に断面略コ字状を呈するように板材を順次折曲げ
形成することで、内、外面路溝を交互に形成して
なる構造によるものが知られているが、加工が面
倒かつ煩雑となるばかりでなく、各通路溝の入口
および出口部分で乱気流が生じ易く、空気流の流
入、流出が妨げられて流通量が小さくなり、熱交
換効率が低下するといつた欠点があつた。これ
は、各通路溝の入口、出口において、通路溝の流
通方向に各流体を送り込む際に、この送り込み方
向に直交して隣接する部分に他方の溝を形成する
壁部が存在し、これに空気流が衝突して乱流とな
るためであつた。さらに、上述した従来構造で
は、各通路溝の入口、出口の位置関係から溝幅の
狭い各溝内での空気流を大きく屈曲させて流すこ
とが必要で、円滑な流れを得ることが難しく、ま
た各溝内でも空気溜りや乱流を生じ易く、熱交換
効率が低下してしまうものであつた。 For this reason, in this type of electronic equipment and devices,
A heat exchanger unit for heat dissipation that cools the inside of the housing by installing a heat exchanger element that alternately forms passage grooves for circulating air inside the housing and outside air and exchanging heat between these passage grooves, thereby cooling the inside of the housing. It is attached to a part of the housing (for example, the side wall or ceiling), partitions each passage groove, and communicates between the inside of the housing and the outside of the housing, thereby preventing dust, moisture, etc. from entering the housing. Many methods have been proposed to date. Most commonly, such conventional heat exchangers are formed by sequentially bending plates so that the groove width is thin and the groove depth is deep, so that the cross section is approximately U-shaped. A structure in which the grooves are formed alternately is known, but it is not only difficult and complicated to process, but also tends to cause turbulence at the inlet and outlet portions of each passage groove, impeding the inflow and outflow of airflow. The drawback was that the flow rate became smaller and the heat exchange efficiency decreased. This is because when feeding each fluid in the flow direction of the passage groove at the inlet and outlet of each passage groove, there is a wall part forming the other groove in the adjacent part perpendicular to this feeding direction, and this This was due to airflow colliding and creating turbulence. Furthermore, in the conventional structure described above, it is necessary to bend the air flow in each narrow groove due to the positional relationship between the inlet and outlet of each passage groove, making it difficult to obtain a smooth flow. Furthermore, air pockets and turbulence are likely to occur within each groove, resulting in a decrease in heat exchange efficiency.
このため、本出願人はたとえば実開昭60−
71875号公報等により、両端部側縁部分を互いに
相反する方向に折曲げ形成するとともに、これら
両端部側縁部分に近接する側部側縁部分の一部を
それぞれ近接する端部側縁部分の折曲げ方向と反
対側に折曲げ形成してなる長方形状を呈する複数
枚の平板状プレート片を、交互に逆向きに組合わ
せその組合わせ方向に折曲げられた側縁部分の先
端部同士が互いに接合されるようにして所定間隔
をおいて積層することで、異なる流体が流れる通
路溝を交互に形成するようにしてなるエレメント
を有する熱交換器ユニツトを先に提案している。
このような構造によれば、各部の加工、組立てが
容易に行なえるとともに、各通路溝の入口、出口
における開口面積を、他方の通路溝を形成するプ
レート片の側縁部分同士を接合して閉塞すること
で、溝幅よりも拡がるように形成することが可能
で、各通路溝内への空気の流入、流出を円滑に行
なえ、熱交換効率を向上させ得るものであつた。 For this reason, the present applicant, for example,
According to Publication No. 71875, the side edge portions of both ends are bent in opposite directions, and a portion of the side edge portions of the side portions adjacent to the side edge portions of both ends are bent. A plurality of rectangular flat plate pieces formed by bending in the opposite direction to the bending direction are alternately combined in opposite directions, and the tips of the side edge portions bent in the combined direction are aligned. A heat exchanger unit has previously been proposed that has elements that are joined to each other and stacked at predetermined intervals to alternately form passage grooves through which different fluids flow.
According to such a structure, each part can be easily processed and assembled, and the opening area at the entrance and exit of each passage groove can be reduced by joining the side edge parts of the plate pieces forming the other passage groove. By closing, it was possible to form the grooves so that they were wider than the width of the grooves, allowing air to flow smoothly into and out of each passage groove, thereby improving heat exchange efficiency.
しかしながら、このような従来の熱交換器ユニ
ツトによれば、二種類の通路溝の入口と出口との
位置関係によつてエレメント内で空気流が屈曲し
て流れることを避けられず、その結果通路溝内に
空気溜りが生じたり、乱流が発生してしまうもの
で、熱交換効率の面で問題を生じ、またこのよう
なエレメントやこれを内設するユニツトケーシン
グ、さらにエレメントに対する空気の流入、流出
構造等によつて、熱交換器全体が大型化し易いと
いう問題を生じるものであつた。すなわち、この
種の熱交換器ユニツトにおいてエレメントによる
熱交換効率は伝熱面積と風速との積に比例する
が、従来構造において全体の小型かつコンパクト
化を図るとともに、伝熱面積を大きくするために
は、内、外通路溝の溝幅を狭くして全体の溝数を
多くすると同時に通路長さも大きく採る必要があ
り、その結果エレメントの厚みや長さを大きくし
なければならず、そのユニツトケーシングも大型
化するものであつた。
However, according to such a conventional heat exchanger unit, it is unavoidable that the air flow bends inside the element due to the positional relationship between the inlet and outlet of the two types of passage grooves, and as a result, the passage This causes air pockets or turbulence in the grooves, causing problems in terms of heat exchange efficiency. Due to the outflow structure, etc., the overall size of the heat exchanger tends to increase, which is a problem. In other words, in this type of heat exchanger unit, the heat exchange efficiency by the element is proportional to the product of the heat transfer area and the wind speed. In this case, it is necessary to narrow the width of the inner and outer passage grooves to increase the total number of grooves and at the same time increase the passage length.As a result, the thickness and length of the element must be increased, and the unit casing It was also expected to become larger.
そして、その一方において、上述したエレメン
トを備えてなる熱交換器ユニツトは、通常、機器
筺体内の側壁や天井部等に付設されることが多い
ため、内部スペースを確保したり、筺体全体の大
型化を防ぐうえで全体の小型かつコンパクト化、
特に厚み、長さ方向の小型化が求められており、
このような要請を満足し得る何らかの対策を講じ
ることが必要とされている。 On the other hand, the heat exchanger unit equipped with the above-mentioned elements is usually attached to the side wall or ceiling of the equipment housing, so it is necessary to secure internal space or increase the overall size of the housing. In order to prevent
In particular, there is a demand for miniaturization in the thickness and length directions.
It is necessary to take some measures that can satisfy such demands.
このような要請に応えるために本考案に係る熱
交換器は、発熱部を内蔵した機器筺体の天井部に
付設され筺体内空気を外気との熱交換により冷却
するために、頂部とこの頂部から一側に傾斜され
た斜面部とによつて内側にくぼみ空間を形成する
伝熱プレート体と、この伝熱プレート体の少なく
とも外側面に所定間隔をおいて対向して配置され
流体通路を形成するとともに伝熱プレート体頂部
に対向する部分に外気送り込み用開口が形成され
ている外側カバー体と、この外側カバー体の前記
開口から外気を通路内に送り込むように付設され
た外気送り込み用フアンを備えてなり、このフア
ンにより伝熱プレート体頂部側に送り込まれる外
気は、通路内で伝熱プレート体の斜面に沿つて流
すことで、伝熱プレート体の内側面に沿つて流れ
る筺体内空気との熱交換を行なわせるようにした
ものである。
In order to meet such demands, the heat exchanger according to the present invention is attached to the ceiling of a device housing containing a heat generating part, and is designed to cool the air inside the housing by heat exchange with outside air. a heat transfer plate body forming a recessed space inside by a slope portion inclined on one side; and a heat transfer plate body disposed facing at least an outer surface of the heat transfer plate body at a predetermined interval to form a fluid passage. The heat transfer plate also includes an outer cover body in which an opening for feeding outside air is formed in a portion facing the top of the heat transfer plate body, and an outside air feeding fan attached to send outside air into the passage from the opening of the outer cover body. The outside air sent to the top side of the heat transfer plate body by this fan is caused to flow along the slope of the heat transfer plate body in the passage, and is thereby combined with the air inside the housing flowing along the inner surface of the heat transfer plate body. It is designed to perform heat exchange.
本考案によれば、伝熱プレート体の内、外面側
で筺体内空気、外気を、それぞれ湾曲面等による
斜面に沿つて中央部から周縁部にかけて流すこと
で、それぞれの流れを伝熱プレート体の面に沿つ
て適切かつ円滑な流れとし、これにより伝熱プレ
ート体の内、外面側への各流体接触面積を大きく
でき、熱交換効率を向上させ得るものである。
According to the present invention, the air inside the housing and the outside air are made to flow from the center to the periphery along the slopes formed by curved surfaces etc. on the inner and outer sides of the heat transfer plate body. The fluid flows appropriately and smoothly along the surface of the heat transfer plate body, thereby increasing the contact area of each fluid to the inner and outer surfaces of the heat transfer plate body and improving heat exchange efficiency.
以下、本考案を図面に示した実施例を用いて詳
細に説明する。
Hereinafter, the present invention will be explained in detail using embodiments shown in the drawings.
第1図は本考案に係る熱交換器の一実施例を示
すものであり、同図において全体を符号10で示
す熱交換器は、たとえば高温、高熱等を発し筺体
内温度を上昇させる電子機器等の発熱部2を内設
してなる各種電子機器、装置等の筺体1におい
て、その天井部1aの熱交換器取付用開口1bを
覆うようにして付設されて筺体内空気aを外気b
にて冷却する放熱冷却用として用いた場合を説明
する。なお、筺体内空気aおよび外気bの流れ
を、図中矢印により示している。 FIG. 1 shows an embodiment of the heat exchanger according to the present invention. In the figure, the heat exchanger, which is designated as a whole by the reference numeral 10, is an electronic device that generates high temperature, high heat, etc., and increases the temperature inside the housing. In the case 1 of various electronic devices, devices, etc., which has a heat generating part 2 installed therein, the case 1 is attached so as to cover the heat exchanger mounting opening 1b in the ceiling part 1a, and converts the air inside the case a into the outside air b.
The case where it is used for heat dissipation cooling will be explained. Note that the flow of the air inside the housing a and the outside air b is indicated by arrows in the figure.
まず、全体を符号10で示す熱交換器において
その熱交換器用エレメント11の概略構成を、第
1図、第2図aおよび第3図a,bを用いて説明
すると、この熱交換器用エレメント11は、全体
が半球面状等による略お腕形状を呈する膨出部分
をもつように薄板材から形成された伝熱プレート
体12を備えており、その内、外面は球面(また
は湾曲面)により形成された熱交換部12aとそ
の裾野部分に形成され前記筺体1側などに固定さ
れる取付け用フランジ12bとから構成されてい
る。なお、このようなエレメント11としての伝
熱プレート体12形状としては、たとえば第2図
bまたはcに示すように、頂部とその周囲から傾
斜された斜面部とからなる略円錐台状、角錐台状
を呈するものであつてもよいことは勿論である。 First, the schematic structure of the heat exchanger element 11 of the heat exchanger generally designated by the reference numeral 10 will be explained using FIGS. 1, 2a, and 3a and 3b. is equipped with a heat transfer plate body 12 formed from a thin plate material so as to have a generally arm-shaped bulge portion having a hemispherical surface or the like as a whole, and the inner and outer surfaces of the heat transfer plate body 12 are formed by a spherical (or curved) surface. It is composed of a heat exchange section 12a formed therein and an attachment flange 12b formed at the base of the heat exchange section 12a and fixed to the housing 1 side or the like. Note that the shape of the heat transfer plate body 12 as the element 11 is, for example, a truncated cone shape or a truncated pyramid shape consisting of a top part and a slope part inclined from the periphery, as shown in FIG. 2b or c. Of course, it may also be one that exhibits a shape.
そして、このようなエンレンメント11を構成
する伝熱プレート体12によれば、第3図a,b
に示すように、その内、外面において中央部に二
種類の異なる流体(筺体内空気または外気)を導
きかつそれぞれの湾曲面(斜面部)上に沿つて中
央部から周縁部にかけて流すことで、それぞれの
流れを、乱流等の生じることのない伝熱プレート
体12の面に沿つた適切かつ円滑な流れとするこ
とができ、これにより伝熱プレート体12の内、
外面側への各流体の接触面積を大きくでき、熱交
換効率を向上させ得るものである。なお、第3図
a,b中符号13,14は伝熱プレート体12に
おける湾曲面頂部に向つて流体をそれぞれ送り込
む流体送り込み用フアンである。 According to the heat transfer plate body 12 constituting such an entrainment 11, FIGS.
As shown in Figure 2, by introducing two different types of fluids (air inside the housing or outside air) into the center of the inner and outer surfaces, and flowing them from the center to the periphery along each curved surface (slanted part), Each flow can be made to be an appropriate and smooth flow along the surface of the heat transfer plate body 12 without causing turbulence, and as a result, among the heat transfer plate bodies 12,
The contact area of each fluid to the outer surface side can be increased, and heat exchange efficiency can be improved. Note that reference numerals 13 and 14 in FIGS. 3A and 3B indicate fluid feeding fans that feed fluid toward the top of the curved surface of the heat transfer plate body 12, respectively.
ここで、上述した湾曲面形状による伝熱プレー
ト体12によれば、これに上述したように流体を
吹出して送り込むことにより、流体はそれぞれ湾
曲面に沿つてその頂部から周縁部にかけて円滑に
流れるものであり、たとえば平板状部材にフアン
を用いて直交する方向から流体を吹き付けた場
合、その平面部分に当つた流体がその部分で乱流
をとなり、面方向での流体の流れが得られず、熱
交換効率が悪くなるといつた場合に比べてその利
点は明らかであろう。 Here, according to the heat transfer plate body 12 having the above-mentioned curved surface shape, by blowing and feeding the fluid as described above, the fluid flows smoothly along each curved surface from the top to the peripheral edge. For example, when a fan is used to spray fluid onto a flat plate-shaped member from a perpendicular direction, the fluid that hits the flat part becomes turbulent at that part, making it impossible to obtain fluid flow in the plane direction. The advantage is obvious compared to the case where the heat exchange efficiency deteriorates.
このような構成による熱交換器用エレメント1
1は、第1図に示すように、筺体1の天井部1a
において開口1bを閉塞する状態で外向きに膨出
して取付け固定され、その内側に筺体内空気a
を、外側に外気bを吹付けてこれら間での熱交換
を行なうように構成されている。ここで、図中2
0は上述した伝熱プレート体12と略同じ形状で
形成され、かつ伝熱プレート体12の外側に対し
所定間隔離れて組付けられる外側カバー体で、そ
の頂部には外気送り込み用フアン14を有する吹
込み口20aが穿設されるとともに、伝熱プレー
ト体12の湾曲面との間に外気流通通路21が形
成される。一方、伝熱プレート体12の内側に
も、略同等の形状をもち筺体内空気の吹込み口2
2aを有しフアン13が付設されるとともに筺体
内空気の流通通路23を形成する内側カバー体2
2が同様に組付けられている。 Heat exchanger element 1 with such a configuration
1 is the ceiling portion 1a of the housing 1, as shown in FIG.
The opening 1b is bulged outward and installed and fixed in a state where the opening 1b is closed.
and external air b is blown to the outside to perform heat exchange between them. Here, 2 in the figure
Reference numeral 0 denotes an outer cover body formed in approximately the same shape as the heat transfer plate body 12 described above and assembled to the outside of the heat transfer plate body 12 at a predetermined distance, and has an outside air feeding fan 14 on the top thereof. The blow-in port 20a is bored, and an outside air circulation passage 21 is formed between the blow-in port 20a and the curved surface of the heat transfer plate body 12. On the other hand, inside the heat transfer plate body 12, there is an air inlet 2 having a substantially similar shape.
2a, to which a fan 13 is attached, and which forms a circulation passage 23 for air within the housing.
2 is assembled in the same way.
そして、このような外側カバー体20と内側カ
バー体22とは、伝熱プレート体12の外面、内
面に沿つて外気と筺体内空気とを適切かつ確実に
流通させてこれら間での熱交換を行なわせるうえ
で効果を発揮し得るものである。なお、上述した
例では、フアン13,14を付設して伝熱プレー
ト体12側に筺体内空気、外気を吹付けて熱交換
効率を高めるように構成した場合を示し、流体の
流れを適正化するうえでも効果的ではあるが、必
ずしも必要ではなく、たとえば第4図に示すよう
な変形例も考えられよう。すなわち、筺体1内で
高温となつた空気は、筺体天井部1aに上昇し、
半球面形状のくぼみ空間内に入り込み、その内側
カバー体22頂部の吹込み口22aから内部通路
23に沿つて流れ、その途中で外気により熱交換
されて冷却することから、湾曲面に沿つて自然対
流により下降することは自明の事項であり、その
利点は明らかであろう。なお、このような現象
は、内側カバー体22を省略した場合にあつて
も、その温度条件等によつては、略同様に生じる
ことは、容易に理解されよう。 The outer cover body 20 and the inner cover body 22 are designed to appropriately and reliably circulate the outside air and the air inside the housing along the outer and inner surfaces of the heat transfer plate body 12, thereby exchanging heat between them. This is something that can be effective in getting people to do it. In addition, the above-mentioned example shows a case where the fans 13 and 14 are attached to blow the air inside the housing and the outside air to the heat transfer plate body 12 side to increase the heat exchange efficiency, and the flow of the fluid is optimized. Although it is effective to do so, it is not necessarily necessary, and a modification as shown in FIG. 4 may also be considered. That is, the high temperature air inside the housing 1 rises to the housing ceiling 1a,
It enters the hemispherical recessed space, flows from the air inlet 22a at the top of the inner cover body 22 along the inner passage 23, and is cooled by heat exchange with the outside air along the way, so it naturally flows along the curved surface. It is self-evident that the air flows downward by convection, and its advantages are obvious. It will be easily understood that such a phenomenon occurs in substantially the same way even if the inner cover body 22 is omitted, depending on the temperature conditions and the like.
また、伝熱プレート体12の外側にあつても、
外側カバー体20を省略し、外気を吹付けること
で、暖められた空気は徐々に上昇することから、
自然対流を起し、ある程度の熱交換を行なえるも
のであるが、高温状態にある筺体内空気が当る伝
熱プレート体12の頂部に最も低温の外気を対向
させるためには、第1図や第4図に示すようなカ
バー体20、フアン14を用いることが望まし
い。 Moreover, even if it is outside the heat transfer plate body 12,
By omitting the outer cover body 20 and blowing outside air, the warmed air gradually rises.
Although natural convection is generated and a certain amount of heat exchange can be performed, in order to direct the lowest temperature outside air to the top of the heat transfer plate body 12, which is in contact with the high temperature air inside the housing, it is necessary to It is desirable to use a cover body 20 and a fan 14 as shown in FIG.
ここで、上述したような半球面形状による伝熱
プレート体12やカバー体20,22等は、単純
なプレス加工等で簡単に形成し得るが、勿論樹脂
材等で一体成形することも自由である。なお、第
1図中25,25は伝熱プレート体12、カバー
体20,22を一体的にしかも所定間隔離して組
付けるためのスペーサを有する結合手段である。 Here, the heat transfer plate body 12, cover bodies 20, 22, etc. having a hemispherical shape as described above can be easily formed by simple press processing, etc., but of course, they can also be formed integrally with a resin material etc. be. Incidentally, reference numerals 25 and 25 in FIG. 1 are coupling means having spacers for assembling the heat transfer plate body 12 and the cover bodies 20 and 22 integrally and separated by a predetermined distance.
このような構成において、筺体内空気と外気と
を、熱交換器用エレメント11を構成する伝熱プ
レート体12内、外の湾曲面等による斜面に沿つ
て流すことで、その内、外面側への各流体の接触
面積を大きくでき、しかも従来のように乱流や空
気溜り等も生ぜず、熱交換効率を従来に比べて大
幅に向上させ得るものである。さらに、このよう
な熱交換器10構造によれば、全体が簡易型構造
で、加工、組立性等に優れ、また全体を必要最小
限の厚み寸法で簡単に構成できるため、その小型
かつコンパクト化も図れる等の利点もある。 In such a configuration, by flowing the air inside the housing and the outside air along the slopes formed by the curved surfaces inside and outside of the heat transfer plate body 12 that constitutes the heat exchanger element 11, the air flows to the inside and outside sides. The contact area of each fluid can be increased, and unlike the conventional method, turbulence and air pockets do not occur, and the heat exchange efficiency can be greatly improved compared to the conventional method. Furthermore, according to the structure of the heat exchanger 10, the entire structure is simple and has excellent processing and assemblability, and the entire structure can be easily constructed with the minimum required thickness, making it small and compact. There are also advantages such as being able to
なお、本考案は上述した実施例構造に限定され
ず、熱交換器10や熱交換器用エレメント11各
部の形状、構造等を、適宜変形、変更し得るもの
であり、またその適用機器、装置としても、その
適用用途としても、種々の分野のものが考えられ
る。たとえば上述した実施例では、熱交換器10
における熱交換器用エレメント11を、外向きに
膨出させて筺体1に付設した場合を説明したが、
フアン等を付設して流体の吹付けを適切に行なえ
る場合、逆に内向きに膨出させた状態で取付けて
もよいもので、その作用効果は明らかであろう。 Note that the present invention is not limited to the structure of the embodiments described above, and the shape and structure of each part of the heat exchanger 10 and the heat exchanger element 11 can be modified and changed as appropriate, and the applicable equipment and apparatus can be Also, its applications can be considered in various fields. For example, in the embodiment described above, the heat exchanger 10
Although the case has been described in which the heat exchanger element 11 is attached to the housing 1 with the heat exchanger element 11 bulging outward,
If a fan or the like is attached to properly spray the fluid, it may be installed in a state in which it bulges inward, and the effect will be obvious.
さらに、上述した熱交換器用エレメント11や
カバー体20,22の材料としては、熱伝達率の
面で優れている銅、アルミ等の金属材を用いると
よいが、それ以外に合成樹脂材、その他の材料を
用いて形成してもよいもので、その成形手法とし
ても種々の変形例が考えられる。 Furthermore, as the material for the heat exchanger element 11 and the cover bodies 20, 22, it is preferable to use metal materials such as copper and aluminum, which have excellent heat transfer coefficients. The material may be used to form the material, and various modifications can be considered as the molding method.
以上説明したように本考案に係る熱交換器によ
れば、発熱部を内蔵した機器筺体の天井部に付設
され筺体内空気を外気との熱交換により冷却する
ために、頂部とその周囲から一側に傾斜された斜
面部によつて内側にくぼみ空間を形成する伝熱プ
レート体と、少なくともその外面側に所定間隙を
おいて対向して配置され流体通路を形成するとと
もに伝熱プレート体頂部に対向する部分に外気送
り込み用開口が形成されている外側カバー体と、
前記開口から外気を通路内に送り込むように付設
された外気送り込み用フアンを備えてなり、この
フアンによつて伝熱プレート体頂部側に送り込ま
れる外気を、通路内で伝熱プレート体の斜面に沿
つて流すことで、伝熱プレート体の内側面に沿つ
て流れる筺体内空気との熱交換を行なわせるよう
にしたもので、簡単かつ安価な構成にもかかわら
ず、筺体内空気と外気とを、伝熱プレート体内、
外の湾曲面等による斜面に沿つた適切かつ円滑な
流れとすることができ、これにより伝熱プレート
体の内、外面側への各流体の接触面積を大きくで
き、しかも従来のように乱流や空気溜り等も生ぜ
ず、熱交換効率を従来に比べて大幅に向上させ得
るとともに、必要最小限の厚み寸法で簡単に構成
できるために、熱交換器全体の小型かつコンパク
ト化も図れる等の種々優れた効果がある。特に、
本考案によれば、筺体内空気、外気の伝熱プレー
ト体の面に沿つた流れを、その温度等に基づく自
然対流で得ることが可能で、しかも熱交換効率の
面から優れているという利点を奏する。
As explained above, according to the heat exchanger according to the present invention, the heat exchanger is attached to the ceiling of the equipment housing containing the heat generating part, and is designed to cool the air inside the housing by heat exchange with outside air. A heat transfer plate body forming a recessed space inside by a slope portion inclined to the side; an outer cover body in which an opening for feeding outside air is formed in opposing parts;
An outside air feeding fan is attached to send outside air into the passage from the opening, and the outside air sent to the top side of the heat transfer plate body by the fan is applied to the slope of the heat transfer plate body within the passage. By flowing along the inner surface of the heat transfer plate body, heat exchange is performed with the air inside the housing that flows along the inner surface of the heat transfer plate. Despite its simple and inexpensive configuration, it is possible to exchange heat between the air inside the housing and the outside air. , inside the heat transfer plate,
It is possible to create an appropriate and smooth flow along the slope due to the external curved surface, etc., thereby increasing the contact area of each fluid to the inner and outer surfaces of the heat transfer plate, and also eliminating turbulent flow as in the conventional case. It does not create air pockets or air pockets, greatly improving heat exchange efficiency compared to conventional methods, and it can be easily constructed with the minimum required thickness, making the entire heat exchanger smaller and more compact. It has various excellent effects. especially,
According to the present invention, it is possible to obtain the flow of air inside the housing and outside air along the surface of the heat transfer plate body by natural convection based on the temperature, etc., and the advantage is that it is excellent in terms of heat exchange efficiency. play.
第1図は本考案に係る熱交換器の一実施例を示
す要部構成の概略断面図、第2図a,b,cは熱
交換器用エレメントを例示する概略斜視図、第3
図a,bはその流体の流れを示す概略説明図、第
4図は本考案の別の実施例を示す概略断面図であ
る。
1……機器筺体、1a……天井部、1b……熱
交換器取付用開口、2……発熱部、10……熱交
換器、11……熱交換器用エレメント、12……
伝熱プレート体、12a……熱交換部、12b…
…取付け用フランジ、13,14……流体送り込
み用フアン、20……外側カバー体、20a……
流体吹込み口、21……流体通路、22……内側
カバー体、22a……流体吹込み口、23……流
体通路。
FIG. 1 is a schematic sectional view of the main structure of an embodiment of a heat exchanger according to the present invention, FIGS. 2a, b, and c are schematic perspective views illustrating heat exchanger elements, and FIG.
Figures a and b are schematic illustrations showing the flow of the fluid, and Figure 4 is a schematic sectional view showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Equipment housing, 1a... Ceiling part, 1b... Heat exchanger installation opening, 2... Heat generating part, 10... Heat exchanger, 11... Element for heat exchanger, 12...
Heat transfer plate body, 12a... Heat exchange section, 12b...
...Mounting flange, 13, 14...Fluid feeding fan, 20...Outer cover body, 20a...
Fluid inlet, 21...Fluid passage, 22...Inner cover body, 22a...Fluid inlet, 23...Fluid passage.
Claims (1)
筺体内空気を外気との熱交換により冷却する熱交
換器であつて、頂部とこの頂部から一側に傾斜さ
れた斜面部とによつて内側にくぼみ空間を形成す
る伝熱プレート体と、この伝熱プレート体の少な
くとも外側面に所定間隔をおいて対向して配置さ
れ流体通路を形成するとともに前記伝熱プレート
体の頂部に対向する部分に外気送り込み用開口が
形成されている外側カバー体と、この外側カバー
体の前記開口から外気を通路内に送り込むように
付設された外気送り込み用フアンを備えてなり、
このフアンにより伝熱プレート体の頂部側に送り
込まれた外気は、通路内で伝熱プレート体の斜面
に沿つて流され、伝熱プレート体の内側面に沿つ
て流れる筺体内空気との熱交換を行なうことを特
徴とする熱交換器。 A heat exchanger that is attached to the ceiling of a device housing that has a built-in heat generating part and cools the air inside the housing by exchanging heat with outside air. A heat transfer plate body forming a recessed space in the heat transfer plate body, and a portion facing the top of the heat transfer plate body disposed oppositely at a predetermined interval on at least an outer surface of the heat transfer plate body and forming a fluid passage. It comprises an outer cover body in which an opening for feeding outside air is formed, and a fan for feeding outside air attached so as to send outside air into the passage from the opening of the outer cover body,
The outside air sent to the top side of the heat transfer plate body by this fan flows along the slope of the heat transfer plate body in the passage, and exchanges heat with the air inside the housing flowing along the inner surface of the heat transfer plate body. A heat exchanger characterized by performing the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9747889U JPH0539660Y2 (en) | 1989-08-23 | 1989-08-23 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9747889U JPH0539660Y2 (en) | 1989-08-23 | 1989-08-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0338690U JPH0338690U (en) | 1991-04-15 |
JPH0539660Y2 true JPH0539660Y2 (en) | 1993-10-07 |
Family
ID=31646617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9747889U Expired - Lifetime JPH0539660Y2 (en) | 1989-08-23 | 1989-08-23 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0539660Y2 (en) |
-
1989
- 1989-08-23 JP JP9747889U patent/JPH0539660Y2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0338690U (en) | 1991-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1036491B1 (en) | Cooling system for semiconductor die carrier | |
US7828045B2 (en) | Heat sink and information processor using heat sink | |
US20060243423A1 (en) | Compact heat exchanger and method | |
EP1830403B1 (en) | A heat sink with a centrifugal fan | |
US7779894B2 (en) | Heat dissipation device | |
JP6559799B2 (en) | Cooling unit for cooling the air received inside the switch cabinet and corresponding switchgear cabinet assembly | |
US20040200608A1 (en) | Plate fins with vanes for redirecting airflow | |
US7023696B2 (en) | Cooling device and electric or electronic apparatus employing the same | |
KR880007977A (en) | Control module cooling system | |
JPH0539660Y2 (en) | ||
US6614657B2 (en) | Heat sink for cooling an electronic component of a computer | |
CN215413279U (en) | Heat exchanger assembly, electric control box, air conditioner external unit and air conditioner | |
KR20240028977A (en) | Electric control box, air conditioner outdoor unit and air conditioner | |
KR100532689B1 (en) | Slim Heat Exchanger and Manufacturing Method Thereof, Water-Cooling System for Computer and Air Conditioner Using the Heat Exchanger | |
JP3000536U (en) | Cooling device for panel mounting such as control panel | |
US10921062B2 (en) | Cooling fan and heat dissipating module including the same | |
JPH033823Y2 (en) | ||
US20050189088A1 (en) | Circulation structure of heat dissipation device | |
JPH0370195A (en) | Heat exchanger and element for heat exchanger | |
KR200307396Y1 (en) | Cpu cooler | |
JPH0443735Y2 (en) | ||
EP4180728A1 (en) | Heat exchanger fixing plate, heat exchanger and indoor unit | |
JPH0228079B2 (en) | NETSUKOKANKI | |
JP2513802Y2 (en) | Heat exchanger | |
JPH0233027Y2 (en) |