JPH0539480A - Photorefractive composition - Google Patents
Photorefractive compositionInfo
- Publication number
- JPH0539480A JPH0539480A JP21808991A JP21808991A JPH0539480A JP H0539480 A JPH0539480 A JP H0539480A JP 21808991 A JP21808991 A JP 21808991A JP 21808991 A JP21808991 A JP 21808991A JP H0539480 A JPH0539480 A JP H0539480A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- photorefractive
- composition
- quartz
- fluorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光によって屈折率を可
逆的に変化させるフォトリフラクティブ材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photorefractive material whose refractive index is reversibly changed by light.
【0002】[0002]
【従来の技術】フォトリフラクティブとは、ここ数年来
注目を集めている現象であって、ある物質に光をあるパ
ターンで照射すると光照射した部分の屈折率変化が起こ
り、特に、ストロンチウム バリウム ナイオブレート
(Srx Ba1-x Nb2 O6 )やリチウム ナイオブレ
ート(LiNbO3 )に代表される無機物では電界を印
加した場合に屈折率が大きく変化し、変化した屈折率が
安定に保持され、更に別のパターンで光照射を行うと、
最初のパターンが消去されて新たな屈折率分布を持った
パターンが形成される、いわゆる可逆的な屈折率変化を
示す現象のことである。また、有機物でも同様な効果が
報告されており、有機物の場合はその屈折率変化が無機
物に比較して、数倍〜数十倍も大きいことが特徴となっ
ている。近年、この可逆的な変化に注目しフォトリフラ
クティブ材料を用いた光スイッチング素子の提案(特願
平3−92662号)が活発に行われている。しかしな
がら、有機物のフォトリフラクティブ材料を用いるに
は、上記の無機物が単結晶として用いられているのに対
して、有機物の単結晶を作製することは事実上非常な困
難を伴うため、透明な媒体に分散させて使用する方法が
取られていた。そこで大きな屈折率変化を起こさせるに
は、透明媒体に分散させるフォトリフラクティブ有機材
料の濃度を高めなければならないが、ある濃度以上に分
散させると分散媒体との相分離を起こし不透明なものと
なってしまう欠点があった。また、上記のように分散で
きる濃度に限度があるため、絶対屈折率の制御が分散媒
体と分散させるフォトリフラクティブ有機材料の種類に
よって決ってしまい、このため従来の石英系ファイバや
石英系導波路との接続を考慮した場合には、石英の絶対
屈折率がnD =1.458であるのに対し、通常の炭化
水素系有機物はnD =1.6前後と高いため接続損失が
大きくなり、また、場合によっては接続が不可能となる
欠点を有していた。更に、従来のフォトリフラクティブ
有機材料は無機物と同じように電界を印加しなければ大
きな屈折率変化は生じなかったため、エネルギーの消費
が著しかった。2. Description of the Related Art Photorefractive is a phenomenon that has been attracting attention for several years. When a material is irradiated with light in a certain pattern, the refractive index of the light-irradiated portion changes. In particular, strontium barium niobate is used. Inorganic substances represented by (Sr x Ba 1-x Nb 2 O 6 ) and lithium niobate (LiNbO 3 ) have a large change in refractive index when an electric field is applied, and the changed refractive index is stably maintained. When light irradiation is performed in another pattern,
This is a phenomenon in which the first pattern is erased to form a pattern having a new refractive index distribution, that is, a so-called reversible refractive index change. Similar effects have been reported for organic substances, and it is characterized that the change in refractive index of organic substances is several times to several tens of times larger than that of inorganic substances. In recent years, paying attention to this reversible change, an optical switching element using a photorefractive material has been actively proposed (Japanese Patent Application No. 3-92662). However, in order to use a photorefractive material of an organic substance, while the above-mentioned inorganic substance is used as a single crystal, it is practically very difficult to produce a single crystal of an organic substance. The method of dispersing and using it was taken. Therefore, in order to cause a large change in the refractive index, the concentration of the photorefractive organic material dispersed in the transparent medium must be increased, but when dispersed over a certain concentration, phase separation with the dispersion medium occurs and it becomes opaque. There was a drawback. In addition, since the concentration that can be dispersed is limited as described above, the control of the absolute refractive index is determined by the dispersion medium and the type of photorefractive organic material to be dispersed. When the connection of is considered, the absolute refractive index of quartz is n D = 1.458, whereas the ordinary hydrocarbon-based organic matter has a high connection loss of about n D = 1.6. In addition, in some cases, there is a drawback that connection becomes impossible. Further, in the conventional photorefractive organic material, a large change in the refractive index does not occur unless an electric field is applied like the inorganic material, so that the energy consumption is remarkable.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は、絶対
屈折率を石英系と同じ程度にして接続損失をなくし、更
に相分離をなくし透明な任意の濃度の重合体を作製で
き、電界を印加しないフォトリフラクティブ材料を提供
することにある。SUMMARY OF THE INVENTION The object of the present invention is to make the absolute refractive index to the same level as that of a quartz system, to eliminate splice loss, to eliminate phase separation, and to produce a transparent polymer having an arbitrary concentration. It is to provide a photorefractive material which is not applied.
【0004】[0004]
【課題を解決するための手段】本発明を概説すれば、本
発明はフォトリフラクティブ組成物に関する発明であっ
て、光によって屈折率を可逆的に変化させるフォトリフ
ラクティブ組成物において、上記組成物が光照射によっ
て屈折率が変化するフォトリフラクティブ材料と、屈折
率を調整するフッ素含有樹脂とからなることを特徴とす
る。The present invention will be described in brief. The present invention relates to a photorefractive composition, which is a photorefractive composition in which a refractive index is reversibly changed by light, and the composition is a photorefractive composition. It is characterized by comprising a photorefractive material whose refractive index changes by irradiation and a fluorine-containing resin which adjusts the refractive index.
【0005】本発明はフォトリフラクティブ有機材料と
絶対屈折率の低いフッ素含有樹脂とから構成されること
が最も主要な特徴である。また、フォトリフラクティブ
有機材料とフッ素含有樹脂部とが共重合体であってもよ
く、図1に示すように、フォトリフラクティブ有機材料
(PC)とフッ素含有樹脂(A)、更に通常の樹脂
(B)からなる共重合体であってもよい。また、このフ
ォトリフラクティブ有機材料がフォトクロミック化合物
であってもよい。すなわち図1は、本発明のフォトリフ
ラクティブ共重合体の組成を説明する図であり、Aはフ
ッ素含有樹脂、Bは通常の樹脂、PCはフォトリフラク
ティブ有機材料を示している。これらの構成比率はAは
(1−x−y)、Bは(0≦y≦0.2)、PCは
(0.01≦x≦0.3)である。The main feature of the present invention is that it is composed of a photorefractive organic material and a fluorine-containing resin having a low absolute refractive index. Further, the photorefractive organic material and the fluorine-containing resin part may be a copolymer, and as shown in FIG. 1, the photorefractive organic material (PC), the fluorine-containing resin (A), and the ordinary resin (B). ). Further, the photorefractive organic material may be a photochromic compound. That is, FIG. 1 is a diagram illustrating the composition of the photorefractive copolymer of the present invention, where A is a fluorine-containing resin, B is a normal resin, and PC is a photorefractive organic material. These constituent ratios are A (1-x-y), B (0≤y≤0.2), and PC (0.01≤x≤0.3).
【0006】本発明は、絶対屈折率が石英よりも低いフ
ッ素含有樹脂と、フォトリフラクティブ有機材料とから
構成されることにより、絶対屈折率が石英の絶対屈折率
と近い値を取ることができるようになり、石英系ファイ
バや石英系導波路との接続が極めて容易になる利点を有
している。According to the present invention, the absolute refractive index can be a value close to the absolute refractive index of quartz by being composed of a fluorine-containing resin having an absolute refractive index lower than that of quartz and a photorefractive organic material. Therefore, there is an advantage that connection with a silica-based fiber or a silica-based waveguide becomes extremely easy.
【0007】フォトリフラクティブ有機材料をフッ素含
有樹脂に分散させる構成ではフォトリフラクティブ有機
材料とフッ素含有樹脂の種類によっては、均一に混合で
きず相分離を起こして不透明となることがあるため、構
成比率がある限界値を持つ場合がある。フォトリフラク
ティブ有機材料とフッ素含有樹脂とが共重合体であるも
のでは、フォトリフラクティブ有機材料の構成比率を自
由に設定することができ、構成比率を高濃度に設定する
ことも可能となる。したがって構成比率を変化させるこ
とで、高いフォトリフラクティブ効果を期待できるよう
になり、絶対屈折率も自由に設定することができるよう
になる。また、フォトリフラクティブ有機材料とフッ素
含有樹脂のほかに更に通常の樹脂を共重合させることも
でき、フォトリフラクティブ組成物の絶対屈折率や石英
との密着性などを自由に制御できる。In the structure in which the photorefractive organic material is dispersed in the fluorine-containing resin, the photorefractive organic material and the fluorine-containing resin may not be uniformly mixed and may cause phase separation to become opaque. It may have some limit value. When the photorefractive organic material and the fluorine-containing resin are copolymers, the composition ratio of the photorefractive organic material can be freely set, and the composition ratio can be set to a high concentration. Therefore, a high photorefractive effect can be expected by changing the composition ratio, and the absolute refractive index can be freely set. Further, in addition to the photorefractive organic material and the fluorine-containing resin, an ordinary resin can be copolymerized, and the absolute refractive index of the photorefractive composition and the adhesion to quartz can be freely controlled.
【0008】更に、フォトリフラクティブ有機材料とし
てフォトクロミック化合物を用いれば電場を印加するこ
となく光の照射だけで屈折率が変化し、屈折率が変化し
た後もなんらエネルギーを消費することなく、変化した
状態での屈折率を保持できる、いわゆる自己保持型のフ
ォトリフラクティブ組成物が得られる利点を有する。ま
たフォトクロミズム現象に伴う屈折率の変化幅も大き
く、無機のフォトリフラクティブ材料と比較すると数百
倍に達するなど優れた特徴がある。ここで用いることの
できるフォトクロミック化合物は、下記表1〜表6に示
すスピロピラン類やスピロオキサジン類、フルギド類、
ジチエニルエテン類、ジインドリルエテン類である。Further, when a photochromic compound is used as the photorefractive organic material, the refractive index changes only by irradiation of light without applying an electric field, and even after the refractive index changes, no energy is consumed and the changed state. There is an advantage that a so-called self-holding type photorefractive composition capable of maintaining the refractive index at the above can be obtained. In addition, the range of change in the refractive index due to the photochromism phenomenon is large, and it has excellent characteristics such as reaching hundreds of times that of inorganic photorefractive materials. Photochromic compounds that can be used here include spiropyrans, spirooxazines, fulgides shown in Tables 1 to 6 below.
These are dithienylethenes and diindolylethenes.
【0009】[0009]
【表1】 [Table 1]
【0010】[0010]
【表2】 [Table 2]
【0011】[0011]
【表3】 [Table 3]
【0012】[0012]
【表4】 [Table 4]
【0013】[0013]
【表5】 [Table 5]
【0014】[0014]
【表6】 [Table 6]
【0015】表中R1 〜R3 はアルキル基を表し、
R4 、R5 は水素、アルキル基、ニトロ基、水酸基、シ
アノ基、メトキシ基、カルボキシル基、フェニル基又は
ハロゲンを表す。In the table, R 1 to R 3 represent an alkyl group,
R 4 and R 5 represent hydrogen, an alkyl group, a nitro group, a hydroxyl group, a cyano group, a methoxy group, a carboxyl group, a phenyl group or halogen.
【0016】[0016]
【実施例】以下、本発明を実施例で詳細に説明するが、
本発明はこれら実施例に限定されない。EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples.
The invention is not limited to these examples.
【0017】実施例1 表7に示す11種類のフッ素含有樹脂と表8〜表10に
示すフォトクロミック化合物をフォトクロミック化合物
が5〜30wt%の範囲内になるようにそれぞれ配合し、
メチルイソブチルケトン(MIBK)とクロロベンゼン
の1:1溶媒に溶解させフォトリフラクティブ組成物を
作製した。これらの試料をシリコン基板上にスピンコー
ト法で薄膜化した。屈折率を測定したところ、絶対屈折
率はnD =1.4〜1.5の範囲で石英に非常に近い値
であることが分かった。この薄膜化した試料に、500
Wの超高圧水銀灯に色ガラスフィルターを装着した光源
から紫外線(365nm)を照射して、フォトクロミズ
ム変化を起こさせた。紫外線を照射する前後の屈折率を
測定し、屈折率変化を追跡したところ、すべての試料で
屈折率の変化が起こっていることが分かった。Example 1 Eleven kinds of fluorine-containing resins shown in Table 7 and the photochromic compounds shown in Tables 8 to 10 were mixed so that the photochromic compound content was in the range of 5 to 30 wt%,
A photorefractive composition was prepared by dissolving methyl isobutyl ketone (MIBK) in a 1: 1 solvent of chlorobenzene. Thin films of these samples were formed on a silicon substrate by spin coating. When the refractive index was measured, it was found that the absolute refractive index was a value very close to that of quartz in the range of n D = 1.4 to 1.5. This thinned sample has 500
Ultraviolet light (365 nm) was irradiated from a light source in which a W ultra-high pressure mercury lamp was equipped with a colored glass filter to cause photochromism change. The refractive index before and after the irradiation of ultraviolet rays was measured, and the change in the refractive index was traced. As a result, it was found that the refractive index changed in all the samples.
【0018】[0018]
【表7】 [Table 7]
【0019】1〜4及び6〜10はケトン・エステルに
溶解 5及び11はフロン113・メタキシレンヘキサフルオ
ライドに溶解1 to 4 and 6 to 10 are soluble in ketone ester, and 5 and 11 are soluble in Freon 113.meta-xylene hexafluoride.
【0020】[0020]
【表8】 [Table 8]
【0021】[0021]
【表9】 [Table 9]
【0022】[0022]
【表10】 [Table 10]
【0023】実施例2 実施例1で調整した溶液を、図2に示すファイバカプラ
の結合部、及び図3に示す石英系導波路のカプラ部のコ
ア周辺部に、それぞれキャスト法、及びスピンコート法
でフォトリフラクティブ部を形成させた。Example 2 The solution prepared in Example 1 was cast and spin-coated on the coupling portion of the fiber coupler shown in FIG. 2 and around the core of the silica-based waveguide coupler portion shown in FIG. 3, respectively. The photorefractive part was formed by the method.
【0024】図2は実施例2、実施例4で使用した光フ
ァイバカプラを説明する図であって、21、22は光フ
ァイバ、23は本発明によるフォトリフラクティブ組成
物を塗布した部分を示している。また、図3は実施例
2、実施例4で使用した光導波路を説明する図であっ
て、31はクラッド部、32、33はコア部、34は本
発明によるフォトリフラクティブ組成物を塗布した部分
を示している。FIG. 2 is a diagram for explaining the optical fiber couplers used in Examples 2 and 4, wherein 21 and 22 are optical fibers, and 23 is a portion coated with the photorefractive composition of the present invention. There is. FIG. 3 is a diagram for explaining the optical waveguides used in Examples 2 and 4, where 31 is a clad part, 32 and 33 are core parts, and 34 is a part coated with the photorefractive composition of the present invention. Is shown.
【0025】作製したフォトリフラクティブ組成物を持
つファイバカプラ、導波路のカプラに1.3μm、又は
1.55μmの光を通しておき、実施例1と同様な光源
から光照射したところ、屈折率が変化し、1.3μm、
又は1.55μmの光をスイッチングできることが分か
った。When light of 1.3 μm or 1.55 μm was passed through a fiber coupler having a photorefractive composition and a coupler of a waveguide and light was irradiated from the same light source as in Example 1, the refractive index changed. , 1.3 μm,
It was also found that light of 1.55 μm can be switched.
【0026】実施例3 図1に示す構造を持つ樹脂を重合するために、MMA1
0重量部、表7に示したフッ素含有樹脂のモノマーを8
0重量部、フォトリフラクティブ材料として下記式(化
1)又は(化2)に示す構造を持つフォトクロミック材
料を10重量部を重合管を入れ、更に開始剤としてAI
BNを全モノマーに対して0.001モル比、連鎖移動
剤としてメルカプタンを5ミリモル/リットルとなるよ
うに調整した反応溶液を重合管に入れて、脱気後、真空
封入して65℃で24時間重合させた。得られた固体を
アセトンに溶解させ、水:メタノール=1:1の貧溶媒
中に注ぎ1昼夜放置して再沈殿させ固体を得た。この固
体をMIBK:モノクロロベンゼン=1:1溶媒に溶解
させシリコン基板上にスピンコート法で薄膜化し、紫外
線を照射して照射する前後の屈折率変化を測定したとこ
ろ、屈折率変化を観測することができた。Example 3 To polymerize a resin having the structure shown in FIG. 1, MMA1 was used.
0 parts by weight, 8 parts by weight of the fluorine-containing resin monomer shown in Table 7
0 part by weight, 10 parts by weight of a photochromic material having a structure represented by the following formula (Chemical formula 1) or (Chemical formula 2) as a photorefractive material was placed in a polymerization tube, and AI was used as an initiator.
A reaction solution adjusted to a molar ratio of BN to all monomers of 0.001 and mercaptan as a chain transfer agent of 5 mmol / liter was put into a polymerization tube, degassed, and vacuum-sealed at 24 ° C at 65 ° C. Polymerized for hours. The obtained solid was dissolved in acetone, poured into a poor solvent of water: methanol = 1: 1 and left standing for one day to reprecipitate to obtain a solid. Dissolve this solid in a solvent of MIBK: monochlorobenzene = 1: 1 to form a thin film on a silicon substrate by spin coating, measure the change in refractive index before and after irradiation with ultraviolet light, and observe the change in refractive index. I was able to.
【0027】[0027]
【化1】 [Chemical 1]
【0028】[0028]
【化2】 [Chemical 2]
【0029】実施例4 実施例3で得られた共重合物のMIBK:モノクロロベ
ンゼン=1:1混合溶液を図2、図3のファイバカプ
ラ、導波路カプラ上に実施例2と同様の方法で試料を作
製し、実施例2と同様な検討を行ったところスイッチン
グ現象を確認することができた。Example 4 The MIBK: monochlorobenzene = 1: 1 mixed solution of the copolymer obtained in Example 3 was placed on the fiber coupler and waveguide coupler of FIGS. 2 and 3 in the same manner as in Example 2. When a sample was prepared and the same examination as in Example 2 was carried out, the switching phenomenon could be confirmed.
【0030】[0030]
【発明の効果】以上説明したように本発明を用いれば、
石英系の光ファイバや光導波路の絶対屈折率と近い値を
持つフォトリフラクティブ組成物を得ることができ、従
来のフォトリフラクティブ組成物のように石英系の光フ
ァイバや光導波路との接合部での損失を少なくすること
が可能となる。また、フォトリフラクティブ有機材料と
フッ素含有樹脂とが共重合体であるものでは、フォトリ
フラクティブ有機材料の構成比率を自由に設定すること
ができ、絶対屈折率を自由に設定することができるよう
になる。フォトリフラクティブ有機材料としてフォトク
ロミック化合物を用いれば電場を印加することなく光の
照射だけで屈折率が変化し、自己保持型であるためエネ
ルギーを消費することがなくなる。またフォトクロミズ
ム現象に伴う屈折率の変化幅も大きく、無機のフォトリ
フラクティブ材料と比較すると数百倍に達するなど優れ
た効果がある。As described above, according to the present invention,
It is possible to obtain a photorefractive composition having a value close to the absolute refractive index of a silica-based optical fiber or optical waveguide, and it is possible to obtain a photorefractive composition at a junction with a silica-based optical fiber or an optical waveguide like a conventional photorefractive composition. It is possible to reduce the loss. Further, in the case where the photorefractive organic material and the fluorine-containing resin are copolymers, the constituent ratio of the photorefractive organic material can be freely set, and the absolute refractive index can be freely set. .. When a photochromic compound is used as the photorefractive organic material, the refractive index changes only by irradiation of light without applying an electric field, and energy is not consumed because it is a self-holding type. In addition, the range of change in the refractive index due to the photochromism phenomenon is large, and it has an excellent effect that it is several hundred times that of an inorganic photorefractive material.
【図1】本発明のフォトリフラクティブ共重合体の組成
を説明する図である。FIG. 1 is a diagram illustrating the composition of a photorefractive copolymer of the present invention.
【図2】本発明の実施例2、実施例4で使用した光ファ
イバカプラを説明する図である。FIG. 2 is a diagram illustrating optical fiber couplers used in Examples 2 and 4 of the present invention.
【図3】本発明の実施例2、実施例4で使用した光導波
路を説明する図である。FIG. 3 is a diagram illustrating optical waveguides used in Examples 2 and 4 of the present invention.
21及び22:光ファイバ、23及び34:本発明によ
るフォトリフラクティブ組成物を塗布した部分、31:
クラッド部、32及び33:コア部21 and 22: optical fiber, 23 and 34: part coated with the photorefractive composition according to the present invention, 31:
Cladding parts, 32 and 33: core part
Claims (3)
フォトリフラクティブ組成物において、上記組成物が光
照射によって屈折率が変化するフォトリフラクティブ材
料と、屈折率を調整するフッ素含有樹脂とからなること
を特徴とするフォトリフラクティブ組成物。1. A photorefractive composition in which the refractive index is reversibly changed by light, wherein the composition comprises a photorefractive material whose refractive index is changed by light irradiation and a fluorine-containing resin for adjusting the refractive index. A photorefractive composition comprising:
トリフラクティブ材料とフッ素含有樹脂とが共重合体で
あることを特徴とするフォトリフラクティブ組成物。2. The photorefractive composition according to claim 1, wherein the photorefractive material and the fluorine-containing resin are copolymers.
て、フォトリフラクティブ材料がフォトクロミック化合
物であることを特徴とするフォトリフラクティブ組成
物。3. The photorefractive composition according to claim 1 or 2, wherein the photorefractive material is a photochromic compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21808991A JPH0539480A (en) | 1991-08-05 | 1991-08-05 | Photorefractive composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21808991A JPH0539480A (en) | 1991-08-05 | 1991-08-05 | Photorefractive composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0539480A true JPH0539480A (en) | 1993-02-19 |
Family
ID=16714467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21808991A Pending JPH0539480A (en) | 1991-08-05 | 1991-08-05 | Photorefractive composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0539480A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6462356B1 (en) | 1999-10-25 | 2002-10-08 | Seiko Epson Corporation | Light emitting device |
US6512250B1 (en) | 1999-06-10 | 2003-01-28 | Seiko Epson Corporation | Light-emitting device |
US6587620B2 (en) | 2000-06-16 | 2003-07-01 | Seiko Epson Corporation | Surface emitting device |
US6704335B1 (en) | 1998-12-17 | 2004-03-09 | Seiko Epson Corporation | Light-emitting device |
US6727646B1 (en) | 1999-03-23 | 2004-04-27 | Seiko Epson Corporation | Light-emitting device |
US6737802B2 (en) | 2000-08-11 | 2004-05-18 | Seiko Epson Corporation | Light-emitting device |
US6795463B2 (en) | 2000-03-01 | 2004-09-21 | Seiko Epson Corporation | Light -emitting device |
JP2012215806A (en) * | 2011-03-25 | 2012-11-08 | Fujifilm Corp | Colored radiation-sensitive composition, color filter, manufacturing method of coloring pattern, manufacturing method of color filter, solid-state image sensor, and liquid crystal display device |
-
1991
- 1991-08-05 JP JP21808991A patent/JPH0539480A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6704335B1 (en) | 1998-12-17 | 2004-03-09 | Seiko Epson Corporation | Light-emitting device |
US6727646B1 (en) | 1999-03-23 | 2004-04-27 | Seiko Epson Corporation | Light-emitting device |
US6512250B1 (en) | 1999-06-10 | 2003-01-28 | Seiko Epson Corporation | Light-emitting device |
US6462356B1 (en) | 1999-10-25 | 2002-10-08 | Seiko Epson Corporation | Light emitting device |
US6795463B2 (en) | 2000-03-01 | 2004-09-21 | Seiko Epson Corporation | Light -emitting device |
US6587620B2 (en) | 2000-06-16 | 2003-07-01 | Seiko Epson Corporation | Surface emitting device |
US6737802B2 (en) | 2000-08-11 | 2004-05-18 | Seiko Epson Corporation | Light-emitting device |
JP2012215806A (en) * | 2011-03-25 | 2012-11-08 | Fujifilm Corp | Colored radiation-sensitive composition, color filter, manufacturing method of coloring pattern, manufacturing method of color filter, solid-state image sensor, and liquid crystal display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6091879A (en) | Organic photochromic compositions and method for fabrication of polymer waveguides | |
US5062680A (en) | Plate plastics optical waveguide | |
US3953620A (en) | Producing integrated optical circuits | |
WO1991010149A1 (en) | Method for forming optically active waveguides | |
US6046290A (en) | Photoaddressable side group polymers of high sensitivity | |
WO1993011169A1 (en) | Polymeric nitrones having a styrene-derived backbone chain | |
Hoshino et al. | Refractive index change in photochromic diarylethene derivatives and its application to optical switching devices | |
EP0433901A2 (en) | Optical switch for use with optical fibers | |
JPH0539480A (en) | Photorefractive composition | |
Liang et al. | Low loss, low refractive index fluorinated self-crosslinking polymer waveguides for optical applications | |
US5176983A (en) | Polymeric nitrones having an acrylic backbone chain | |
EP1287047B1 (en) | Photo-polymers and use thereof | |
JPH06240242A (en) | Polymeric photochromic composition | |
EP1359461A2 (en) | Low loss electro-optic polymers and devices made therefrom | |
US5273863A (en) | Polymeric nitrones having an acrylic backbone chain | |
US5080931A (en) | Doped polymer films for waveguides | |
JPH10170738A (en) | Polymer optical waveguide and its production | |
EP0464795B1 (en) | Organic optical nonlinear material and optical nonlinear device | |
JPH0961647A (en) | Organic material for optical element | |
DE60008384T2 (en) | WAVE GUIDE COMPONENTS OR STRUCTURES OR PARTS CONTAINING THEM POLYCYANATE COPOLYMERS MADE OF POLYFUNCTIONAL CYANATES AND FLUORINE MONOCYANATES | |
Blomquist et al. | Fluorinated acrylates in making low-loss, low-birefringence, and single-mode optical waveguides with exceptional thermo-optic properties | |
JPH07191305A (en) | Liquid crystal device | |
KR0153323B1 (en) | Photo sensitive color composition for color filter | |
JPH10170739A (en) | Production of polymer optical waveguide | |
JPH0493822A (en) | Nonlinear optical material and nonlinear optical element |