JPH053916A - Coating material for electrolyte sensor for blood - Google Patents

Coating material for electrolyte sensor for blood

Info

Publication number
JPH053916A
JPH053916A JP3181631A JP18163191A JPH053916A JP H053916 A JPH053916 A JP H053916A JP 3181631 A JP3181631 A JP 3181631A JP 18163191 A JP18163191 A JP 18163191A JP H053916 A JPH053916 A JP H053916A
Authority
JP
Japan
Prior art keywords
blood
heparin
peo
electrolyte
electrolyte sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3181631A
Other languages
Japanese (ja)
Other versions
JPH0777586B2 (en
Inventor
Toshihiro Fukai
俊博 深井
Kenichiro Maeda
賢一郎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP3181631A priority Critical patent/JPH0777586B2/en
Publication of JPH053916A publication Critical patent/JPH053916A/en
Publication of JPH0777586B2 publication Critical patent/JPH0777586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To improve the antithrombogenic property and permeability of electrolyte by mixing high polymer raw material which is rich in mechanical strength and has water retaining property with quaternary ammonium salt heparinate to form a coating material for an electrolyte sensor for blood. CONSTITUTION:High polymer raw material which is rich in mechanical strength and has water retaining property, polyethylene oxide segmented nylon 610 (hereinafter referred to as PEO-Nylon 610) and quaternary ammonium salt heparinate, for example, a heparinate compound such as benzal chloride conium or the like are mixed to form a coating material for an electrolyte sensor for blood. In this case, the molecular weight of PEO is 2000-600, and the weight ratio is about 20-80%. The material is coated on an electrolyte sensor for blood. Thus, heparin is continuously emitted for a long time so as to transmit electrolyte enough.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は血液中電解質センサ表面
に被覆して用いられるヘパリン徐放性材料に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heparin sustained-release material used by coating the surface of an electrolyte sensor in blood.

【0002】[0002]

【従来の技術】血液中で用いられる医療用具としては血
管カテーテル、カニューレ、人工心肺、血管バイパスチ
ューブ、大動脈バルーンポンピング、モニタリングチュ
ーブなどがあげられる。
Medical devices used in blood include blood vessel catheters, cannulas, heart-lung machines, blood vessel bypass tubes, aortic balloon pumping, monitoring tubes and the like.

【0003】一般に、医療用材料を血液と接触させると
材料表面で容易に血液が凝固、血栓が形成されることは
周知の通りである。
It is well known that, in general, when a medical material is brought into contact with blood, the blood is easily coagulated and a thrombus is formed on the surface of the material.

【0004】これを防止するため血液成分の付着を減少
させたり、血液成分との相互作用を弱めるような材料を
設計し、これを医療用具に成形又は塗布して用いる目的
で合成高分子が研究されている。例えば、シリコン系ポ
リマー、フッ素系ポリマー、ポリヒドロキシメチルメタ
クリレート、ポリビニルアルコール、エチレンビニルア
ルコール共重合体、親水ー疎水ミクロドメイン構造のセ
グメント化ポリウレタン等々である。又、血液凝固を防
ぐような生理活性物質を材料表面に物理的あるいは化学
的に結合させてこの力をかりて抗血栓性を発現させる方
法も研究されている。
To prevent this, synthetic polymers have been studied for the purpose of designing a material that reduces the adhesion of blood components and weakens the interaction with blood components, and molding or applying this to medical devices for use. Has been done. For example, silicone-based polymers, fluorine-based polymers, polyhydroxymethylmethacrylate, polyvinyl alcohol, ethylene vinyl alcohol copolymers, segmented polyurethane with hydrophilic-hydrophobic microdomain structure, and the like. Also, a method of physically or chemically binding a physiologically active substance that prevents blood coagulation to the surface of the material to exert antithrombotic property by using this force has been studied.

【0005】合成高分子については、現実には使用条件
によりその機能は未だ十分とはいえず、ヘパリン等の生
理活性物質との併用がはかられているのが実情のようで
ある。
In reality, the function of synthetic polymers cannot be said to be sufficient depending on the conditions of use, and it seems that they can be used in combination with physiologically active substances such as heparin.

【0006】一方、ヘパリンは血液凝固阻害因子のアン
チトロンピン3に作用し、アンチトロンピン3の阻害作
用を著しく高めるので、血栓を防止する有力且つ確実な
方法として用いられている。しかし全身投与した場合多
くの出血巣が発生する危険があり、又、体内での半減期
が4〜6時間とあまり長くなく継続して投与しなくては
ならないなどの問題がある。このためヘパリンを全身投
与しないで、必要な箇所のみに放出させて血液凝固を防
止し医療目的を達成しようとする意図で材料にヘパリン
を固定化する研究がなされてきた。
On the other hand, heparin acts on antithrompine 3 which is a blood coagulation inhibitor, and remarkably enhances the inhibitory effect of antithrompin 3, and is therefore used as a powerful and reliable method for preventing thrombosis. However, when administered systemically, there is a risk that many hemorrhagic foci are generated, and the half-life in the body is not so long as 4 to 6 hours, and continuous administration is required. For this reason, studies have been conducted to immobilize heparin on a material for the purpose of preventing blood coagulation and achieving medical purposes by releasing heparin systemically without releasing it systemically.

【0007】例えば、ポリマーとヘパリンの混合物For example, a mixture of polymer and heparin

【0008】この場合ヘパリンは水溶性なのでポリマー
表面につけただけではすぐに溶け出してしまい、効果が
なくなるので、材料内部まで十分練りこみ表面に徐々に
浸出してくるように工夫されている。医療用具表面
に、第4級アンモニウム塩とヘパリンのイオン結合複合
体の溶液を塗布する。又は適当なポリマーとイオン結合
複合体の混合溶液を成形又は他の医療用具表面に塗布す
る。ポリマーにカチオン性残基を化学的に導入し、こ
れにヘパリンをイオン結合させる。ポリマーにヘパリ
ンを共有結合により結合させる。等々である。
[0008] In this case, since heparin is water-soluble, if it is applied to the surface of the polymer, it will dissolve immediately and lose its effect. Therefore, it is devised that the material is sufficiently kneaded and gradually leached to the surface. A solution of an ionic bond complex of a quaternary ammonium salt and heparin is applied to the surface of the medical device. Alternatively, a mixed solution of a suitable polymer and an ionic bond complex is formed or applied to the surface of another medical device. A cationic residue is chemically introduced into the polymer, and heparin is ionically bonded thereto. Heparin is covalently attached to the polymer. And so on.

【0009】は今日臨床に広く用いられている材料
(例えばシリコンゴム、ポリカーボネート、テフロン、
ポリエチレン、軟質ポリ塩化ビニルなど)の表面を簡便
にヘパリン化することが出来る。即ち、各種の心臓血管
カテーテル、熱希釈測定用カテーテル、ドレナージチュ
ーブ、大動脈バイパスチューブ、ガイドワイヤなどの表
面がヘパリン化され臨床に用いられている。但しこれは
材料の表面のみに塗布されているだけなので、ヘパリン
は短時間で溶出し、抗血栓性が持続せず、せいぜい1日
程度といわれている。
Materials widely used in clinical practice today (eg, silicone rubber, polycarbonate, Teflon,
The surface of polyethylene, soft polyvinyl chloride, etc.) can be easily heparinized. That is, the surfaces of various cardiovascular catheters, thermodilution measuring catheters, drainage tubes, aortic bypass tubes, guide wires, etc. are heparinized and used clinically. However, since this is only applied to the surface of the material, heparin elutes in a short time, the antithrombotic property does not continue, and it is said that it is about one day at most.

【0010】はの欠点を改善するためヘパリンを材
料内部まで結合する目的でポリ塩化ビニルにメトキシポ
リエチレングリコールメタクリレートと4級化ジメチル
アミノエチルメタクリレートの共重合体をグラフトしこ
れにヘパリンをイオン結合したものでアンスロンという
商標で東レ(株)より販売されている。
In order to improve the drawback of (1), heparin is bound to the inside of the material and polyvinyl chloride is grafted with a copolymer of methoxypolyethylene glycol methacrylate and quaternized dimethylaminoethyl methacrylate, and heparin is ionically bonded to the grafted copolymer. Is sold by Toray Industries, Inc. under the trademark Anthron.

【0011】はヘパリンの溶出は少ないが、共有結合
によるヘパリンの抗凝固活性が低下する問題がありまだ
実用には至っていないようである。
[0011] Although the elution of heparin is small, it seems that it has not yet been put into practical use due to the problem that the anticoagulant activity of heparin is reduced by covalent bonding.

【0012】とは有効量のヘパリンが長時間持続し
て放出する点、実用上十分期待できると思われる。
[0012] The point is that an effective amount of heparin is continuously released for a long period of time, which is considered to be sufficiently expected for practical use.

【0013】[0013]

【発明が解決しようとする課題】血中電解質センサに用
いられる材料としては、センサ表面に塗布した場合セン
サ表面で血栓形成が防止され、血栓にもとづく応答性低
下が生じないこと及びセンサ表面に塗布された材料が血
液中の電解質等を十分に透過させ、センサの応答性の低
下をきたさないことが必要である。
As a material used for the blood electrolyte sensor, when applied to the sensor surface, thrombus formation is prevented on the sensor surface, and responsiveness reduction due to thrombus does not occur and it is applied to the sensor surface. It is necessary that the applied material is sufficiently permeable to the electrolyte and the like in blood and does not deteriorate the response of the sensor.

【0014】この見地から上記ヘパリン化材料を吟味し
てみると、血液の凝固防止の点は期待できても透過性の
点は不十分と考えられる。即ち、従来のヘパリン化材料
は抗血栓性の点においては臨床的有用性はそれなりに認
められるものの血中電解質センサ用としては未だ不十分
である。
From this point of view, when the heparinized material is examined, it can be expected that the prevention of blood coagulation can be expected but the permeability is insufficient. That is, although the conventional heparinized materials have some clinical usefulness in terms of antithrombotic properties, they are still insufficient for blood electrolyte sensors.

【0015】これらの欠点を解決するため、本発明者
は、抗血栓性と電解質等の透過性の両面から期待できる
材料について鋭意検討した結果本発明に至ったものであ
る。
In order to solve these drawbacks, the present inventor has arrived at the present invention as a result of extensive studies on a material that can be expected from both aspects of antithrombogenicity and permeability such as an electrolyte.

【0016】本発明の目的は、ヘパリンを一定時間連続
して放出し抗血栓性を発揮すると共に電解質等の透過性
が良好で血液中電解質センサ用被覆材として好適な材料
を提供することである。
It is an object of the present invention to provide a material which releases heparin continuously for a certain period of time to exhibit antithrombogenicity and has good permeability to electrolytes and the like, which is suitable as a coating material for an electrolyte sensor in blood. .

【0017】[0017]

【課題を解決するための手段】第4級アンモニウム塩と
ヘパリンのイオン結合複合体は各種有機溶剤に溶け簡便
に医療材料に塗布できる点で利用しやすい材料である
が、後述の実施例にも示されるように、電解質等の透過
性が十分でなく、又、生体液中ではヘパリンの溶出が急
速に生じ、抗血栓性効果の持続が期待できないので、こ
のままでは血液中電解質センサへの適用はむずかしい。
[Means for Solving the Problems] An ionic bond complex of a quaternary ammonium salt and heparin is a material that is easy to use because it dissolves in various organic solvents and can be easily applied to medical materials. As shown, the permeability of electrolytes is not sufficient, and the elution of heparin occurs rapidly in biological fluids, and the antithrombotic effect cannot be expected to continue. It's difficult.

【0018】一方、製膜した場合に適当な機械的強度と
保湿性を持つ素材は一般に知られている。これはイオン
透過性材料として期待し得るものである。例えば、ポリ
エチレンオキサイドセグメント化ナイロン610 (以下P
EO−Nylon610 と略す)は図1に示す構成となってい
る。すなわちナイロンセグメントは膜形成に有効に働
き、膜の機械的強度を分担し、ポリエチレンオキサイド
セグメントは含水してイオンの良好な透過チャンネルを
形成するためセンサに被覆した場合応答性が良好な膜と
なる。しかし血液の凝固防止機能の点からは第4級アン
モニウム塩−ヘパリン、イオン結合複合体より劣り、十
分とはいえない。そこで本願発明者は両者を混合して用
いることにより両者の長所を生かし、短所を補ない合え
るのではないかとの着想の下に鋭意検討した結果、両者
の混合膜が血中電解質センサ用として有効な被覆となり
うることを見出した。
On the other hand, a material having suitable mechanical strength and moisture retention when formed into a film is generally known. This can be expected as an ion permeable material. For example, polyethylene oxide segmented nylon 610 (hereinafter P
EO-Nylon 610) is configured as shown in FIG. That is, the nylon segment works effectively for forming a film, shares the mechanical strength of the film, and the polyethylene oxide segment forms a favorable ion permeation channel by containing water, so that a film with good responsiveness is formed when coated on the sensor. . However, from the viewpoint of the blood coagulation preventing function, it is inferior to the quaternary ammonium salt-heparin and the ionic bond complex, and is not sufficient. Therefore, the inventors of the present application conducted a diligent study under the idea that the advantages of the two could be utilized by mixing them to compensate for their disadvantages, and as a result, a mixed film of both was effective for a blood electrolyte sensor. It has been found that it can be a different coating.

【0019】即ち、本発明は、機械的強度に富み含水性
を備えた高分子素材と第4級アンモニウム塩ヘパリネー
トを混合して成る血液中洗浄をセンサ用被電材料であ
る。
That is, the present invention is a material for a sensor for cleaning in blood which is a mixture of a polymer material having high mechanical strength and water content and a quaternary ammonium salt heparinate.

【0020】ここで、第4級アンモニウム塩としては、
塩化ベンザルコニウム、トリドデシルアンモニウムクロ
ライド、メチルトリカプリルアンモニウムクロライド、
セチルピリジニウムクロライド、セチルトリメチルアン
モニウムブロマイド、セチルアンモニウムブロマイド等
があげられる。これらはいずれも第4級アンモニウム残
基を有し、ヘパリンのアニオン残基とイオン結合し水不
溶性の複合体(以下ヘパリン化物と略す)を形成する。
第4級アンモニウム塩としては上に挙げたものに限定さ
れるものではない。
Here, as the quaternary ammonium salt,
Benzalkonium chloride, tridodecyl ammonium chloride, methyl tricaprylammonium chloride,
Examples include cetylpyridinium chloride, cetyltrimethylammonium bromide, cetylammonium bromide and the like. Each of these has a quaternary ammonium residue and ionically bonds with an anion residue of heparin to form a water-insoluble complex (hereinafter abbreviated as heparinized compound).
The quaternary ammonium salt is not limited to those listed above.

【0021】PEO−Nylon610 は、PEO-Nylon610 is

【化1】 のくり返し単位から成る高分子化合物で(A) の親水性の
ポリエチレンオキシド(PEOと略す)セグメント部分
と(B) の疎水性のナイロン610 セグメント部分より成る
結晶−非晶ブロック共重合体である。(A)の分子量や重
量比率を変化させると機械的強度やイオン透過性のいろ
いろ異なるポリマーが得られる。
[Chemical 1] It is a polymer compound composed of repeating units of (A), which is a crystalline-amorphous block copolymer composed of a hydrophilic polyethylene oxide (abbreviated as PEO) segment portion (A) and a hydrophobic nylon 610 segment portion (B). By changing the molecular weight or weight ratio of (A), polymers having different mechanical strength and ion permeability can be obtained.

【0022】本発明において用いられるものは、PEO
の分子量が1000〜6000好ましくは、2000〜6000のものが
良く、重量比率は10〜90%、好ましくは20〜80%が良
い。PEOの分子量及び重量比率が小さいとイオンを通
しにくくなりPEOの分子量が大きいとイオンは通しや
すいが機械的強度が弱くなる。一例としてPEOの分子
量3000の場合において重量比率を変えたものをヘキサフ
ロロイソプロパノールに2w/v %溶かし、これをIS
ETのゲート面に注射針より2滴々下してバッファー中
とPH変化に対する応答時間を比較した結果を図2〜図
4に示す、PEOの比率が0%ではきわめて応答性が悪
く(図2)、PEOの比率が21%、51.5%と増加するに
伴い応答性が向上する(図3、図4)。電解質センサ表
面に塗布するヘパリン化物−PEO−Nylon610 混合溶
液中の両者の比率は、ヘパリン化物として1〜90%、好
ましくは10〜80% が良い。ヘパリン化物の比率が大きす
ぎると成膜性が低下する、且つ、応答性が低下する、ヘ
パリンの放出が急速に生じ抗血栓性効果の持続が期待で
きない等の問題を生じる。ヘパリン化物の比率が小さく
なると応答性は良くなるが抗血栓性が低下する。
What is used in the present invention is PEO.
Has a molecular weight of 1000 to 6000, preferably 2000 to 6000, and a weight ratio of 10 to 90%, preferably 20 to 80%. If the molecular weight and weight ratio of PEO are small, it becomes difficult for the ions to pass, and if the molecular weight of PEO is large, the ions can easily pass but the mechanical strength becomes weak. Dissolved 2w / v% of those with different weight ratio hexafluoroisopropanol in the case of PEO of molecular weight 3000 as an example, which I S F
The results of comparing the response time to the pH change in the buffer by dropping two drops from the injection needle on the gate surface of ET are shown in FIGS. 2 to 4. When the PEO ratio is 0%, the response is extremely poor (FIG. 2). ), And the responsiveness improves as the PEO ratio increases to 21% and 51.5% (Figs. 3 and 4). The ratio of the heparinized product-PEO-Nylon 610 mixed solution applied to the surface of the electrolyte sensor is 1 to 90%, preferably 10 to 80% as a heparinized product. When the ratio of the heparinized product is too large, the film forming property is deteriorated, the responsiveness is deteriorated, the release of heparin occurs rapidly, and the antithrombotic effect cannot be expected to continue. When the ratio of heparinized product is small, the responsiveness is improved but the antithrombotic property is decreased.

【0023】混合液としての濃度は0.1 〜40% 、好まし
くは1〜30% 程度が良い。濃度が小さいと抗血栓性効果
がなくなり濃度が大きいと塗布がやりにくい、応答性が
わるくなる等の欠点を生じる。
The concentration as a mixed solution is 0.1 to 40%, preferably about 1 to 30%. When the concentration is low, the antithrombotic effect is not achieved, and when the concentration is high, there are drawbacks such as difficulty in application and poor responsiveness.

【0024】[0024]

【作用】本発明が血液中電解質センサに塗布されて用い
られた場合、ヘパリンを長時間連続して放出すると共に
電解質を十分に透過させる。
When the present invention is applied to a blood electrolyte sensor and used, it releases heparin continuously for a long time and sufficiently permeates the electrolyte.

【0025】[0025]

【実施例】【Example】

実施例1 ヘパリン化物を塩化メチレン3容とヘキサクロロイソプ
ロパノール2容の混合溶媒に溶かし2w/v %とし、IS
FET(ゲート絶縁型電解効果トランジスタ構造を有す
るイオンセンサ)のゲート絶縁膜(窒化シリコン)上に
注射針にて3滴々下し溶媒を蒸発させてヘパリン化物を
被覆した。このIS FETにつきバッファー中でPH変
化に対する応答性を調べたところPH変化PH6.86→P
H9.18に対し95%応答で3分を要した。
Example 1 The heparinized product was dissolved in a mixed solvent of 3 volumes of methylene chloride and 2 volumes of hexachloroisopropanol to 2 w / v% and I S
On the gate insulating film (silicon nitride) of the FET (ion sensor having a gate insulating field effect transistor structure), three drops were dropped with an injection needle and the solvent was evaporated to cover the heparinized product. When the response of this I S FET to the pH change was examined in the buffer, the PH change PH6.86 → P
95% response to H9.18 took 3 minutes.

【0026】またPEO−Nylon610 (PEO分子量30
00、モル分率51.5%)を同一溶媒に同一濃度溶かしIS
FETゲート絶縁膜上に注射針にて3滴々して溶媒を蒸
発させ被覆し、同様にPH変化(PH6.86→PH9.18)
に対する応答性を調べたところ15秒で95%応答を示し
た。
Further, PEO-Nylon610 (PEO molecular weight 30
00, the same concentration of the mole fraction 51.5%) in the same solvent dissolving I S
The FET gate insulating film is coated with 3 drops by an injection needle to evaporate the solvent and to change the pH in the same manner (PH6.86 → PH9.18).
When the responsiveness to was examined, 95% response was shown in 15 seconds.

【0027】一方、ヘパリン化物の一部をPEO−Nyl
on610 でおきかえヘパリン化物70%の場合につき同様に
S FETゲート絶縁膜上に3滴々下し被覆を形成し、
PH変化(PH6.86→PH9.18)に対する応答性を調べ
たところ95%応答で1分程度であった。
On the other hand, a part of the heparinized product is used as PEO-Nyl.
In the case of replacement with on610 and 70% heparinized compound, similarly, three drops are formed on the I S FET gate insulating film to form a coating,
When the responsiveness to the change in PH (PH6.86 → PH9.18) was examined, it was 95% and was about 1 minute.

【0028】実施例2 PEO−Nylon610 (PEOの分子量3000、重量比率5
1.5%)を塩化メチレン3容とヘキサクロロイソプロパ
ノール2容の混合溶媒に溶かし0.75w/v %溶液とし、こ
れを内径10mm長さ100 mmのガラス試験管内面に塗布乾燥
させ、乾燥後これにクエン酸を加えた多血小板血漿0.5m
l 、ついでM/40塩化カルシウム0.5ml を加え、37℃に
て血漿が凝固するまでの時間を計ったところ5分であっ
た。なお未塗布のガラス試験管について同様の時間を計
ったところ3分であった。
Example 2 PEO-Nylon610 (PEO molecular weight 3000, weight ratio 5
1.5%) is dissolved in a mixed solvent of 3 volumes of methylene chloride and 2 volumes of hexachloroisopropanol to give a 0.75 w / v% solution, which is applied and dried on the inner surface of a glass test tube having an inner diameter of 10 mm and a length of 100 mm. Platelet rich plasma 0.5m
Then, 0.5 ml of M / 40 calcium chloride was added, and the time until the plasma coagulated at 37 ° C. was measured and it was 5 minutes. When the same time was measured for the uncoated glass test tube, it was 3 minutes.

【0029】一方、塩化ベンザルユニウム−ヘパリンイ
オン結合複合体を塩化メチレンに溶かし0.75w/v %とし
上記と同様にガラス試験管内面に塗布し乾燥後これに多
血小板血漿0.5ml 、ついでM/40Ca Cl 2 0.5ml を加
え37℃にて血漿が凝固するまでの時間を計ったところ、
24時間経過後も凝固しなかった。
On the other hand, the benzalunium chloride-heparin ion-bonded complex was dissolved in methylene chloride to 0.75 w / v% and coated on the inner surface of a glass test tube in the same manner as above, dried and then added with 0.5 ml of platelet-rich plasma and then M / 40 Ca Cl. 2 0.5 ml was added and the time until the plasma clots at 37 ° C was measured.
It did not solidify after 24 hours.

【0030】実施例3 塩化ベンザルユニウム−ヘパリンイオン結合複合体を塩
化メチレン3容とヘキサクロロプロパノール2容の混合
溶媒に溶かし、0.75w/v %溶液を作成した。
Example 3 The benzalunium chloride-heparin ion-bonded complex was dissolved in a mixed solvent of 3 volumes of methylene chloride and 2 volumes of hexachloropropanol to prepare a 0.75 w / v% solution.

【0031】別に同一混合溶媒により塩化ベンザルユニ
ウム−ヘパリンイオン結合複合体とPEO−Nylon610
(PEO分子量3000、重量比率51.5%)を混合し各々0.
75%、1.0 %含有する溶液を調製した。
Separately, using the same mixed solvent, benzalunium chloride-heparin ion-bonded complex and PEO-Nylon610.
(PEO molecular weight 3000, weight ratio 51.5%) was mixed and
A solution containing 75% and 1.0% was prepared.

【0032】各溶液を内径10mm、長さ100 mmのガラス試
験管の内面に塗布した後、各々に1規定の塩化ナトリウ
ム水溶液を満たし37℃にて放置した、50時間後塩化ナト
リウム水溶液を捨て試験管内面をイオン交換水で十分洗
浄し60℃にて乾燥させた。
Each solution was applied to the inner surface of a glass test tube having an inner diameter of 10 mm and a length of 100 mm, filled with 1 N sodium chloride aqueous solution and left at 37 ° C. After 50 hours, the sodium chloride aqueous solution was discarded and tested. The inner surface of the tube was thoroughly washed with ion-exchanged water and dried at 60 ° C.

【0033】上記のように処理した試験管の各々に牛乏
血小板血漿を0.5ml 、ついでM/40塩化カリウムを0.5m
l 加え、37℃にて血漿が凝固するまでの時間を測定した
ところヘパリン化物のみを塗布した方は3分であった。
一方、ヘパリン化物とPEO−Nylon610 の混合膜を塗
布した方は20時間経過後も凝固は生じなかった。
0.5 ml of bovine platelet-poor plasma was added to each of the test tubes treated as described above, followed by 0.5 m of M / 40 potassium chloride.
In addition, the time required for plasma to coagulate at 37 ° C. was measured, and it was 3 minutes for the heparinized product alone.
On the other hand, in the case where the mixed film of the heparinized product and PEO-Nylon610 was applied, coagulation did not occur even after 20 hours.

【0034】実施例4 塩化ベンザルユニウム−ヘパリンイオン結合複合体を塩
化メチレン3容とヘキサクロロイソプロパノール2容の
混合溶媒に溶かし2w/v %溶液とした。
Example 4 The benzalunium chloride-heparin ion-bonded complex was dissolved in a mixed solvent of 3 volumes of methylene chloride and 2 volumes of hexachloroisopropanol to prepare a 2 w / v% solution.

【0035】別に同一溶媒により塩化ベンザルユニウム
−ヘパリンイオン結合複合体を2w/v %、PEO−ナイ
ロン610 (PEO分子量3000、モル分率51.5%)を3w/
v %含む混合液を調整した。各溶液にナイロンフィルム
を浸漬して引き上げ、乾燥させることを2回繰り返した
後打ち抜きにより直径8mmの円板をそれぞれ作成した。
Separately, using the same solvent, 2 w / v% of benzalyunium chloride-heparin ion-bonded complex and 3 w / v of PEO-nylon 610 (PEO molecular weight 3000, mole fraction 51.5%).
A mixed solution containing v% was prepared. A nylon film having a diameter of 8 mm was prepared by repeating the process of immersing the nylon film in each solution, pulling it up, and drying it twice.

【0036】各円板を牛乏血小板血漿10ml中に37℃にて
浸漬し血漿中のヘパリン濃度の変化を測定した。結果を
図5に示す。塩化ベンザルユニウム−ヘパリンイオン結
合複合体のみの場合はヘパリンの急速な溶出が生じ、時
間と共にヘパリンの溶出速度の低下がみられる。これに
対しPEO−Nylon610 混合膜ではヘパリンの急速な溶
出が抑制されている。
Each disc was immersed in 10 ml of bovine platelet-poor plasma at 37 ° C., and the change in heparin concentration in plasma was measured. Results are shown in FIG. In the case of only the benzalunium chloride-heparin ion-bound complex, rapid elution of heparin occurs, and the elution rate of heparin decreases with time. On the other hand, in the PEO-Nylon610 mixed film, the rapid elution of heparin is suppressed.

【0037】[0037]

【発明の効果】本発明によれば長時間連続して抗血栓性
に優れ、電解質等の透過性が良好な血液中電解質センサ
用被覆材料が得られる。
EFFECTS OF THE INVENTION According to the present invention, a coating material for an electrolyte sensor in blood, which has excellent antithrombogenicity for a long period of time and has good permeability of electrolytes and the like, can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】PEO−Nylon610 の構造を示す図。FIG. 1 is a diagram showing the structure of PEO-Nylon610.

【図2】PEO比率0%のPEO−Nylon610 を塗布さ
れたIS FETのPH変化に対する応答時間を示す図。
FIG. 2 is a diagram showing a response time to PH change of an I S FET coated with PEO-Nylon610 having a PEO ratio of 0%.

【図3】PEO比率21%のPEO−Nylon610 を塗布さ
れたIS FETのPH変化に対する応答時間を示す図。
FIG. 3 is a graph showing a response time of an I S FET coated with PEO-Nylon610 having a PEO ratio of 21% with respect to a change in PH.

【図4】PEO比率51.5%のPEO−Nylon610 を塗布
されたIS FETのPH変化に対する応答時間を示す
図。
FIG. 4 is a graph showing a response time of an I S FET coated with PEO-Nylon610 having a PEO ratio of 51.5% with respect to a change in PH.

【図5】塩化ベンザルユニウム−ヘパリンイオン結合複
合体のみと、これとPEO−Nylon610 の混合したもの
をそれぞれナイロンの円板に付着させ血漿に浸漬した場
合における血漿中のヘパリン濃度の変化を示す図。
FIG. 5 is a view showing changes in heparin concentration in plasma when only a benzalunium chloride-heparin ion-bonded complex and a mixture of this and PEO-Nylon610 are adhered to a nylon disc and immersed in plasma.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 機械的強度に富み含水性を備えた高分子
素材と第4級アンモニウム塩ヘパリネートを混合して成
る血液中電解質センサ用被覆材料。
1. A coating material for an electrolyte sensor in blood, which is obtained by mixing a polymer material having high mechanical strength and water content with a quaternary ammonium salt heparinate.
【請求項2】 高分子素材はポリエチレンオキサイドセ
グメント化ナイロン610 であることを特徴とする請求項
1記載の血液中電解質センサ用被覆材料。
2. The coating material for an electrolyte sensor in blood according to claim 1, wherein the polymer material is polyethylene oxide segmented nylon 610.
JP3181631A 1991-06-27 1991-06-27 Coating material for electrolyte sensor in blood Expired - Fee Related JPH0777586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3181631A JPH0777586B2 (en) 1991-06-27 1991-06-27 Coating material for electrolyte sensor in blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3181631A JPH0777586B2 (en) 1991-06-27 1991-06-27 Coating material for electrolyte sensor in blood

Publications (2)

Publication Number Publication Date
JPH053916A true JPH053916A (en) 1993-01-14
JPH0777586B2 JPH0777586B2 (en) 1995-08-23

Family

ID=16104148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3181631A Expired - Fee Related JPH0777586B2 (en) 1991-06-27 1991-06-27 Coating material for electrolyte sensor in blood

Country Status (1)

Country Link
JP (1) JPH0777586B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1057492A1 (en) * 1997-12-05 2000-12-06 Toyo Boseki Kabushiki Kaisha Blood-compatible composition and medical device using same
US6967003B2 (en) * 2001-09-28 2005-11-22 Dainippon Ink And Chemicals, Inc. Artificial lung of membrane type

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250399A (en) * 1975-10-21 1977-04-22 Agency Of Ind Science & Technol Process for preparing anticoagulating organosilicon polymers
JPS55136064A (en) * 1979-04-11 1980-10-23 Toray Industries Compound structure for medical treatment
JPS60171140A (en) * 1984-01-17 1985-09-04 オミクロン・サイエンテイフイツク・リミテツド Hydrogel coated polymer and manufacture thereof
JPS63119773A (en) * 1987-10-22 1988-05-24 宇部興産株式会社 Blood anti-clotting material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250399A (en) * 1975-10-21 1977-04-22 Agency Of Ind Science & Technol Process for preparing anticoagulating organosilicon polymers
JPS55136064A (en) * 1979-04-11 1980-10-23 Toray Industries Compound structure for medical treatment
JPS60171140A (en) * 1984-01-17 1985-09-04 オミクロン・サイエンテイフイツク・リミテツド Hydrogel coated polymer and manufacture thereof
JPS63119773A (en) * 1987-10-22 1988-05-24 宇部興産株式会社 Blood anti-clotting material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1057492A1 (en) * 1997-12-05 2000-12-06 Toyo Boseki Kabushiki Kaisha Blood-compatible composition and medical device using same
US6967003B2 (en) * 2001-09-28 2005-11-22 Dainippon Ink And Chemicals, Inc. Artificial lung of membrane type

Also Published As

Publication number Publication date
JPH0777586B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
JP2691854B2 (en) A method for providing a bioactive surface to an article having a bioactive surface, an antithrombotic and infection resistant article, and a subcutaneously implantable article.
Chandy et al. Prostaglandin E1‐immobilized poly (vinyl alcohol)‐blended chitosan membranes: Blood compatibility and permeability properties
Keogh et al. Albumin binding surfaces for biomaterials
EP2518100B1 (en) Hydrophilic polymer compound having anticoagulation effect
WO2004037310A2 (en) Surface coating comprising bioactive compound
WO2012176861A1 (en) Medical supply
JPH11313886A (en) Use of neutral or cathionic polymer for preventing activation of contact period of blood or plasma coming in contact with semipermeable membrane
US5236592A (en) Haemocompatible composite material and method of using thereof
JPH053916A (en) Coating material for electrolyte sensor for blood
JP4626005B2 (en) Hemocompatible composition and medical device coated therewith
JP3398415B2 (en) Antithrombotic catheter
JPH0523391A (en) Antithrombogen surface, its manufacturing process and its material
EP0305346B1 (en) Articles exhibiting a blood-compatible surface layer and process for providing articles with such a surface layer
JP2003515110A (en) Blood compatible polymer surface
JPH04285561A (en) Sterilization method for medical material and manufacture of medical instrument
JP4143900B2 (en) Manufacturing method of medical device
JPS62172960A (en) Medical material having anti-thrombotic property
OLSEN et al. Biophysical interactions of blood proteins with polymeric and artificial surfaces
JPS62240066A (en) Medical tubular organ and its production
JPS6248630A (en) Heparin-containing ion complex
JP2013006922A (en) Polymer compound having anticoagulant action
RU2388495C1 (en) Method for obtaining thromboresistant polymer materials
Leininger Progress and problems in blood-compatible polymers
JP2020065632A (en) Medical equipment
JP2000060960A (en) Manufacture of anti-thrombogen medical care device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960213

LAPS Cancellation because of no payment of annual fees