JPH0539092A - Transient flight posture control method for vertical posture landing aircraft - Google Patents

Transient flight posture control method for vertical posture landing aircraft

Info

Publication number
JPH0539092A
JPH0539092A JP19447391A JP19447391A JPH0539092A JP H0539092 A JPH0539092 A JP H0539092A JP 19447391 A JP19447391 A JP 19447391A JP 19447391 A JP19447391 A JP 19447391A JP H0539092 A JPH0539092 A JP H0539092A
Authority
JP
Japan
Prior art keywords
control
attitude
pitch
command
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19447391A
Other languages
Japanese (ja)
Other versions
JP2620428B2 (en
Inventor
Makoto Ono
野 誠 大
Shinichiro Takanashi
梨 晋一郎 高
Hideto Konno
野 秀 人 今
Naohiko Udagawa
直 彦 宇田川
Takashi Shinagawa
川 貴 品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency, Fuji Heavy Industries Ltd filed Critical Japan Steel Works Ltd
Priority to JP19447391A priority Critical patent/JP2620428B2/en
Publication of JPH0539092A publication Critical patent/JPH0539092A/en
Application granted granted Critical
Publication of JP2620428B2 publication Critical patent/JP2620428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To control a posture in the optimum conditions by a simple method wherein an aircraft having aerodynamic control faces and a thrust deflecting device to control the posture of an airframe as for three axes by obtaining the angular deviations of posture as for the three axes, and obtaining angular acceleration command values on the basis of the deviations. CONSTITUTION:A vertical posture landing aircraft is provided with right and left elevons 43b, 43a to control a pitch axis and a roll axis and a rudder 42 to control a yaw axis as aerodynamic control faces, and thrust deflecting vanes 44a-44b cross-likely are arranged in rear of the exhaust port of an engine as a thrust deflecting device. In the case of controlling these respective control elements 42-44d with a control device, deviations between respective posture angle commands and actual posture angles as for the three axes, consisting of the pitch axis, the roll axis, and the yaw axis, are obtained, and angular acceleration commands are obtained according to the control rule based on these deviations. Next, a control gain scheduled as a function against a pitch posture angle or a pitch posture angle command is used together with the angular acceleration command so as to obtain the control face angle command.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水平姿勢での巡航状態
から垂直姿勢でのホバー状態へ遷移して着陸を行う垂直
姿勢着陸航空機の飛行姿勢を制御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the flight attitude of a vertical attitude landing aircraft which makes a landing by transitioning from a cruise status in a horizontal attitude to a hover status in a vertical attitude.

【0002】[0002]

【従来の技術】飛翔体の飛行を制御する従来の技術とし
て、特開昭63−75500号公報に開示されたものが
挙げられる。この技術は、目標に向かって飛行する飛翔
体を制御する際に、時々刻々と変化する飛行条件に適応
して良好な制御を行おうとするものである。飛翔体に飛
行制御ゲイン計算機が搭載されており、空力舵面及び推
力偏向装置の操作量により速度及び飛行姿勢がどのよう
に変化するかを記述する状態方程式を解いてフィードバ
ックゲインを算出する。そして、空力舵面及び推力偏向
装置の操作量に、飛行速度や姿勢をフィードバックす
る。
2. Description of the Related Art As a conventional technique for controlling the flight of a flying object, there is one disclosed in Japanese Patent Laid-Open No. 63-75500. This technique is intended to perform good control while controlling a flying object flying toward a target by adapting to flight conditions that change from moment to moment. The flight control gain calculator is mounted on the flying object, and the feedback gain is calculated by solving a state equation that describes how the velocity and flight attitude change depending on the operation amount of the aerodynamic control surface and the thrust deflector. Then, the flight speed and the attitude are fed back to the operation amounts of the aerodynamic control surface and the thrust deflector.

【0003】[0003]

【発明が解決しようとする課題】しかし、このような従
来の技術には次のような問題があった。飛行条件は時々
刻々と変化し、状態方程式を解くための演算量は大きく
コストの上昇を招く。
However, such a conventional technique has the following problems. Flight conditions change from moment to moment, and the amount of calculation for solving the equation of state is large, leading to an increase in cost.

【0004】また舵面制御では、一般に動圧スケジュー
ルゲインが用いられる。これは、予め解明されている空
力特性に基づき、飛行条件を表す状態量で特に空気力の
大きさを決定づける動圧の関数として制御ゲインを定め
ておく。そして飛行中に動圧を計測し、この計測値に基
づいて制御ゲインを変化させるというものである。しか
し、垂直姿勢着陸機が水平姿勢から垂直姿勢へ遷移する
過程では大きな迎角をとる上に、迎角及び動圧が急激に
変化する。従って、遷移飛行中における動圧の計測は極
めて難しく、飛行姿勢の制御は困難である。
In the control surface control, a dynamic pressure schedule gain is generally used. This is based on the aerodynamic characteristics that have been clarified in advance, and the control gain is set as a function of the dynamic pressure that determines the magnitude of the aerodynamic force in particular with the state quantity representing the flight condition. Then, the dynamic pressure is measured during flight, and the control gain is changed based on the measured value. However, in the process of the vertical attitude landing gear transiting from the horizontal attitude to the vertical attitude, the angle of attack and the dynamic pressure change rapidly in addition to the large angle of attack. Therefore, it is extremely difficult to measure the dynamic pressure during transition flight, and it is difficult to control the flight attitude.

【0005】本発明は上記事情に鑑みてなされたもの
で、遷移飛行中における飛行条件の変化に適応して空力
舵面及び推力偏向装置を最適に制御し得る垂直姿勢着陸
機の遷移飛行姿勢制御方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and a transitional flight attitude control of a vertical attitude lander capable of optimally controlling an aerodynamic control surface and a thrust deflecting device by adapting to changes in flight conditions during transitional flight. The purpose is to provide a method.

【0006】[0006]

【課題を解決するための手段】本発明は、ピッチ軸、ロ
ール軸及びヨー軸に関する機体の姿勢制御を行う空力舵
面と推力偏向装置を有する垂直姿勢着陸機の遷移飛行で
の姿勢制御を行う方法であって、これら3軸に関しそれ
ぞれの姿勢角指令と実際の姿勢角との偏差を求める段階
と、求められた偏差に基づいて制御則に従い角加速度指
令を求める段階と、ピッチ姿勢角又はピッチ姿勢角指令
に対する関数としてスケジュールされた制御ゲインと角
加速度指令とを用いて舵角指令を求める段階と、求めら
れた舵角指令に基づいて空力舵面と推力偏向装置とを操
作し、姿勢制御を行う段階とを備えたことを特徴として
いる。
SUMMARY OF THE INVENTION The present invention provides attitude control during transition flight of a vertical attitude lander having an aerodynamic control surface and thrust deflectors for attitude control of the aircraft with respect to pitch, roll and yaw axes. A method of obtaining a deviation between each attitude angle command and an actual attitude angle with respect to these three axes, a step of obtaining an angular acceleration command according to a control law based on the obtained deviation, and a pitch attitude angle or pitch A step of obtaining a steering angle command using a control gain and an angular acceleration command scheduled as a function of the attitude angle command, and operating the aerodynamic control surface and the thrust deflector based on the obtained steering angle command to perform attitude control. And the step of performing.

【0007】[0007]

【作用】ピッチ軸、ロール軸及びヨー軸に関し、それぞ
れ姿勢角指令と実際の姿勢角との偏差が求められ、制御
則に従って角加速度指令求められ、さらにピッチ姿勢角
又はピッチ姿勢角指令に対する関数としてスケジュール
された制御ゲインと角加速度指令とから舵角指令とが求
められる。この舵角指令に基づいて空力舵面と推力偏向
装置とが操作されて姿勢制御が行われる。このように、
遷移飛行中は測定が困難な動圧を用いずに、容易に計測
されるピッチ姿勢角又は容易な計算により得られるピッ
チ姿勢角指令に対する関数としてスケジュールされた制
御ゲインを用いるため、簡易な方法で姿勢制御を最適化
することができる。
With respect to the pitch axis, the roll axis, and the yaw axis, the deviation between the attitude angle command and the actual attitude angle is calculated, the angular acceleration command is calculated according to the control law, and the pitch attitude angle or a function to the pitch attitude angle command is obtained. The steering angle command is obtained from the scheduled control gain and the angular acceleration command. The attitude control is performed by operating the aerodynamic control surface and the thrust deflector based on the steering angle command. in this way,
During transitional flight, a simple method is used because it uses a pitch attitude angle that is easily measured or a control gain that is scheduled as a function for a pitch attitude angle command that is obtained by easy calculation, without using dynamic pressure that is difficult to measure. Attitude control can be optimized.

【0008】[0008]

【実施例】以下、本発明の一実施例について図面を参照
して説明する。先ず、本実施例の適用対象となる垂直姿
勢着陸機の外観を図2に示す。機体41に、空力舵面と
してピッチ軸とロール軸を制御する左右のエレボン43
a及び43bと、ヨー軸を制御するラダー42とが設け
られている。また推力偏向装置として、エンジンの排気
口後方に推力偏向ベーン44a〜44dが設けられてい
る。この推力偏向ベーン44a〜44dは、4枚のベー
ンが十字型に配置されたもので、それぞれのベーンは独
立して動翼のように動く。水平姿勢での飛行には、空力
舵面としての左右のエレボン43a〜43b及びラダー
42が用いられ、垂直ホバー姿勢での飛行では推力偏向
装置としての推力偏向ベーン44a〜44dが用いられ
る。そして、遷移飛行中には左右のエレボン43a〜4
3b及びラダー42と推力偏向ベーン44a〜44dと
が併用される。ここで、エレボン43a及び43bは矢
印Aの向きを正にとり、ベーン44a及び44bは矢印
Aでベーン44c及び44dは矢印Bの向きを正にと
る。ラダー42は、矢印Bの向きを正にとる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, the appearance of a vertical attitude landing gear to which the present embodiment is applied is shown in FIG. The left and right elevons 43 that control the pitch axis and roll axis as aerodynamic control surfaces
A and 43b and a ladder 42 for controlling the yaw axis are provided. Further, as the thrust deflecting device, thrust deflecting vanes 44a to 44d are provided behind the exhaust port of the engine. The thrust deflection vanes 44a to 44d are four vanes arranged in a cross shape, and each vane independently moves like a moving blade. The left and right elevons 43a to 43b as aerodynamic control surfaces and the rudder 42 are used for flight in a horizontal attitude, and thrust deflection vanes 44a to 44d as a thrust deflector are used in flight in a vertical hover attitude. And during the transition flight, the left and right elevons 43a-4
3b and the rudder 42 are used in combination with the thrust deflection vanes 44a to 44d. Here, the elevons 43a and 43b are oriented in the direction of arrow A, the vanes 44a and 44b are oriented in the direction of arrow A, and the vanes 44c and 44d are oriented in the direction of arrow B. The ladder 42 takes the direction of the arrow B to be positive.

【0009】制御すべき軸にはピッチ軸、ロール軸及び
ヨー軸があるが、このうちのある1軸を制御する場合の
姿勢応答特性は、図3のブロック図のように表される。
比較器11に、姿勢指令角θC が入力され、積分器16
から出力された実際の姿勢角θとの偏差θC −θが演算
器12に入力される。演算器12では、制御則の伝達関
数GC1が用いられて演算が行われ、空力舵面の舵角δA
と推力偏向装置の作動角δT とが出力される。ここで、
舵面と推力偏向装置の動特性、即ち、指令に対する舵
角、作動角の遅れを無視し舵角指令と舵角とは等しいと
する。δA 、δT から、θに至る部分は、(図3破線部
17)舵角、推力偏向装置作動角に対する機体姿勢角の
応答をモデル化したものである。
The axes to be controlled include a pitch axis, a roll axis and a yaw axis, and the attitude response characteristic when controlling one of these axes is shown in the block diagram of FIG.
The attitude command angle θ C is input to the comparator 11, and the integrator 16
The deviation θ C −θ from the actual posture angle θ output from is input to the calculator 12. In the calculator 12, the transfer function G C1 of the control law is used for the calculation, and the steering angle δ A of the aerodynamic control surface is calculated.
And the operating angle δ T of the thrust deflector are output. here,
It is assumed that the steering angle command and the steering angle are equal, ignoring the dynamic characteristics of the steering surface and the thrust deflector, that is, the delay of the steering angle and the operating angle with respect to the command. The part from δ A , δ T to θ is a model of the response of the aircraft attitude angle to the steering angle and the thrust deflector operating angle (the broken line portion 17 in FIG. 3).

【0010】演算器12から出力された舵角δA と作動
角δT は、釣り合い状態からの変化量に相当する。舵角
δA は、演算器13に入力されて比例定数KA を乗算さ
れ、KA ・δA が加算器15に出力される。作動角δT
は、演算器14により比例定数KT を乗算されて加算器
15に出力される。ここで、舵角δA と作動角δT とが
比例定数KA 及びKT をそれぞれ乗算されるのは、次の
ような理由による。機体の姿勢が変動したときに空気か
ら受ける減衰モーメントは、舵面や推力偏向装置により
発生される制御モーメントよりも小さく無視し得ると考
えられる。そこで、機体に作用するモーメントは舵角δ
A と作動角δT とに比例して発生するとみなすことがで
きる。これにより、姿勢角θの角加速度d2 θ/dt2
は舵角δA と作動角δT とに比例すると考えられるた
め、比例定数KA 及びKT を乗算することとしている。
加算器15から出力された角加速度d2 θ/dt2 は、
積分器16により2回積分が行われ、機体の実際の姿勢
角θが出力される。この姿勢角θは、比較器11にフィ
ードバックされる。
The steering angle δ A and the operating angle δ T output from the computing unit 12 correspond to the change amount from the balanced state. The steering angle δ A is input to the calculator 13 and multiplied by the proportional constant K A , and K A · δ A is output to the adder 15. Working angle δ T
Is multiplied by the proportional constant K T by the calculator 14 and output to the adder 15. Here, the steering angle δ A and the operating angle δ T are multiplied by the proportional constants K A and K T , respectively, for the following reason. It is considered that the damping moment received from the air when the attitude of the airframe changes is smaller than the control moment generated by the control surface or the thrust deflector and can be ignored. Therefore, the moment acting on the aircraft is the steering angle δ
It can be considered that it occurs in proportion to A and the working angle δ T. As a result, the angular acceleration of the posture angle θ is d 2 θ / dt 2
Is considered to be proportional to the steering angle δ A and the operating angle δ T , so that the proportional constants K A and K T are multiplied.
The angular acceleration d 2 θ / dt 2 output from the adder 15 is
The integrator 16 performs integration twice and outputs the actual attitude angle θ of the machine body. This attitude angle θ is fed back to the comparator 11.

【0011】ここで比例定数KA 及びKT は、遷移飛行
中では速度や姿勢、エンジンの推力の変化に応じて大き
く変化する。このため、伝達関数GC1を不変な関数にす
ると、姿勢指令角θC に対する実際の指令角θの応答特
性も大きく変化する。そこで図4の制御ブロックのよう
に、新たに可変ゲインFA 及びFT を導入する。この図
4に示された制御ブロックを図3のものと比較すると、
演算器12で用いられる不変の伝達関数GC2と、演算器
12と演算器13及び14との間に、可変ゲインFA
びFT を用いて乗算を行う演算器21及び22がそれぞ
れ直列に接続されている点が異なっている。これによ
り、演算器12からの出力d2 θC /dt2 はそれぞれ
演算器21及び22に与えられ、可変ゲインFA 及びF
T が乗算されて舵角δA 及び作動角δT として演算器1
3及び14に出力される。演算器13及び14におい
て、図3の制御ブロックと同様に舵角δA 及び作動角δ
T に比例定数KA 及びKT がそれぞれ乗算されて、角加
速度d2 θ/dt2 が出力される。
Here, the proportional constants K A and K T greatly change according to changes in speed, attitude and engine thrust during transition flight. Therefore, if the transfer function G C1 is an invariant function, the response characteristic of the actual command angle θ with respect to the posture command angle θ C also changes significantly. Therefore, variable gains F A and F T are newly introduced as in the control block of FIG. Comparing the control block shown in FIG. 4 with that of FIG.
The invariant transfer function G C2 used in the computing unit 12 and the computing units 21 and 22 for performing multiplication using the variable gains F A and F T are respectively connected in series between the computing unit 12 and the computing units 13 and 14. The difference is that they are connected. As a result, the output d 2 θC / dt 2 from the arithmetic unit 12 is given to the arithmetic units 21 and 22, respectively, and the variable gains F A and F
The calculator 1 is multiplied by T to obtain the steering angle δ A and the operating angle δ T.
It is output to 3 and 14. In the calculators 13 and 14, as in the control block of FIG. 3, the steering angle δ A and the operating angle δ
T is multiplied by the proportional constants K A and K T , respectively, and the angular acceleration d 2 θ / dt 2 is output.

【0012】可変ゲインFA 及びFT と比例定数KA
びKT との間には、次の(1)式のような関係が成り立
つ必要がある。
Between the variable gains F A and F T and the constants of proportionality K A and K T , it is necessary to establish the following relationship (1).

【0013】 FA ・KA +FT ・KT =1 … (1) この関係式が成立することにより、図4に示された制御
ブロックは図5のものと等価な関係になる。これによ
り、飛行姿勢の応答特性は一定となる。
F A · K A + F T · K T = 1 (1) When this relational expression is established, the control block shown in FIG. 4 has a relation equivalent to that of FIG. As a result, the response characteristic of the flight attitude becomes constant.

【0014】また比例定数KA 及びKT は、動圧Q、迎
角α、エンジン推力Tとの間に次のような関係がある。
The proportional constants K A and K T have the following relationship with the dynamic pressure Q, the angle of attack α, and the engine thrust T.

【0015】 KA =CA ( α)・Q … (2) KT =CT ・T … (3) ここで、CA ( α) は迎角αの関数であり、CT は機体
の空力特性や推力偏向装置の特性により予め決定される
定数である。
K A = C A (α) · Q (2) K T = C T · T (3) where C A (α) is a function of the angle of attack α, and C T is It is a constant previously determined by the aerodynamic characteristics and the characteristics of the thrust deflector.

【0016】この(2)及び(3)式より、飛行中に迎
角α、動圧Q及び推力Tの値を計測することで比例定数
A 及びKT の値が求まる。これにより、可変ゲインF
A 及びFT の値を遷移飛行中に時々刻々と変化させてい
くことが可能となる。この場合に、推力Tはエンジンの
回転数や気温等から推定が可能である。ところが、迎角
αや動圧Qは遷移飛行においては急激に変化するため測
定は困難である。
From the expressions (2) and (3), the values of the proportional constants K A and K T can be obtained by measuring the values of the attack angle α, the dynamic pressure Q and the thrust T during flight. As a result, the variable gain F
It is possible to change the values of A and F T moment by moment during the transition flight. In this case, the thrust T can be estimated from the engine speed, the temperature, and the like. However, the angle of attack α and the dynamic pressure Q change abruptly during transition flight, so it is difficult to measure them.

【0017】そこで、次のような取扱いを行う。遷移飛
行は、水平飛行中の一定の姿勢及び速度から、所定の速
度で引き起こしを行い、所定の径路に沿って飛行すると
いうように、その飛行パターンを限定しても実用上差し
支えない。これにより、α、Q及びTの値はほぼ一定の
パターンで変化することになる。
Therefore, the following handling is performed. In the transition flight, it is practically acceptable to limit the flight pattern such that the flight starts from a certain attitude and velocity during horizontal flight at a predetermined velocity and the flight follows a predetermined path. As a result, the values of α, Q, and T change in a substantially constant pattern.

【0018】また、ピッチ姿勢角又はピッチ姿勢角指令
は遷移飛行中に単調に増加する。そこで、このピッチ姿
勢角又はピッチ姿勢角指令の関数としてα、Q及びTの
値を求めることができるため、比例定数KA 及びKT
値をピッチ姿勢角又はピッチ姿勢角指令の関数としてと
らえることが可能となる。そして、可変ゲインFA 及び
T の値を(1)式を満たすように決定し、スケジュー
ルゲインとして制御則に含めることで制御特性をほぼ一
定に保つことができる。
Further, the pitch attitude angle or the pitch attitude angle command monotonically increases during the transition flight. Therefore, since the values of α, Q and T can be obtained as a function of the pitch attitude angle or the pitch attitude angle command, the values of the proportional constants K A and K T can be regarded as the function of the pitch attitude angle or the pitch attitude angle command. It becomes possible. Then, the values of the variable gains F A and F T are determined so as to satisfy the expression (1) and included in the control law as the schedule gain, so that the control characteristic can be kept substantially constant.

【0019】ここで、可変ゲインFA 及びFT の値は、
定数KA 及びKT との間に(1)式の関係があるが、組
み合わせとしては無限に存在する。しかし遷移飛行は、
水平姿勢での飛行状態から垂直ホバー姿勢での飛行状態
へ滑らかに移行できるものでなければならない。また、
舵面や推力偏向装置にもそれぞれ能力に限界がある。そ
こで、これらの条件を考慮した上で、可変ゲインFA
びFT の値を決定する必要がある。
Here, the values of the variable gains F A and F T are
The constants K A and K T have the relationship of the formula (1), but there are infinite combinations. But the transition flight
It must be capable of smoothly transitioning from a horizontal attitude to a vertical hover attitude. Also,
The control surface and the thrust deflector have their respective limits. Therefore, it is necessary to determine the values of the variable gains F A and F T in consideration of these conditions.

【0020】図6に、可変ゲインFA 及びFT と、比例
定数KA 及びKT との組み合わせ例を示す。この図は、
ピッチ姿勢角又はピッチ姿勢角指令に対する可変ゲイン
A 及びFTの関係を示したものである。水平飛行中
は、推力偏向装置を使用する特別の場合を除いて、通常
は空力舵面のみで飛行姿勢は制御される。そこで、ピッ
チ姿勢角が小さい領域では推力偏向用の可変ゲインFT
を0とし、FA =1/KA とする。
FIG. 6 shows a combination example of the variable gains F A and F T and the proportional constants K A and K T. This figure is
It shows the relationship of the variable gains F A and F T with respect to the pitch attitude angle or the pitch attitude angle command. During level flight, the flight attitude is usually controlled only by the aerodynamic control surface, except in the special case where a thrust deflector is used. Therefore, in the region where the pitch attitude angle is small, the variable gain F T for thrust deflection is
Is set to 0 and F A = 1 / K A.

【0021】逆に垂直ホバー姿勢では、空力舵面は飛行
姿勢には影響を与えず、推力偏向装置のみで制御され
る。そこで、ピッチ姿勢角の大きい領域では舵面に関す
る可変ゲインFA を0とし、FT =1/KT とする。
On the contrary, in the vertical hover attitude, the aerodynamic control surface does not affect the flight attitude and is controlled only by the thrust deflector. Therefore, in a region where the pitch attitude angle is large, the variable gain F A for the control surface is set to 0 and F T = 1 / K T.

【0022】そして、水平飛行から垂直ホバー飛行へと
移行する途中の遷移飛行では、次のようである。高度を
ほぼ一定に保つ遷移飛行パターンの場合、揚力の減少に
合わせて機体重量を支えられるように推力が増大してい
く。最大揚力係数迎角付近では動圧はかなり減少し、空
力舵面の効きを表わす比例定数KA は小さくなってい
る。そして動圧は減少しているが、揚力係数は大きく揚
力はあまり減少していない。このため、推力は小さく抑
えられ推力偏向装置の効きを表わす比例定数KT も小さ
くなっている。そこで、FA =1/KA とした地点とF
T =1/KT とした地点との中央付近のピッチ姿勢角に
おいて、可変ゲインFA 及びFT に共に極大値がくるよ
うに設定する。この中央付近前後の値は、上記(1)式
のみでは決定されない。そこで、空力舵面と推力偏向装
置の最大能力を超えず無理がこないような値を設定す
る。
Then, the following is a transition flight during the transition from horizontal flight to vertical hover flight. In the case of a transition flight pattern that keeps the altitude almost constant, the thrust increases as the lift decreases to support the weight of the airframe. In the vicinity of the maximum lift coefficient angle of attack, the dynamic pressure is considerably reduced, and the proportional constant K A representing the effectiveness of the aerodynamic control surface is reduced. Although the dynamic pressure has decreased, the lift coefficient is large and the lift has not decreased much. Therefore, the thrust force is suppressed to a small value, and the proportional constant K T, which represents the effectiveness of the thrust deflector, is also reduced. Therefore, the point where F A = 1 / K A and F
In the central pitch attitude angle around the point where the T = 1 / K T, set to both maximum value to the variable gain F A and F T comes. The values around the center are not determined by the above equation (1) alone. Therefore, a value is set so as not to exceed the maximum capabilities of the aerodynamic control surface and the thrust deflecting device.

【0023】図6に示された可変ゲインFA 及びFT
値は、ピッチ姿勢角に対して直線的に変化している。厳
密に(1)式の関係を保つならば曲線となるが、図6の
ような折れ線で近似しても、実用上は問題がない上に制
御演算を簡素化することができる。
The values of the variable gains F A and F T shown in FIG. 6 change linearly with the pitch attitude angle. If the relationship of the expression (1) is strictly maintained, it becomes a curve, but even if it is approximated by a polygonal line as shown in FIG. 6, there is no problem in practical use and the control calculation can be simplified.

【0024】以上のような方法で、3軸に関してそれぞ
れ制御を行う本実施例の遷移飛行姿勢制御方法につい
て、図1の制御ブロック図を用いて説明する。ピッチ
軸、ロール軸及びヨー軸に関し、それぞれ誘導装置から
の姿勢角指令と実際の機体の姿勢角との偏差に基づき、
左翼エレボン43a,右翼エレボン43b、ラダー4
2、ベーン44a〜44dをアクチュエータで作動させ
るべき操作量を求める。これにより、機体の姿勢を指令
どおりに変化させていくことができる。
The transitional flight attitude control method of this embodiment, which controls each of the three axes by the above method, will be described with reference to the control block diagram of FIG. Regarding the pitch axis, roll axis and yaw axis, based on the deviation between the attitude angle command from the guidance device and the actual attitude angle of the aircraft,
Left-wing elevon 43a, right-wing elevon 43b, rudder 4
2. Find the amount of operation for operating the vanes 44a to 44d by the actuator. This allows the attitude of the machine body to be changed according to the command.

【0025】ピッチ姿勢角指令θPCと実際の機体のピッ
チ姿勢角θP とが比較器101に入力され、偏差θPC
θP が演算器102に入力される。演算器102では、
比例定数KPPが用いられる比例動作Pと,積分定数KIP
及びラプラス演算子sが用いられる積分動作I,微分定
数KDP及びラプラス演算子sが用いられる微分動作Dか
ら成るPID制御が行われ、ピッチ角加速度指令d2 θ
P /dt2 が出力される。ここで、演算器102で行な
われる演算の内容は、図4における演算器12における
ものと同様である。この出力は演算器103及び104
に入力され、上述したようなピッチ姿勢角又はピッチ姿
勢角指令に対して定義されたスケジュールゲインがそれ
ぞれ乗算される。演算器103における乗算結果は、ピ
ッチエレボン舵角指令δPEとして加算器401及び40
2に出力され、演算器104からはピッチベーン舵角指
令δPVが加算器403及び404に出力される。ここ
で、図1における各演算器103,104,203,2
04,303,304に示されたグラフは、ピッチ姿勢
角又はピッチ姿勢角指令に対するゲインの関係を図示し
たものである。これらのスケジュールゲインが、図4に
おける可変ゲインFA及びFT に相当する。
The pitch attitude angle command θ PC and the actual pitch attitude angle θ P of the machine are input to the comparator 101, and the deviation θ PC
θ P is input to the calculator 102. In the arithmetic unit 102,
Proportional action P using proportional constant K PP and integral constant K IP
And PID control consisting of an integral operation I using the Laplace operator s, a differential constant K DP and a differential operation D using the Laplace operator s, and a pitch angular acceleration command d 2 θ
P / dt 2 is output. Here, the content of the calculation performed by the arithmetic unit 102 is the same as that in the arithmetic unit 12 in FIG. This output is the arithmetic units 103 and 104.
Is input to the above-described pitch attitude angle or pitch attitude angle command, and the schedule gain defined is multiplied respectively. The multiplication result in the calculator 103 is added to the adders 401 and 40 as a pitch elevon steering angle command δ PE.
Is output to 2, pitch vanes steering angle command [delta] PV is output to the adder 403 and 404 from the arithmetic unit 104. Here, each of the arithmetic units 103, 104, 203, 2 in FIG.
The graphs indicated by 04, 303 and 304 illustrate the relationship between the pitch attitude angle or the gain with respect to the pitch attitude angle command. These schedule gains correspond to the variable gains FA and FT in FIG.

【0026】ロール軸及びヨー軸に対しても、同様な動
作が行われる。ロール姿勢角指令θRCと実際のロール姿
勢角θR とが比較器201に入力され、偏差が演算器2
02に入力される。演算器202においてPID制御が
行われ、ピッチ角加速度指令d2 θR /dt2 が演算器
203及び204に出力される。演算器203及び20
4において、ピッチ姿勢角又はピッチ姿勢角指令に対す
る図示されたようなスケジュールゲインがそれぞれ乗算
される。演算器203から出力されたロールエレボン舵
角指令δREは加算器401及び402に出力され、演算
器204から出力されたロールベーン舵角指令δRVは加
算器403〜406に出力される。
Similar operations are performed for the roll axis and the yaw axis. The roll attitude angle command θ RC and the actual roll attitude angle θ R are input to the comparator 201, and the deviation is calculated by the calculator 2.
It is input to 02. PID control is performed in the computing unit 202, and the pitch angular acceleration command d 2 θ R / dt 2 is output to the computing units 203 and 204. Arithmetic units 203 and 20
At 4, the pitch attitude angles or the schedule gain as shown for the pitch attitude angle command, respectively, are multiplied. The roll elevon steering angle command δ RE output from the calculator 203 is output to the adders 401 and 402, and the roll vane steering angle command δ RV output from the calculator 204 is output to the adders 403-406.

【0027】ヨー姿勢角指令θYCとヨー姿勢角θY とが
比較器301に入力され、偏差が演算器302に入力さ
れる。演算器302においてPID制御が行われ、ヨー
角加速度指令d2 θY /dt2 が演算器303及び30
4に出力される。演算器303においてスケジュールゲ
インが乗算されて、ヨーラダー舵角指令δYRがラダー4
2用のアクチュエータに操作量指令として直接出力され
る。演算器304からの乗算結果は、ヨーベーン舵角指
令δYVとして加算器405及び406に出力される。
The yaw attitude angle command θ YC and the yaw attitude angle θ Y are input to the comparator 301, and the deviation is input to the calculator 302. The PID control is performed in the calculator 302, and the yaw angular acceleration command d 2 θ Y / dt 2 is calculated by the calculators 303 and 30.
4 is output. The schedule gain is multiplied in the computing unit 303, and the yaw rudder rudder angle command δ YR becomes the rudder 4
It is directly output to the actuator for 2 as an operation amount command. The multiplication result from the computing unit 304 is output to the adders 405 and 406 as a yaw vane steering angle command δ YV .

【0028】加算器401にピッチエレボン舵角指令δ
PEとロールエレボン舵角指令δREとが入力され、δPE
δREの演算が行われ、左翼エレボン43aを作動するア
クチュエータに操作量指令として出力される。加算器4
02にも同様にピッチエレボン舵角指令δPEとロールエ
レボン舵角指令δREとが入力されるが、図2に示された
矢印Aの向きを正とすることにより、δPE+δREとな
り、右翼エレボン43bを作動するアクチュエータに操
作量指令として出力される。これにより、左翼エレボン
43a及び右翼エレボン43bが操作される。
A pitch elevon steering angle command δ is sent to the adder 401.
PE and the roll elevon steering angle command δ RE are input, and δ PE
δ RE is calculated and output as an operation amount command to the actuator that operates the left-wing elevon 43a. Adder 4
Similarly, the pitch elevon steering angle command δ PE and the roll elevon steering angle command δ RE are also input to 02, but by setting the direction of arrow A shown in FIG. 2 to be positive, δ PE + δ RE , It is output as an operation amount command to an actuator that operates the right wing elevon 43b. As a result, the left-wing elevon 43a and the right-wing elevon 43b are operated.

【0029】ラダー42は、上述したようにヨーラダー
舵角指令δYRを与えられたアクチュエータにより操作さ
れる。
The rudder 42 is operated by the actuator to which the yaw rudder steering angle command δ YR is given as described above.

【0030】加算器403及び404において、ピッチ
ベーン舵角指令δPVとロールベーン舵角指令δRVとがそ
れぞれ入力され、ベーン44aを作動するアクチュエー
タにδPV+δPVが出力され、ベーン44bを作動するア
クチュエータにδPV−δRVが操作量指令として出力され
る。加算器405及び406では、ロールベーン舵角指
令δRVとヨーベーン舵角指令δYVとが加算されて、ベー
ン44cを作動するアクチュエータにδYV−δRVが出力
され、ベーン44dを作動するアクチュエータにδYV
δRVが操作量指令としてそれぞれ出力される。これによ
り、それぞれのアクチュエータによってベーン44a〜
44dが操作される。
In the adders 403 and 404, the pitch vane rudder angle command δ PV and the roll vane rudder angle command δ RV are respectively input, δ PV + δ PV is output to the actuator that operates the vane 44a, and the actuator that operates the vane 44b. Then δ PV − δ RV is output as the manipulated variable command. In the adders 405 and 406, the roll vane steering angle command δ RV and the yaw vane steering angle command δ YV are added, δ YV −δ RV is output to the actuator that operates the vane 44c, and δ is output to the actuator that operates the vane 44d. YV +
δ RV is output as the manipulated variable command. As a result, the vanes 44a ...
44d is operated.

【0031】本実施例によれば、遷移飛行中は測定が極
めて困難な動圧を用いず、垂直ジャイロ等により容易に
測定が可能なピッチ姿勢角、又は制御計算機で計算され
るピッチ姿勢角指令に対する簡易な関数で表されるスケ
ジュールゲインを用いて空力舵面と推力偏向装置とを操
作することにより、最適な飛行姿勢の制御を行うことが
できる。このため、動圧測定用の特殊なセンサ等を必要
とせず、また演算内容の複雑化を招かずに良好な制御特
性が得られる。
According to the present embodiment, the pitch attitude angle that can be easily measured by a vertical gyro or the like without using dynamic pressure that is extremely difficult to measure during transition flight, or the pitch attitude angle command calculated by the control computer. The optimum flight attitude can be controlled by operating the aerodynamic control surface and the thrust deflecting device using the schedule gain represented by a simple function for. Therefore, it is possible to obtain good control characteristics without requiring a special sensor or the like for measuring the dynamic pressure and without complicating the contents of calculation.

【0032】本実施例では、推力偏向装置としてエンジ
ンの排気口後方に設けられた推力偏向ベーンの操作を制
御しているが、他の姿勢制御装置を用いた機体に対して
も本発明の適用が可能である。例えば、エンジンの排気
ノズルを偏向して推力偏向を行う場合は、このノズルを
偏向する角度の指令を決定するのに適用することができ
る。また、エンジンの抽気を噴出して得られる反力によ
り姿勢制御モーメントを得る場合は、噴出ノズルの開口
度指令の決定に本発明を適用することができる。
In the present embodiment, the operation of the thrust deflection vane provided behind the exhaust port of the engine as the thrust deflection device is controlled, but the present invention is also applied to a machine body using another attitude control device. Is possible. For example, when thrust is deflected by deflecting the exhaust nozzle of the engine, it can be applied to determine the command of the angle for deflecting this nozzle. Further, when the attitude control moment is obtained by the reaction force obtained by ejecting the bleed air of the engine, the present invention can be applied to the determination of the opening degree command of the ejection nozzle.

【0033】[0033]

【発明の効果】以上説明したように本発明の垂直姿勢着
陸機の遷移飛行姿勢制御方法は、遷移飛行中は測定が困
難な動圧を用いずに、容易に得られるピッチ姿勢角又は
ピッチ姿勢角指令に対する関数としてスケジュールされ
た制御ゲインを用いて制御を行うため、簡易な方法で飛
行姿勢を制御することができる。
As described above, the method for controlling the transitional flight attitude of the vertical attitude lander according to the present invention can easily obtain the pitch attitude angle or pitch attitude without using the dynamic pressure which is difficult to measure during the transition flight. Since the control is performed using the control gain scheduled as a function of the angle command, the flight attitude can be controlled by a simple method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による垂直姿勢着陸機の遷移
飛行姿勢制御方法を示した制御ブロック図。
FIG. 1 is a control block diagram showing a transitional flight attitude control method for a vertical attitude lander according to an embodiment of the present invention.

【図2】同遷移飛行姿勢制御方法の適用が可能な垂直姿
勢着陸機の外観を示した斜視図。
FIG. 2 is a perspective view showing an appearance of a vertical attitude landing machine to which the same transitional flight attitude control method can be applied.

【図3】同遷移飛行姿勢制御方法における一つの軸に関
する姿勢応答特性を示した制御ブロック図。
FIG. 3 is a control block diagram showing attitude response characteristics regarding one axis in the same transition flight attitude control method.

【図4】可変ゲインを導入した場合の姿勢応答特性を示
した制御ブロック図。
FIG. 4 is a control block diagram showing attitude response characteristics when a variable gain is introduced.

【図5】図4に示された制御ブロックと等価な制御ブロ
ック図。
5 is a control block diagram equivalent to the control block shown in FIG. 4. FIG.

【図6】ピッチ姿勢角又はピッチ姿勢角指令に対する可
変ゲインFA 及びFT の値を示した説明図。
FIG. 6 is an explanatory view showing values of variable gains FA and FT with respect to a pitch attitude angle or a pitch attitude angle command.

【符号の説明】[Explanation of symbols]

101,201,301 比較器 102〜104,202〜204,302〜304 演
算器 401〜406 加算器 43a 左翼エレボン 43b 右翼エレボン 42 ラダー 44a〜44d ベーン
101, 201, 301 Comparator 102-104, 202-204, 302-304 Computational unit 401-406 Adder 43a Left wing elevon 43b Right wing elevon 42 Rudder 44a-44d Vane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇田川 直 彦 東京都新宿区上落合2−23−16 (72)発明者 品 川 貴 東京都新宿区西新宿一丁目7番2号 富士 重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naohiko Udagawa 2-23-16 Kamiochiai, Shinjuku-ku, Tokyo (72) Inventor Takashi Shinagawa 1-7-2, Nishishinjuku, Shinjuku-ku, Tokyo Within Fuji Heavy Industries Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ピッチ軸、ロール軸及びヨー軸の3軸に関
し機体の姿勢制御を行う空力舵面と推力偏向装置を有す
る垂直姿勢着陸機の遷移飛行での姿勢制御を行う方法に
おいて、 前記3軸に関しそれぞれの姿勢角指令と実際の姿勢角と
の偏差を求める段階と、 求められた前記偏差に基づいて制御則に従い角加速度指
令を求める段階と、 ピッチ姿勢角又はピッチ姿勢角指令に対する関数として
スケジュールされた制御ゲインと前記角加速度指令とを
用いて舵角指令を求める段階と、 求められた前記舵角指令に基づいて前記空力舵面と推力
偏向装置とを操作し、姿勢制御を行う段階とを備えたこ
とを特徴とする垂直姿勢着陸機の遷移飛行姿勢制御方
法。
1. A method for performing attitude control in transition flight of a vertical attitude landing machine having an aerodynamic control surface for controlling the attitude of a vehicle body about three axes of a pitch axis, a roll axis and a yaw axis, and a thrust deflector, wherein: Determining the deviation between each attitude angle command and the actual attitude angle for the axis, determining the angular acceleration command according to the control law based on the deviation obtained, and the pitch attitude angle or as a function to the pitch attitude angle command. A step of obtaining a steering angle command using a scheduled control gain and the angular acceleration command, and a step of operating the aerodynamic control surface and a thrust deflector based on the obtained steering angle command to perform attitude control And a transitional flight attitude control method for a vertical attitude lander, comprising:
JP19447391A 1991-08-02 1991-08-02 Transition Flight Attitude Control Method for Vertical Attitude Lander Expired - Lifetime JP2620428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19447391A JP2620428B2 (en) 1991-08-02 1991-08-02 Transition Flight Attitude Control Method for Vertical Attitude Lander

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19447391A JP2620428B2 (en) 1991-08-02 1991-08-02 Transition Flight Attitude Control Method for Vertical Attitude Lander

Publications (2)

Publication Number Publication Date
JPH0539092A true JPH0539092A (en) 1993-02-19
JP2620428B2 JP2620428B2 (en) 1997-06-11

Family

ID=16325137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19447391A Expired - Lifetime JP2620428B2 (en) 1991-08-02 1991-08-02 Transition Flight Attitude Control Method for Vertical Attitude Lander

Country Status (1)

Country Link
JP (1) JP2620428B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9016616B2 (en) 2010-07-26 2015-04-28 Hiroshi Kawaguchi Flying object
CN114261525A (en) * 2021-12-30 2022-04-01 中国航天空气动力技术研究院 Control surface deflection control and measurement system and method
CN115876037A (en) * 2022-11-28 2023-03-31 上海航天控制技术研究所 Solid direct force device switching strategy adapting to large-delay response characteristic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135736B2 (en) 2005-08-23 2008-08-20 トヨタ自動車株式会社 Vertical take-off and landing flight device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9016616B2 (en) 2010-07-26 2015-04-28 Hiroshi Kawaguchi Flying object
CN114261525A (en) * 2021-12-30 2022-04-01 中国航天空气动力技术研究院 Control surface deflection control and measurement system and method
CN114261525B (en) * 2021-12-30 2023-11-03 中国航天空气动力技术研究院 Control surface deflection control and measurement system and method
CN115876037A (en) * 2022-11-28 2023-03-31 上海航天控制技术研究所 Solid direct force device switching strategy adapting to large-delay response characteristic

Also Published As

Publication number Publication date
JP2620428B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
US12084168B2 (en) Geometry-based flight control system
US11787535B2 (en) Online optimization-based flight control system
CN104881035B (en) Aircraft control compensating for coupling method, attitude motion control method and system
US8002220B2 (en) Rate limited active pilot inceptor system and method
CN114942649B (en) Airplane pitching attitude and track angle decoupling control method based on backstepping method
Takahashi et al. A Review of High-Speed Aircraft Stability and Control Challenges
Silva et al. Dynamic inversion and gain-scheduling control for an autonomous aerial vehicle with multiple flight stages
CN1124532C (en) Method and apparatus for turn coordination gain as function of flap position
CN113848990B (en) Unmanned aerial vehicle stable flight control method considering structural nonlinearity
US6390417B1 (en) Drag control system for flying machine, process for estimating drag of flying machine, boundary layer control system, and boundary layer control process
Flores Longitudinal modeling and control for the convertible unmanned aerial vehicle: Theory and experiments
JP2620428B2 (en) Transition Flight Attitude Control Method for Vertical Attitude Lander
CN109101034B (en) Flight control method for vertical/short-distance takeoff and landing aircraft
CN114415516A (en) Fault-tolerant control method for damage fault of control surface of fixed-wing aircraft
Jia et al. Maneuverable aircraft flight control using nonlinear dynamic inversion
KR102114051B1 (en) Method of non-linear control for aircraft considering center of gravity movement
Cox et al. A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design
JP2884072B2 (en) Aircraft path angle control device
Amankwah A Three Degrees of Freedom (3DoF) Dynamic Modeling and Simulation of an Unmanned Aerial Vehicles
Şenipek et al. Agility Assessment of Utility and Attack Configurations
Steer Integrated control of a second generation supersonic commercial transport aircraft using thrust vectoring
JPH07223600A (en) Attitude controller for space shuttle
Rauf et al. Stability Analysis & Development of a Control Strategy for a Small UAV
Ferguson et al. Comparing the flight dynamics characteristics of tandem and conventional helicopters for the purposes of automatic control
CN117991830A (en) Method for improving convergence rate of sliding mode control of second-order nonsingular terminal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120311