JP2620428B2 - Transition Flight Attitude Control Method for Vertical Attitude Lander - Google Patents

Transition Flight Attitude Control Method for Vertical Attitude Lander

Info

Publication number
JP2620428B2
JP2620428B2 JP19447391A JP19447391A JP2620428B2 JP 2620428 B2 JP2620428 B2 JP 2620428B2 JP 19447391 A JP19447391 A JP 19447391A JP 19447391 A JP19447391 A JP 19447391A JP 2620428 B2 JP2620428 B2 JP 2620428B2
Authority
JP
Japan
Prior art keywords
attitude
angle
command
aerodynamic
angle command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19447391A
Other languages
Japanese (ja)
Other versions
JPH0539092A (en
Inventor
野 誠 大
梨 晋一郎 高
野 秀 人 今
直 彦 宇田川
川 貴 品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP19447391A priority Critical patent/JP2620428B2/en
Publication of JPH0539092A publication Critical patent/JPH0539092A/en
Application granted granted Critical
Publication of JP2620428B2 publication Critical patent/JP2620428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水平姿勢での巡航状態
から垂直姿勢でのホバー状態へ遷移して着陸を行う垂直
姿勢着陸航空機の飛行姿勢を制御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the flight attitude of a vertical attitude landing aircraft which makes a transition from a cruise state in a horizontal attitude to a hover state in a vertical attitude and makes a landing.

【0002】[0002]

【従来の技術】飛翔体の飛行を制御する従来の技術とし
て、特開昭63−75500号公報に開示されたものが
挙げられる。この技術は、目標に向かって飛行する飛翔
体を制御する際に、時々刻々と変化する飛行条件に適応
して良好な制御を行おうとするものである。飛翔体に飛
行制御ゲイン計算機が搭載されており、空力舵面及び推
力偏向装置の操作量により速度及び飛行姿勢がどのよう
に変化するかを記述する状態方程式を解いてフィードバ
ックゲインを算出する。そして、空力舵面及び推力偏向
装置の操作量に、飛行速度や姿勢をフィードバックす
る。
2. Description of the Related Art A conventional technique for controlling the flight of a flying object is disclosed in Japanese Patent Application Laid-Open No. 63-75500. In this technique, when controlling a flying object flying toward a target, an attempt is made to perform good control by adapting to flight conditions that change from moment to moment. The flying object is equipped with a flight control gain calculator, and calculates a feedback gain by solving a state equation describing how the speed and the flying attitude change depending on the operation amount of the aerodynamic control surface and the thrust deflection device. Then, the flight speed and attitude are fed back to the operation amounts of the aerodynamic control surface and the thrust deflection device.

【0003】[0003]

【発明が解決しようとする課題】しかし、このような従
来の技術には次のような問題があった。飛行条件は時々
刻々と変化し、状態方程式を解くための演算量は大きく
コストの上昇を招く。
However, such a conventional technique has the following problems. Flight conditions change from moment to moment, and the amount of calculation for solving the state equation is large, leading to an increase in cost.

【0004】また舵面制御では、一般に動圧スケジュー
ルゲインが用いられる。これは、予め解明されている空
力特性に基づき、飛行条件を表す状態量で特に空気力の
大きさを決定づける動圧の関数として制御ゲインを定め
ておく。そして飛行中に動圧を計測し、この計測値に基
づいて制御ゲインを変化させるというものである。しか
し、垂直姿勢着陸機が水平姿勢から垂直姿勢へ遷移する
過程では大きな迎角をとる上に、迎角及び動圧が急激に
変化する。従って、遷移飛行中における動圧の計測は極
めて難しく、飛行姿勢の制御は困難である。
In control surface control, a dynamic pressure schedule gain is generally used. In this method, a control gain is determined as a function of a dynamic pressure which determines a magnitude of an aerodynamic force by a state quantity representing a flight condition, based on an aerodynamic characteristic which has been clarified in advance. Then, the dynamic pressure is measured during the flight, and the control gain is changed based on the measured value. However, in the process of the vertical attitude landing aircraft transitioning from the horizontal attitude to the vertical attitude, the angle of attack and the dynamic pressure rapidly change in addition to a large angle of attack. Therefore, it is extremely difficult to measure the dynamic pressure during the transition flight, and it is difficult to control the flight attitude.

【0005】本発明は上記事情に鑑みてなされたもの
で、遷移飛行中における飛行条件の変化に適応して空力
舵面及び推力偏向装置を最適に制御し得る垂直姿勢着陸
機の遷移飛行姿勢制御方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and a transition flight attitude control of a vertical attitude landing aircraft capable of optimally controlling an aerodynamic control surface and a thrust deflecting device in response to a change in flight conditions during a transition flight. The aim is to provide a method.

【0006】[0006]

【課題を解決するための手段】本発明は、ピッチ軸、ロ
ール軸及びヨー軸の3軸に関し機体の姿勢制御を行う空
力舵面と推力偏向装置を有する垂直姿勢着陸機の遷移飛
行での姿勢制御を行う方法において、前記3軸に関し比
較器によりそれぞれの姿勢角指令と実際の姿勢角との偏
差を求める段階と、前記偏差を演算器に入力して比例動
作、積分動作及び微分動作を行い角加速度指令を出力す
る段階と、出力された前記角加速度指令を空力舵面舵角
指令系の演算器と推力偏向装置作動角指令系の演算器と
に入力し、空力舵面舵角指令系スケジュールゲインF
及び推力偏向装置作動角指令系スケジュールゲインF
を、空力舵面の効めの大きさを表すKと推力偏向装置
の効きの大きさを表す比例定数Kに対して、K・F
+K・F=1を満足させると共に、K・F
水平飛行時に1でピッチ姿勢角の増大につれ漸減し垂直
ホバー姿勢時に0になるようにピッチ姿勢角又はピッチ
姿勢角指令の関数として設定し、ピッチ姿勢角又はピッ
チ姿勢角指令の関数である前記角加速度指令に乗算して
空力舵面舵角指令と推力偏向装置作動角指令とを出力す
る段階と、出力された前記空力舵面舵角指令と推力偏向
装置作動角指令とに基づいて前記空力舵面と推力偏向装
置とを操作し、姿勢制御を行う段階とを備えたことを特
徴としている。
SUMMARY OF THE INVENTION The present invention is directed to a vertical flight landing aircraft having an aerodynamic control surface and a thrust deflector for controlling the attitude of an airframe with respect to three axes of a pitch axis, a roll axis, and a yaw axis. In the control method, a comparator calculates a deviation between each posture angle command and an actual posture angle with respect to the three axes by a comparator, and inputs the deviation to an arithmetic unit to perform a proportional operation, an integral operation, and a differential operation. Outputting an angular acceleration command, and inputting the output angular acceleration command to a calculator for an aerodynamic rudder steering angle command system and a calculator for a thrust deflecting device operating angle command system; F A
And thrust deflection device operating angle command system schedule gain FT
The relative proportional constant K T representing the magnitude of the effect of the K A and thrust deflection device representing the magnitude of Me virtue of aerodynamic control surface, K A · F
A + K T · F T = 1 is satisfied, and the pitch posture angle or pitch posture angle command is set so that K A · F A becomes 1 during horizontal flight and gradually decreases as the pitch posture angle increases, and becomes 0 during the vertical hover posture. Setting as a function, multiplying the pitch attitude angle or the angular acceleration command, which is a function of the pitch attitude angle command, to output an aerodynamic rudder surface steering angle command and a thrust deflection device operating angle command, and outputting the aerodynamic rudder. Operating the aerodynamic rudder surface and the thrust deflection device based on the rudder angle command and the thrust deflection device operating angle command to perform attitude control.

【0007】[0007]

【作用】ピッチ軸、ロール軸及びヨー軸に関し、それぞ
れ姿勢角指令と実際の姿勢角との偏差が求められ、比例
動作、積分動作及び微分動作により角加速度指令が求め
られ、さらにK・F+K・F=1を満足させる
と共に、K・Fが水平飛行時に1でピッチ姿勢角の
増大につれ漸減し垂直ホバー姿勢時に0になるようにピ
ッチ姿勢角又はピッチ姿勢角指令の関数として設定され
たF及びFが角加速度指令に乗算されて空力舵面舵
角指令と推力偏向装置作動角指令とが求められる。この
指令に基づいて空力舵面と推力偏向装置とが操作されて
姿勢制御が行われる。このように、遷移飛行中は測定が
困難な動圧を用いずに、容易に計測されるピッチ姿勢角
又は容易な計算により得られるピッチ姿勢角指令に対す
る関数である比例定数K及びKと可変ゲインF
びFとの関係式により求められるスケジュールゲイン
を用いるため、簡易な方法で姿勢制御を最適化すること
ができる。
[Action] pitch axis relates the roll axis and yaw axis, the deviation is determined and the actual attitude angle and an attitude angle command, respectively, proportional operation, the angular acceleration command is determined by the integral operation and differential operation, further K A · F A + K T · F T = 1 is satisfied, and the pitch posture angle or pitch posture angle command is set so that K A · F A becomes 1 during horizontal flight and gradually decreases as the pitch posture angle increases, and becomes 0 during the vertical hover posture. F a and F T that is set as a function is multiplied by the angular acceleration command and the aerodynamic rudder Omokaji angle command and thrust deflection apparatus operating angle command obtained. The attitude control is performed by operating the aerodynamic control surface and the thrust deflection device based on this command. Thus, without using the difficult dynamic pressure measurements during the transition flight, the proportional constant K A and K T is a function of pitch attitude angle command obtained by easily pitch attitude angle is measured or easy calculations for using schedule gain determined by the relationship equation between the variable gain F a and F T, it is possible to optimize the posture control by a simple method.

【0008】[0008]

【実施例】以下、本発明の一実施例について図面を参照
して説明する。先ず、本実施例の適用対象となる垂直姿
勢着陸機の外観を図2に示す。機体41に、空力舵面と
してピッチ軸とロール軸を制御する左右のエレボン43
a及び43bと、ヨー軸を制御するラダー42とが設け
られている。また推力偏向装置として、エンジンの排気
口後方に推力偏向ベーン44a〜44dが設けられてい
る。この推力偏向ベーン44a〜44dは、4枚のベー
ンが十字型に配置されたもので、それぞれのベーンは独
立して動翼のように動く。水平姿勢での飛行には、空力
舵面としての左右のエレボン43a〜43b及びラダー
42が用いられ、垂直ホバー姿勢での飛行では推力偏向
装置としての推力偏向ベーン44a〜44dが用いられ
る。そして、遷移飛行中には左右のエレボン43a〜4
3b及びラダー42と推力偏向ベーン44a〜44dと
が併用される。ここで、エレボン43a及び43bは矢
印Aの向きを正にとり、ベーン44a及び44bは矢印
Aでベーン44c及び44dは矢印Bの向きを正にと
る。ラダー42は、矢印Bの向きを正にとる。
An embodiment of the present invention will be described below with reference to the drawings. First, the appearance of a vertical attitude landing aircraft to which the present embodiment is applied is shown in FIG. The left and right elevons 43 for controlling the pitch axis and the roll axis as aerodynamic control surfaces
a and 43b, and a ladder 42 for controlling the yaw axis. Further, as the thrust deflection device, thrust deflection vanes 44a to 44d are provided behind the exhaust port of the engine. Each of the thrust deflection vanes 44a to 44d has four vanes arranged in a cross shape, and each vane moves independently like a moving blade. The left and right elevons 43a to 43b and the rudder 42 as aerodynamic control surfaces are used for flight in a horizontal attitude, and the thrust deflection vanes 44a to 44d as thrust deflection devices are used for flight in a vertical hover attitude. And, during the transition flight, the left and right elevons 43a to 43a-4
3b and the rudder 42 and the thrust deflection vanes 44a to 44d are used in combination. Here, the elevons 43a and 43b take the direction of the arrow A in the positive direction, the vanes 44a and 44b take the direction of the arrow A, and the vanes 44c and 44d take the direction of the arrow B in the positive direction. The ladder 42 takes the direction of the arrow B to be positive.

【0009】制御すべき軸にはピッチ軸、ロール軸及び
ヨー軸があるが、このうちのある1軸を制御する場合の
姿勢応答特性は、図3のブロック図のように表される。
比較器11に、姿勢指令角θC が入力され、積分器16
から出力された実際の姿勢角θとの偏差θC −θが演算
器12に入力される。演算器12では、制御則の伝達関
数GC1が用いられて演算が行われ、空力舵面の舵角δA
と推力偏向装置の作動角δT とが出力される。ここで、
舵面と推力偏向装置の動特性、即ち、指令に対する舵
角、作動角の遅れを無視し舵角指令と舵角とは等しいと
する。δA 、δT から、θに至る部分は、(図3破線部
17)舵角、推力偏向装置作動角に対する機体姿勢角の
応答をモデル化したものである。
The axes to be controlled include a pitch axis, a roll axis, and a yaw axis. The attitude response characteristic when one of these axes is controlled is represented as a block diagram in FIG.
The attitude command angle θ C is input to the comparator 11 and the integrator 16
The deviation θ C −θ from the actual attitude angle θ output from the controller 12 is input to the calculator 12. The arithmetic unit 12 performs an operation using the transfer function G C1 of the control law, and calculates the steering angle δ A of the aerodynamic control surface.
And the operation angle [delta] T of the thrust deflection device is output. here,
It is assumed that the steering characteristic and the steering angle are equal, ignoring the dynamic characteristics of the control surface and the thrust deflection device, that is, the steering angle and the delay of the operating angle with respect to the command. The portion from δ A , δ T to θ is a model of the response of the aircraft attitude angle to the steering angle and the thrust deflection device operating angle (broken line portion 17 in FIG. 3).

【0010】演算器12から出力された舵角δと作動
角δは、釣り合い状態からの変化量に相当する。舵角
δは、演算器13に入力されて比例定数Kを乗算さ
れ、K・δが加算器15に出力される。作動角δ
は、演算器14により比例定数Kを乗算されて加算器
15に出力される。ここで、比例定数Kは空力舵面の
効きの大きさを表わし、比例定数Kは推力偏向装置の
効きの大きさを表わす。また、舵角δと作動角δ
が比例定数K及びKをそれぞれ乗算されるのは、次
のような理由による。機体の姿勢が変動したときに空気
から受ける減衰モーメントは、舵面や推力偏向装置によ
り発生される制御モーメントよりも小さく無視し得ると
考えられる。そこで、機体に作用するモーメントは舵角
δと作動角δとに比例して発生するとみなすことが
できる。これにより、姿勢角θの角加速度dθ/dt
は舵角δと作動角δとに比例すると考えられるた
め、比例定数K及びKを乗算することとしている。
加算器15から出力された角加速度dθ/dtは、
積分器16により2回積分が行われ、機体の実際の姿勢
角θが出力される。この姿勢角θは、比較器11にフィ
ードバックされる。
The steering angle δ A and the operating angle δ T output from the calculator 12 correspond to the amount of change from the balanced state. Steering angle [delta] A is input to the calculator 13 is multiplied by the proportional constant K A, K A · δ A is output to the adder 15. Operating angle δ T
Is output multiplied by the proportional constant K T by the arithmetic unit 14 to the adder 15. Here, proportionality constant K A represents the magnitude of the effectiveness of the aerodynamic control surface, the proportionality constant K T represents the magnitude of the effect of the thrust vectoring device. Further, the and the operating angle [delta] T and the steering angle [delta] A is multiplied by a proportional constant K A and K T, respectively, for the following reason. It is considered that the damping moment received from the air when the attitude of the body fluctuates is smaller than the control moment generated by the control surface or the thrust deflection device and can be ignored. Therefore, the moment acting on the fuselage can be considered to occur in proportion to the operating angle [delta] T and the steering angle [delta] A. Thereby, the angular acceleration d 2 θ / dt of the posture angle θ is obtained.
2 would be considered to be proportional to the operating angle [delta] T and the steering angle [delta] A, is set to be multiplied by a proportional constant K A and K T.
The angular acceleration d 2 θ / dt 2 output from the adder 15 is
The integration is performed twice by the integrator 16, and the actual attitude angle θ of the airframe is output. This attitude angle θ is fed back to the comparator 11.

【0011】ここで比例定数K及びKは、遷移飛行
中では速度や姿勢、エンジンの推力の変化に応じて大き
く変化する。このため、伝達関数GC1を不変な関数に
すると、姿勢指令角θに対する実際の指令角θの応答
特性も大きく変化する。そこで図4の制御ブロックのよ
うに、新たに可変ゲインF 及びFを導入する。こ
こで、可変ゲインFは空力舵面舵角指令系スケジュー
ルゲインであり、可変ゲインFは推力偏向装置作動角
指令系スケジュールゲインである。この図4に示された
制御ブロックを図3のものと比較すると、演算器12で
用いられる不変の伝達関数GC2と、演算器12と演算
器13及び14との間に、可変ゲインF及びFを用
いて乗算を行う演算器21及び22がそれぞれ直列に接
続されている点が異なっている。これにより、演算器1
2からの出力dθc/dtはそれぞれ演算器21及
び22に与えられ、可変ゲインF及びFが乗算され
て舵角δ及び作動角δとして演算器13及び14に
出力される。演算器13及び14において、図3の制御
ブロックと同様に舵角δ及び作動角δに比例定数K
及びKがそれぞれ乗算されて、角加速度dθ/d
が出力される。
[0011] proportional constant K A and K T here, speed and posture in the transition flight varies widely depending on the change in the thrust of the engine. Therefore, if the transfer function G C1 is an invariant function, the response characteristic of the actual command angle θ to the attitude command angle θ C also changes greatly. Therefore, as in the control block of FIG. 4, to introduce a new variable gain F A and F T. Here, the variable gain F A is aerodynamic steering Omokaji angle command based scheduling gain, a variable gain F T is thrust deflection apparatus operating angle command based scheduling gain. Comparing the control blocks shown in FIG. 4 to that of Figure 3, the transfer function G C2 invariant used in arithmetic unit 12, while the arithmetic unit 12 and the arithmetic units 13 and 14, variable gain F A and calculator 21 and 22 perform multiplication using F T is different in that it is connected in series. Thereby, the arithmetic unit 1
Output d 2 .theta.c / dt 2 from 2 are applied to respective arithmetic units 21 and 22, is outputted to the arithmetic unit 13 and 14 as a variable gain F A and F T is multiplied steering angle [delta] A and the duration [delta] T You. In the calculators 13 and 14, the proportional constant K is set to the steering angle δ A and the operating angle δ T similarly to the control block of FIG.
A and KT are respectively multiplied to obtain the angular acceleration d 2 θ / d
t 2 is output.

【0012】可変ゲインFA 及びFT と比例定数KA
びKT との間には、次の(1)式のような関係が成り立
つ必要がある。
The following equation (1) must be established between the variable gains F A and F T and the proportional constants K A and K T.

【0013】 FA ・KA +FT ・KT =1 … (1) この関係式が成立することにより、図4に示された制御
ブロックは図5のものと等価な関係になる。これによ
り、飛行姿勢の応答特性は一定となる。
F A K A + F T K T = 1 (1) By satisfying this relational expression, the control block shown in FIG. 4 has a relation equivalent to that of FIG. As a result, the response characteristics of the flight attitude become constant.

【0014】また比例定数KA 及びKT は、動圧Q、迎
角α、エンジン推力Tとの間に次のような関係がある。
The proportional constants K A and K T have the following relationship among the dynamic pressure Q, the angle of attack α, and the engine thrust T.

【0015】 KA =CA ( α)・Q … (2) KT =CT ・T … (3) ここで、CA ( α) は迎角αの関数であり、CT は機体
の空力特性や推力偏向装置の特性により予め決定される
定数である。
K A = C A (α) · Q (2) K T = C T · T (3) where C A (α) is a function of the angle of attack α, and C T is It is a constant determined in advance by the aerodynamic characteristics and the characteristics of the thrust deflection device.

【0016】この(2)及び(3)式より、飛行中に迎
角α、動圧Q及び推力Tの値を計測することで比例定数
A 及びKT の値が求まる。これにより、可変ゲインF
A 及びFT の値を遷移飛行中に時々刻々と変化させてい
くことが可能となる。この場合に、推力Tはエンジンの
回転数や気温等から推定が可能である。ところが、迎角
αや動圧Qは遷移飛行においては急激に変化するため測
定は困難である。
[0016] From this (2) and (3), angle of attack during the flight alpha, the value of the proportional constant K A and K T is determined by measuring the value of the dynamic pressure Q and thrust T. Thereby, the variable gain F
It becomes possible to change the values of A and F T every moment during the transition flight. In this case, the thrust T can be estimated from the engine speed, temperature, and the like. However, it is difficult to measure the angle of attack α and the dynamic pressure Q because they change rapidly during the transition flight.

【0017】そこで、次のような取扱いを行う。遷移飛
行は、水平飛行中の一定の姿勢及び速度から、所定の速
度で引き起こしを行い、所定の径路に沿って飛行すると
いうように、その飛行パターンを限定しても実用上差し
支えない。これにより、α、Q及びTの値はほぼ一定の
パターンで変化することになる。
Therefore, the following handling is performed. In the transition flight, a certain attitude and speed during horizontal flight are caused at a predetermined speed, and the flight pattern is limited, such as flying along a predetermined route. As a result, the values of α, Q, and T change in a substantially constant pattern.

【0018】また、ピッチ姿勢角又はピッチ姿勢角指令
は遷移飛行中に単調に増加する。そこで、このピッチ姿
勢角又はピッチ姿勢角指令の関数としてα、Q及びTの
値を求めることができるため、比例定数KA 及びKT
値をピッチ姿勢角又はピッチ姿勢角指令の関数としてと
らえることが可能となる。そして、可変ゲインFA 及び
T の値を(1)式を満たすように決定し、スケジュー
ルゲインとして制御則に含めることで制御特性をほぼ一
定に保つことができる。
Further, the pitch attitude angle or the pitch attitude angle command monotonously increases during the transition flight. Therefore, alpha as a function of the pitch attitude angle or pitch attitude angle command, it is possible to determine the values of Q and T, captures the value of the proportional constant K A and K T as a function of pitch attitude angle or pitch attitude angle command It becomes possible. Then, the values of the variable gains F A and F T are determined so as to satisfy the expression (1), and the control characteristics can be kept almost constant by including them in the control law as the schedule gains.

【0019】ここで、可変ゲインF及びFの値は、
定数K及びKとの間に上記(1)式の関係がある
が、組み合わせとしては無限に考えられる。しかし、無
限の組み合わせが考えられるとしても、実際の機体で
は、一般的に遷移飛行は水平姿勢での飛行状態から垂直
ホバー姿勢での飛行状態へ滑らかに移行できるものでな
ければならないし、実際の機体の舵面や推力偏向装置に
もそれぞれ能力に限界がある。仮に、空力舵面の効きの
低下する領域で空力舵面に大きく依存した制御を選択す
ると、外乱の影響で滑らかな遷移飛行が大きく阻害され
ることになる。推力の小さい領域で推力偏向装置に大き
く依存した制御についても同様のことが言える。そこ
で、空力舵面と推力偏向装置との効きの良い方を使う制
御をすればよいが、あるピッチ姿勢角で一気に空力舵面
又は推力偏向装置を切り替える方法は、舵面や推力偏向
装置の応答性が異なるために制御力が不連続になり、滑
らかな遷移飛行が達成できない。即ち、滑らかな遷移飛
行には、空力舵面の効きが良く推力偏向装置の効きが悪
い領域では空力舵面への依存度を大きくし、逆に空力舵
面のききが悪く推力偏向装置の効きが良い領域では推力
偏向装置への依存度を大きくし、それらの依存度はピッ
チ姿勢角の変化に応じて漸減あるいは漸増させることが
必要である。
[0019] Here, the value of the variable gain F A and F T is
Relationship of the above equation (1) between the constants K A and K T are considered indefinitely as a combination. However, even in an infinite number of combinations, in an actual airframe, in general, transition flight must be able to smoothly transition from a flight state in a horizontal attitude to a flight state in a vertical hover attitude. The control surfaces of the fuselage and thrust deflecting devices also have limited capabilities. If a control that greatly depends on the aerodynamic control surface is selected in a region where the effectiveness of the aerodynamic control surface is reduced, smooth transition flight is greatly impeded by the influence of disturbance. The same can be said for the control in which the thrust is small and the control largely depends on the thrust deflection device. Therefore, the control using the more effective one of the aerodynamic control surface and the thrust deflector may be performed.However, the method of switching the aerodynamic control surface or the thrust deflector at a certain pitch attitude angle at once is based on the response of the control surface or the thrust deflector. Due to the different sexes, the control force becomes discontinuous, and a smooth transition flight cannot be achieved. In other words, for a smooth transition flight, the dependence of the aerodynamic control surface on the aerodynamic control surface is increased in the area where the effectiveness of the aerodynamic control surface is good and the effect of the thrust deflection device is poor, and conversely, the effectiveness of the thrust deflection device is poor with the effect of the aerodynamic control surface It is necessary to increase the dependence on the thrust deflecting device in an area where is good, and to gradually decrease or increase the dependence in accordance with the change in the pitch attitude angle.

【0020】図6に、可変ゲインFA 及びFT と、比例
定数KA 及びKT との組み合わせ例を示す。この図は、
ピッチ姿勢角又はピッチ姿勢角指令に対する可変ゲイン
A 及びFTの関係を示したものである。水平飛行中
は、推力偏向装置を使用する特別の場合を除いて、通常
は空力舵面のみで飛行姿勢は制御される。そこで、ピッ
チ姿勢角が小さい領域では推力偏向用の可変ゲインFT
を0とし、FA =1/KA とする。
FIG. 6 shows a combination example of the variable gains F A and F T and the proportional constants K A and K T. This figure is
9 shows the relationship between the variable gains F A and F T with respect to the pitch attitude angle or the pitch attitude angle command. During level flight, the flight attitude is usually controlled solely by the aerodynamic control surface, except in special cases using thrust deflection devices. Therefore, in the region where the pitch attitude angle is small, the variable gain F T for thrust deflection is used.
Is set to 0 and F A = 1 / K A.

【0021】逆に垂直ホバー姿勢では、空力舵面は飛行
姿勢には影響を与えず、推力偏向装置のみで制御され
る。そこで、ピッチ姿勢角の大きい領域では舵面に関す
る可変ゲインFA を0とし、FT =1/KT とする。
Conversely, in the vertical hover attitude, the aerodynamic control surface does not affect the flight attitude, and is controlled only by the thrust deflection device. Therefore, a large area of the pitch attitude angle is set to 0 the variable gain F A related control surface, and F T = 1 / K T.

【0022】そして、水平飛行から垂直ホバー飛行へと
移行する途中の遷移飛行では、次のようである。高度を
ほぼ一定に保つ遷移飛行パターンの場合、揚力の減少に
合わせて機体重量を支えられるように推力が増大してい
く。遷移飛行中の水平飛行と垂直ホバー姿勢の中間点付
近に相当する最大揚力係数迎角付近では、動圧が減少し
て空力舵面の効きはかなり低下し、空力舵面の効きを表
すKは小さい。しかし、この付近では揚力係数が大き
いので揚力の低下は小さく、揚力と推力鉛直成分との和
を機体重量につり合わせるため推力は小さい値に抑えら
れているので推力偏向装置の効きは小さく、Kも小さ
な値となる。この中間点よりもピッチ姿勢角がきくなる
と、動圧及び揚力係数が大幅に減少して揚力は激減しK
はさらに小さくなるが、高度を低下させないように推
力が増加されてくるので、推力偏向装置の効きが大きく
なりKが増加してくる。遷移飛行におけるピッチ姿勢
の増大に沿って(1)式を満足させていくと、上記中間
点以前ではまだ推力が低くKが小さいためF・K
を大きくとると推力偏向装置の能力上過大なFを設定
することになるので、F・Kを大きくとる必要があ
る。Kはピッチ姿勢の増大に伴い減少していくので、
減少度に合わせてFが増大するように設定する。上記
中間点付近以降では、さらにKが低下して最早空力舵
面能力上妥当なFでF・Kの大きさを維持できな
くなるので、推力増大によりKの増してきた推力偏向
装置に比重を移してFを小さくしていくのが適当とな
る。従って中間点付近でFは極大値をとる。推力偏向
装置とピッチ姿勢角との関係は、空力舵面と反対の傾向
であるが、やはり中間点付近でFが極大になる。F
とFの具体的設定手順は、まずKとKとの和が最
小になると予想されるピッチ姿勢を中間点と定め、この
中間点に対して水平飛行時より若干大きいFを決め、
(1)式を適用してFの値を求めてFとFの極大
値を設定する。このFの値は垂直ホバー姿勢時の値よ
り大きくし、上記(1)式を適用する。次に水平飛行と
上記中間点付近との間、中間点付近と垂直ホバー姿勢と
の間は、漸次F・Kの値を増加させ減少させて
(1)式を適用してFとFを決める。もし、このよ
うにして決めた上記中間点の前後におけるFとF
値が、空力舵面や推力偏向装置の能力を大きく超えるも
のであれば、中間点のFとFを再設定する。
A transition flight during transition from a horizontal flight to a vertical hover flight is as follows. In the case of the transition flight pattern in which the altitude is kept almost constant, the thrust increases so as to support the weight of the fuselage as the lift decreases. In the vicinity of the maximum lift coefficient attack angle corresponding to the midpoint between the horizontal flight and the vertical hover attitude during the transition flight, the dynamic pressure decreases, the effectiveness of the aerodynamic control surface is considerably reduced, and K A indicating the effectiveness of the aerodynamic control surface Is small. However, since the lift coefficient is large in this vicinity, the decrease in lift is small, and the thrust is suppressed to a small value in order to balance the sum of the lift and the vertical component of thrust with the weight of the fuselage. T also has a small value. When the pitch attitude angle becomes larger than the intermediate point, the dynamic pressure and the lift coefficient are greatly reduced, and the lift is drastically reduced.
Although A becomes smaller, the thrust is increased so as not to lower the altitude, so that the effectiveness of the thrust deflection device is increased and KT is increased. If the equation (1) is satisfied along with the increase in the pitch attitude in the transition flight, F T · K T because the thrust is still low and the KT is small before the intermediate point.
Since the large take when it comes to setting the capacity on excessive F T of the thrust vectoring device, it is necessary to increase the F A · K A. Because the K A is decreases with an increase in pitch attitude,
In accordance with the rate of decrease is set so F A increases. In the following the vicinity of the middle point, because more K A can not be maintained the size of the F A · K A on a reasonable F A longer reduced aerodynamic control surface capability, thrust deflection which has increased the K T by a thrust increase device to keep up a smaller F a becomes appropriate to transfer the specific gravity. Thus F A near the midpoint takes a maximum value. Relationship between the thrust vectoring device and the pitch attitude angle is a tendency opposite to the aerodynamic control surface, F T becomes maximum again near the midpoint. F A
Specifically configuration steps F T defines a pitch attitude is first expected to sum the K A and K T is minimized and the midpoint, decided slightly larger F A than during level flight for this intermediate point and ,
(1) seeking the value of F T by applying the formula to set the maximum value of F A and F T. The value of this F T is greater than the value at the time of vertical hover position, applying the above equation (1). Then between the near horizontal flight and the intermediate point, between the vicinity of the intermediate point and the vertical hover attitude, and F A is applied to progressively decrease to increase the value of F A · K A (1) Equation determine the F T. If the value of F A and F T before and after the intermediate point decided in this way, as long as it greatly exceed the capabilities of the aerodynamic control surface and thrust vectoring device, the F A and F T midpoint re Set.

【0023】図6に示された可変ゲインFA 及びFT
値は、ピッチ姿勢角に対して直線的に変化している。厳
密に(1)式の関係を保つならば曲線となるが、図6の
ような折れ線で近似しても、実用上は問題がない上に制
御演算を簡素化することができる。
The values of the variable gains F A and F T shown in FIG. 6 change linearly with the pitch attitude angle. If the relationship of equation (1) is strictly maintained, a curve is obtained. However, even if approximation is made by a polygonal line as shown in FIG. 6, there is no problem in practical use, and control calculations can be simplified.

【0024】以上のような方法で、3軸に関してそれぞ
れ制御を行う本実施例の遷移飛行姿勢制御方法につい
て、図1の制御ブロック図を用いて説明する。ピッチ
軸、ロール軸及びヨー軸に関し、それぞれ誘導装置から
の姿勢角指令と実際の機体の姿勢角との偏差に基づき、
左翼エレボン43a,右翼エレボン43b、ラダー4
2、ベーン44a〜44dをアクチュエータで作動させ
るべき操作量を求める。これにより、機体の姿勢を指令
どおりに変化させていくことができる。
A transition flight attitude control method of the present embodiment for controlling three axes in the above manner will be described with reference to the control block diagram of FIG. For the pitch axis, roll axis and yaw axis, based on the deviation between the attitude angle command from the guidance device and the actual attitude angle of the aircraft, respectively,
Left-wing elevon 43a, right-wing elevon 43b, rudder 4
2. Obtain an operation amount for operating the vanes 44a to 44d by the actuator. Thereby, the attitude of the aircraft can be changed as instructed.

【0025】ピッチ姿勢角指令θPCと実際の機体のピッ
チ姿勢角θP とが比較器101に入力され、偏差θPC
θP が演算器102に入力される。演算器102では、
比例定数KPPが用いられる比例動作Pと,積分定数KIP
及びラプラス演算子sが用いられる積分動作I,微分定
数KDP及びラプラス演算子sが用いられる微分動作Dか
ら成るPID制御が行われ、ピッチ角加速度指令d2 θ
P /dt2 が出力される。ここで、演算器102で行な
われる演算の内容は、図4における演算器12における
ものと同様である。この出力は演算器103及び104
に入力され、上述したようなピッチ姿勢角又はピッチ姿
勢角指令に対して定義されたスケジュールゲインがそれ
ぞれ乗算される。演算器103における乗算結果は、ピ
ッチエレボン舵角指令δPEとして加算器401及び40
2に出力され、演算器104からはピッチベーン舵角指
令δPVが加算器403及び404に出力される。ここ
で、図1における各演算器103,104,203,2
04,303,304に示されたグラフは、ピッチ姿勢
角又はピッチ姿勢角指令に対するゲインの関係を図示し
たものである。これらのスケジュールゲインが、図4に
おける可変ゲインFA及びFT に相当する。
The pitch attitude angle command θ PC and the pitch attitude angle θ P of the actual machine are input to the comparator 101, and the deviation θ PC
θ P is input to the calculator 102. In the arithmetic unit 102,
The proportional action P using the proportional constant K PP and the integral constant K IP
PID control including an integral operation I using the Laplace operator s, a differential constant KDP and a differential operation D using the Laplace operator s is performed, and the pitch angular acceleration command d 2 θ
P / dt 2 is output. Here, the content of the operation performed by the arithmetic unit 102 is the same as that of the arithmetic unit 12 in FIG. This output is output to arithmetic units 103 and 104
, And the pitch attitude angle or the pitch attitude angle command as described above is multiplied by the defined schedule gain. The result of the multiplication in the arithmetic unit 103 is calculated as a pitch elevon steering angle command δ PE by the adders 401 and 40.
2 and the computing unit 104 outputs the pitch vane steering angle command δ PV to the adders 403 and 404. Here, each computing unit 103, 104, 203, 2 in FIG.
The graphs shown at 04, 303, and 304 illustrate the relationship between the pitch attitude angle or the gain with respect to the pitch attitude angle command. These schedule gains correspond to the variable gains FA and FT in FIG.

【0026】ロール軸及びヨー軸に対しても、同様な動
作が行われる。ロール姿勢角指令θRCと実際のロール姿
勢角θR とが比較器201に入力され、偏差が演算器2
02に入力される。演算器202においてPID制御が
行われ、ピッチ角加速度指令d2 θR /dt2 が演算器
203及び204に出力される。演算器203及び20
4において、ピッチ姿勢角又はピッチ姿勢角指令に対す
る図示されたようなスケジュールゲインがそれぞれ乗算
される。演算器203から出力されたロールエレボン舵
角指令δREは加算器401及び402に出力され、演算
器204から出力されたロールベーン舵角指令δRVは加
算器403〜406に出力される。
Similar operations are performed on the roll axis and the yaw axis. The roll attitude angle command θ RC and the actual roll attitude angle θ R are input to the comparator 201, and the deviation is calculated by the arithmetic unit 2
02 is input. PID control is performed in the arithmetic unit 202, and the pitch angular acceleration command d 2 θ R / dt 2 is output to the arithmetic units 203 and 204. Arithmetic units 203 and 20
At 4, the pitch attitude angle or the schedule gain as shown for the pitch attitude angle command is multiplied, respectively. The roll elevon steering angle command δ RE output from the computing unit 203 is output to adders 401 and 402, and the roll vane steering angle command δ RV output from the computing unit 204 is output to adders 403 to 406.

【0027】ヨー姿勢角指令θYCとヨー姿勢角θY とが
比較器301に入力され、偏差が演算器302に入力さ
れる。演算器302においてPID制御が行われ、ヨー
角加速度指令d2 θY /dt2 が演算器303及び30
4に出力される。演算器303においてスケジュールゲ
インが乗算されて、ヨーラダー舵角指令δYRがラダー4
2用のアクチュエータに操作量指令として直接出力され
る。演算器304からの乗算結果は、ヨーベーン舵角指
令δYVとして加算器405及び406に出力される。
The yaw attitude angle command θ YC and the yaw attitude angle θ Y are input to the comparator 301, and the deviation is input to the calculator 302. PID control is performed in the arithmetic unit 302, and the yaw angular acceleration command d 2 θ Y / dt 2 is calculated by the arithmetic units 303 and 30.
4 is output. The scheduler gain is multiplied by the arithmetic unit 303, and the yaw rudder steering angle command δ YR is
It is directly output as an operation amount command to the second actuator. Multiplication result from the arithmetic unit 304 is output to the adder 405 and 406 as Yoben steering angle command [delta] YV.

【0028】加算器401にピッチエレボン舵角指令δ
PEとロールエレボン舵角指令δREとが入力され、δPE
δREの演算が行われ、左翼エレボン43aを作動するア
クチュエータに操作量指令として出力される。加算器4
02にも同様にピッチエレボン舵角指令δPEとロールエ
レボン舵角指令δREとが入力されるが、図2に示された
矢印Aの向きを正とすることにより、δPE+δREとな
り、右翼エレボン43bを作動するアクチュエータに操
作量指令として出力される。これにより、左翼エレボン
43a及び右翼エレボン43bが操作される。
The pitch elevon steering angle command δ is supplied to the adder 401.
PE and the roll elevon steering angle command δ RE are input, and δ PE
The calculation of δ RE is performed and output as an operation amount command to the actuator that operates the left wing elevon 43a. Adder 4
Similarly, the pitch elevon steering angle command δ PE and the roll elevon steering angle command δ RE are also input to 02. By making the direction of the arrow A shown in FIG. 2 positive, δ PE + δ RE is obtained . An operation amount command is output to an actuator that operates the right wing elevon 43b. Thereby, the left wing elevon 43a and the right wing elevon 43b are operated.

【0029】ラダー42は、上述したようにヨーラダー
舵角指令δYRを与えられたアクチュエータにより操作さ
れる。
The rudder 42 is operated by the actuator given the yaw rudder steering angle command δ YR as described above.

【0030】加算器403及び404において、ピッチ
ベーン舵角指令δPVとロールベーン舵角指令δRVとがそ
れぞれ入力され、ベーン44aを作動するアクチュエー
タにδPV+δPVが出力され、ベーン44bを作動するア
クチュエータにδPV−δRVが操作量指令として出力され
る。加算器405及び406では、ロールベーン舵角指
令δRVとヨーベーン舵角指令δYVとが加算されて、ベー
ン44cを作動するアクチュエータにδYV−δRVが出力
され、ベーン44dを作動するアクチュエータにδYV
δRVが操作量指令としてそれぞれ出力される。これによ
り、それぞれのアクチュエータによってベーン44a〜
44dが操作される。
In the adders 403 and 404, the pitch vane steering angle command δ PV and the roll vane steering angle command δ RV are respectively input, and δ PV + δ PV is output to the actuator for operating the vane 44a, and the actuator for operating the vane 44b. Δ PV −δ RV is output as the manipulated variable command. In the adders 405 and 406, the roll vane steering angle command δ RV and the yaw vane steering angle command δ YV are added, and δ YV −δ RV is output to the actuator that operates the vane 44c, and δ is output to the actuator that operates the vane 44d. YV +
δ RV is output as each of the manipulated variable commands. Thus, the vanes 44a to 44a
44d is operated.

【0031】本実施例によれば、遷移飛行中は測定が極
めて困難な動圧を用いず、垂直ジャイロ等により容易に
測定が可能なピッチ姿勢角、又は制御計算機で計算され
るピッチ姿勢角指令に対する簡易な関数で表されるスケ
ジュールゲインを用いて空力舵面と推力偏向装置とを操
作することにより、最適な飛行姿勢の制御を行うことが
できる。このため、動圧測定用の特殊なセンサ等を必要
とせず、また演算内容の複雑化を招かずに良好な制御特
性が得られる。
According to this embodiment, a pitch attitude angle which can be easily measured by a vertical gyro or the like without using a dynamic pressure which is extremely difficult to measure during a transition flight, or a pitch attitude angle command calculated by a control computer By operating the aerodynamic control surface and the thrust deflection device using a schedule gain expressed by a simple function with respect to the above, optimal flight attitude control can be performed. Therefore, a good control characteristic can be obtained without requiring a special sensor or the like for measuring the dynamic pressure and without complicating the calculation.

【0032】本実施例では、推力偏向装置としてエンジ
ンの排気口後方に設けられた推力偏向ベーンの操作を制
御しているが、他の姿勢制御装置を用いた機体に対して
も本発明の適用が可能である。例えば、エンジンの排気
ノズルを偏向して推力偏向を行う場合は、このノズルを
偏向する角度の指令を決定するのに適用することができ
る。また、エンジンの抽気を噴出して得られる反力によ
り姿勢制御モーメントを得る場合は、噴出ノズルの開口
度指令の決定に本発明を適用することができる。
In this embodiment, the operation of the thrust deflection vane provided behind the exhaust port of the engine is controlled as a thrust deflection device. However, the present invention can be applied to a body using another attitude control device. Is possible. For example, when thrust deflection is performed by deflecting an exhaust nozzle of an engine, the present invention can be applied to determining a command for deflecting the nozzle. When the attitude control moment is obtained by the reaction force obtained by ejecting the bleed air of the engine, the present invention can be applied to the determination of the opening degree command of the ejection nozzle.

【0033】[0033]

【発明の効果】以上説明したように本発明の垂直姿勢着
陸機の遷移飛行姿勢制御方法は、遷移飛行中は測定が困
難な動圧を用いずに、容易に得られるピッチ姿勢角又は
ピッチ姿勢角指令に対する関数である比例定数と可変ゲ
インとの関係式により求められるスケジュールゲインを
用いて制御を行うため、簡易な方法で飛行姿勢を制御す
ることができる。
As described above, according to the transition flight attitude control method of the vertical attitude landing aircraft of the present invention, the pitch attitude angle or pitch attitude that can be easily obtained without using the dynamic pressure that is difficult to measure during the transition flight. Since the control is performed using the schedule gain obtained by the relational expression between the proportionality constant, which is a function of the angle command, and the variable gain, the flight attitude can be controlled by a simple method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による垂直姿勢着陸機の遷移
飛行姿勢制御方法を示した制御ブロック図。
FIG. 1 is a control block diagram illustrating a transition flight attitude control method for a vertical attitude landing aircraft according to an embodiment of the present invention.

【図2】同遷移飛行姿勢制御方法の適用が可能な垂直姿
勢着陸機の外観を示した斜視図。
FIG. 2 is a perspective view showing the appearance of a vertical attitude landing aircraft to which the transition flight attitude control method can be applied.

【図3】同遷移飛行姿勢制御方法における一つの軸に関
する姿勢応答特性を示した制御ブロック図。
FIG. 3 is a control block diagram showing attitude response characteristics for one axis in the transition flight attitude control method.

【図4】可変ゲインを導入した場合の姿勢応答特性を示
した制御ブロック図。
FIG. 4 is a control block diagram showing a posture response characteristic when a variable gain is introduced.

【図5】図4に示された制御ブロックと等価な制御ブロ
ック図。
FIG. 5 is a control block diagram equivalent to the control block shown in FIG. 4;

【図6】ピッチ姿勢角又はピッチ姿勢角指令に対する可
変ゲインFA 及びFT の値を示した説明図。
FIG. 6 is an explanatory diagram showing values of variable gains FA and FT with respect to a pitch attitude angle or a pitch attitude angle command.

【符号の説明】[Explanation of symbols]

101,201,301 比較器 102〜104,202〜204,302〜304 演
算器 401〜406 加算器 43a 左翼エレボン 43b 右翼エレボン 42 ラダー 44a〜44d ベーン
101,201,301 Comparator 102-104,202-204,302-304 Computing device 401-406 Adder 43a Left elevon 43b Right elevon 42 Ladder 44a-44d Vane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇田川 直 彦 東京都新宿区上落合2−23−16 (72)発明者 品 川 貴 東京都新宿区西新宿一丁目7番2号 富 士重工業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Naohiko Udagawa 2-23-16 Kamiochiai, Shinjuku-ku, Tokyo (72) Inventor Takashi Shinagawa 1-7-1-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ピッチ軸、ロール軸及びヨー軸の3軸に関
し機体の姿勢制御を行う空力舵面と推力偏向装置を有す
る垂直姿勢着陸機の遷移飛行での姿勢制御を行う方法に
おいて、 前記3軸に関し比較器によりそれぞれの姿勢角指令と実
際の姿勢角との偏差を求める段階と、 前記偏差を演算器に入力して比例動作、積分動作及び微
分動作を行い角加速度指令を出力する段階と、 出力された前記角加速度指令を空力舵面舵角指令系の演
算器と推力偏向装置作動角指令系の演算器とに入力し、
空力舵面舵角指令系スケジュールゲインF及び推力偏
向装置作動角指令系スケジュールゲインFを、空力舵
面の効きの大きさを表すKと推力偏向装置の効きの大
きさを表す比例定数Kに対して、K・F+K
=1を満足させると共に、K・Fが水平飛行時
に1でピッチ姿勢角の増大につれ漸減し垂直ホバー姿勢
時に0になるようにピッチ姿勢角又はピッチ姿勢角指令
の関数として設定し、ピッチ姿勢角又はピッチ姿勢角指
令の関数である前記角加速度指令に乗算して空力舵面舵
角指令と推力偏向装置作動角指令とを出力する段階と、 出力された前記空力舵面舵角指令と推力偏向装置作動角
指令とに基づいて前記空力舵面と推力偏向装置とを操作
し、姿勢制御を行う段階とを備えたことを特徴とする垂
直姿勢着陸機の遷移飛行姿勢制御方法。
1. A method for performing attitude control in a transition flight of a vertical attitude lander having an aerodynamic control surface for controlling attitude of an airframe with respect to three axes of a pitch axis, a roll axis, and a yaw axis and a thrust deflection device, Calculating a deviation between each attitude angle command and the actual attitude angle by a comparator with respect to the axis; and outputting the angular acceleration command by inputting the deviation to a calculator to perform a proportional operation, an integral operation, and a differential operation. Inputting the output angular acceleration command to an aerodynamic surface control angle command system calculator and a thrust deflection device operating angle command system calculator.
Aerodynamic steering Omokaji angle command based scheduling gain F A and thrust deflection apparatus operating angle command based scheduling gain F T, proportional constant K which represents the magnitude of the effect of the K A and thrust deflection device representing the magnitude of the effectiveness of the aerodynamic control surface For T , K A · F A + K T ·
Together to satisfy F T = 1, K A · F A is set as a function of pitch attitude angle or pitch attitude angle commanded to the zero at the vertical hover position gradually decreases as the increase in the pitch attitude angle 1 at level flight Multiplying the angular acceleration command, which is a function of the pitch attitude angle or the pitch attitude angle command, to output an aerodynamic rudder angle command and a thrust deflecting device operation angle command, and outputting the aerodynamic rudder angle command. Operating the aerodynamic control surface and the thrust deflection device based on a thrust deflection device operating angle command to perform attitude control.
【請求項2】前記空力舵面舵角指令と前記推力偏向装置
作動角指令とを出力する段階では、前記曲線状に変化す
るスケジュールゲインを近似した折れ線状に変化するス
ケジュールゲインを前記角加速度指令に乗算して前記空
力舵面舵角指令と前記推力偏向装置作動角指令とを求め
ることを特徴とする請求項1記載の垂直姿勢着陸機の遷
移飛行姿勢制御方法。
2. The step of outputting the aerodynamic rudder rudder angle command and the thrust deflector operating angle command, wherein a schedule gain that changes in a polygonal line approximating the curve gain that changes in a curve is used as the angular acceleration command. 2. The transition flight attitude control method for a vertical attitude landing aircraft according to claim 1, wherein the aerodynamic rudder rudder angle command and the thrust deflection device operation angle instruction are obtained by multiplication.
JP19447391A 1991-08-02 1991-08-02 Transition Flight Attitude Control Method for Vertical Attitude Lander Expired - Lifetime JP2620428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19447391A JP2620428B2 (en) 1991-08-02 1991-08-02 Transition Flight Attitude Control Method for Vertical Attitude Lander

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19447391A JP2620428B2 (en) 1991-08-02 1991-08-02 Transition Flight Attitude Control Method for Vertical Attitude Lander

Publications (2)

Publication Number Publication Date
JPH0539092A JPH0539092A (en) 1993-02-19
JP2620428B2 true JP2620428B2 (en) 1997-06-11

Family

ID=16325137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19447391A Expired - Lifetime JP2620428B2 (en) 1991-08-02 1991-08-02 Transition Flight Attitude Control Method for Vertical Attitude Lander

Country Status (1)

Country Link
JP (1) JP2620428B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568655B2 (en) 2005-08-23 2009-08-04 Toyota Jidosha Kabushiki Kaisha Vertical takeoff and landing aircraft

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9016616B2 (en) 2010-07-26 2015-04-28 Hiroshi Kawaguchi Flying object
CN114261525B (en) * 2021-12-30 2023-11-03 中国航天空气动力技术研究院 Control surface deflection control and measurement system and method
CN115876037A (en) * 2022-11-28 2023-03-31 上海航天控制技术研究所 Solid direct force device switching strategy adapting to large-delay response characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568655B2 (en) 2005-08-23 2009-08-04 Toyota Jidosha Kabushiki Kaisha Vertical takeoff and landing aircraft

Also Published As

Publication number Publication date
JPH0539092A (en) 1993-02-19

Similar Documents

Publication Publication Date Title
US11787535B2 (en) Online optimization-based flight control system
US20220033065A1 (en) Geometry-based flight control system
CN110162071B (en) Attitude control method and system for reentry tail section of hypersonic aircraft
CN109703768B (en) Soft air refueling docking method based on attitude/trajectory composite control
CN114942649B (en) Airplane pitching attitude and track angle decoupling control method based on backstepping method
Bulka et al. Autonomous control of agile fixed-wing UAVs performing aerobatic maneuvers
CN1124532C (en) Method and apparatus for turn coordination gain as function of flap position
Sartori et al. Design and development of a backstepping controller autopilot for fixed-wing UAVs
Wang et al. A neural network based MRAC scheme with application to an autonomous nonlinear rotorcraft in the presence of input saturation
Willis et al. Nonlinear trajectory tracking control for winged eVTOL UAVs
JP2620428B2 (en) Transition Flight Attitude Control Method for Vertical Attitude Lander
CN111897219A (en) Optimal robust control method for transitional flight mode of tilting quad-rotor unmanned aerial vehicle based on online approximator
CN116203840A (en) Adaptive gain scheduling control method for reusable carrier
CN112506046B (en) Stability augmentation control method for wingtip hinged combined type flight platform
CN109101034B (en) Flight control method for vertical/short-distance takeoff and landing aircraft
CN114035599A (en) Aircraft attitude control method and device and electronic equipment
JP3028888B2 (en) Autopilot device
CN110426955B (en) Hypersonic control surface manipulation efficiency prediction method based on coupling utilization
CN114415516A (en) Fault-tolerant control method for damage fault of control surface of fixed-wing aircraft
KR102114051B1 (en) Method of non-linear control for aircraft considering center of gravity movement
Bulka et al. A unified control strategy for autonomous aerial vehicles
Cox et al. A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design
CN116466732B (en) Anti-oscillation model reference self-adaptive aircraft roll angle control method
Wang et al. An adaptive disturbance suppression based fault-tolerant control approach against the control surface faults
CN116088548B (en) Four-rotor unmanned aerial vehicle attitude control method based on rapid nonsingular terminal sliding mode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120311