JPH0538468A - Disposal method for coal ash - Google Patents

Disposal method for coal ash

Info

Publication number
JPH0538468A
JPH0538468A JP3222080A JP22208091A JPH0538468A JP H0538468 A JPH0538468 A JP H0538468A JP 3222080 A JP3222080 A JP 3222080A JP 22208091 A JP22208091 A JP 22208091A JP H0538468 A JPH0538468 A JP H0538468A
Authority
JP
Japan
Prior art keywords
coal ash
coal
water slurry
ash
unburned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3222080A
Other languages
Japanese (ja)
Other versions
JP3243568B2 (en
Inventor
Masayoshi Asada
正吉 浅田
Takamiki Tamae
宇幹 玉重
Takashi Uehara
孝史 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP22208091A priority Critical patent/JP3243568B2/en
Publication of JPH0538468A publication Critical patent/JPH0538468A/en
Application granted granted Critical
Publication of JP3243568B2 publication Critical patent/JP3243568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To separate efficiently unburnt coal content in coal ash. CONSTITUTION:The hydrophobic process and flotation process are carried out in a low pH zone formed by adding a pH adjuster 20 into water slurry of coal ash in the disposal method of coal ash consisting of the hydrophobic process for turning unburnt coal content hydrophobic by adding a collecting agent 22 into water slurry of coal ash and the floatation process in which foams are formed by adding a foaming agent 23 into water slurry, having the unburnt coal content attached to said foams and floating the same.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、建材の原料等に用い
られる石炭灰(フライアッシュ)の処理方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating coal ash (fly ash) used as a raw material for building materials.

【0002】[0002]

【従来の技術】石炭灰は微粉炭焚きボイラ等から発生す
るが、この石炭灰の中には未燃炭分が含まれている。と
ころが、この未燃炭分は、石炭灰を利用する上で次の様
な問題を引き起こす。例えば、セメント混和剤として石
炭灰を使用する場合該石炭灰中に多くの未燃炭が含まれ
ていると、コンクリート混練時に高価な空気連行剤(A
E剤)が未燃炭分に吸収されるため、多量の空気連行剤
が必要となる。又、人工軽量骨材等の原料として石炭灰
を使用する場合、原料中に多くの未燃炭分が含まれてい
ると、骨材などの強熱減量(Ig−Loss)が大きく
なる。
2. Description of the Related Art Coal ash is generated from a pulverized coal burning boiler or the like, and the coal ash contains unburned coal. However, this unburned coal content causes the following problems in using coal ash. For example, when using coal ash as a cement admixture, if a large amount of unburned charcoal is contained in the coal ash, an expensive air entraining agent (A
Since the E agent) is absorbed by the unburned coal, a large amount of air entraining agent is required. Further, when using coal ash as a raw material for an artificial lightweight aggregate or the like, if a large amount of unburned carbon content is contained in the raw material, the ignition loss (Ig-Loss) of the aggregate or the like increases.

【0003】そのため、未燃炭分の少ない石炭灰だけを
コンクリートの原料等に利用し、未燃炭分の多く含まれ
ている石炭灰は利用せず産業廃棄物として捨てられる。
しかし、建材等の原料として有効な石炭灰を廃棄するこ
とは不経済であり、又、その廃棄処理には多くの費用が
必要となる。
Therefore, only coal ash containing a small amount of unburned coal is used as a raw material for concrete, etc., and coal ash containing a large amount of unburned coal is not used and is discarded as industrial waste.
However, it is uneconomical to dispose of coal ash that is effective as a raw material for building materials, etc., and a large amount of cost is required for its disposal.

【0004】そこで、従来、浮遊選鉱法、即ち、石炭灰
の水スラリに捕収剤を添加して未燃炭分を疎水化させる
疎水化工程と、該水スラリに気泡剤を添加して気泡を発
生させ、その気泡に前記未燃炭分を付着させ浮上させる
浮選工程と、を備えた石炭灰の処理方法、により石炭灰
から未燃炭分を分離している。
Therefore, conventionally, a flotation method, that is, a hydrophobizing step of adding a collector to a water slurry of coal ash to make unburned carbon content hydrophobic, and adding a foaming agent to the water slurry to generate bubbles The unburned coal content is separated from the coal ash by a method of treating coal ash, which comprises a flotation step of generating the bubbles and attaching the unburned coal content to the bubbles to float.

【0005】従来の石炭灰の処理方法は、大量の処理が
可能であると言う長所を有するが、その反面、石炭灰中
の未燃炭分を効率良く分離ができないという問題があ
る。
The conventional method for treating coal ash has an advantage that a large amount can be treated, but on the other hand, it has a problem that unburned coal in the coal ash cannot be efficiently separated.

【0006】この発明は、上記事情に鑑み石炭灰中の未
燃炭分を高率良く分離できるようにすることを目的とす
る。
In view of the above circumstances, an object of the present invention is to make it possible to separate unburned coal in coal ash with high efficiency.

【0007】[0007]

【課題を解決するための手段】本発明者は、前記浮遊選
鉱法において、石炭灰の水スラリの水素イオン濃度指数
pHの値が石炭灰中の未燃炭分の分離効率に重大な影響
があることに気づきその理由を究明し、次の結果を得
た。
Means for Solving the Problems In the flotation method of the present invention, the present inventors have found that the value of the hydrogen ion concentration index pH of the water slurry of coal ash has a significant influence on the separation efficiency of the unburned carbon content in the coal ash. I noticed this and investigated the reason, and obtained the following results.

【0008】即ち、固体表面の電気的性質は、水と混合
されたスラリの状態において、その固体の粒子のζ電位
によるところが大きい。ここで、ζ電位とは、すべり
面、即ち、固体を水中で移動させた場合、物質にくっつ
いて移動する部分とそれ以外の部分との境界の電位をい
う。
That is, the electrical properties of the surface of the solid are largely due to the ζ potential of the particles of the solid in the state of the slurry mixed with water. Here, the ζ potential means a slip surface, that is, a potential of a boundary between a part that moves by sticking to a substance when a solid is moved in water and the other part.

【0009】水中に分離された固体は、それが純粋に一
種類から成る構成であれば全ての粒子は、雰囲気により
あるζ電位に帯電する。又、それが複数の物質から構成
されるものであれば、ζ電位は各物質固有のものとな
り、互いに異なる電荷をもてばζ電位は各物質固有のも
のとなり、又、互いに異なる電荷をもてばヘテロ凝集が
起こる可能性がある。ここで、ヘテロ凝集について説明
する。水中の物質はそれぞれζ電位をもち、同極の電位
を帯びる+A同志、−B同志、+C同志は互いに反発し
合う。これ対し、異極である+Aと−B、−Bと+Cと
は引き合うことになり、その結果、ヘテロ凝集となる。
又、同じ電荷を持つ+Aと+Cでは、+Aが+Cよりも
電位が高いとすれば、−Bは+Cよりも+Aとより強い
ヘテロ凝集を起こしやすい。
In the case of a solid separated in water, if the solid is composed of one kind, all particles are charged to a certain ζ potential by the atmosphere. Moreover, if it is composed of a plurality of substances, the ζ potential will be unique to each substance, and if they have different charges, the ζ potential will be unique to each substance, and will also have different charges. Heteroaggregation may occur. Here, the hetero aggregation will be described. Each substance in water has a zeta potential, and + A comrades, -B comrades, and + C comrades having the same electric potential repel each other. On the other hand, different polarities, + A and −B, and −B and + C, are attracted to each other, resulting in heteroaggregation.
Further, in + A and + C having the same charge, if + A has a higher potential than + C, −B is more likely to cause stronger heteroaggregation with + A than + C.

【0010】ここで、物質粒子の周囲にある水の雰囲気
の調整を行いある物質を等電点に近づけていくことによ
り、同一の物質同志の反発力を弱めることができる。そ
こで、この等電点について説明する。物質のζ電位は周
囲の水のpH値により変動する。即ち、低pH領域では
正(+)電位であったものが高pH値では、負(−)の
電位に転ずるとすれば、その過程でζ電位がゼロとなる
状況が出現する。このζ電位がゼロとなるpH値を等電
点という。この等電点では物質は電気的な反発力を失な
い同物質を凝集させるには理想的な状態といえる。
Here, by adjusting the atmosphere of water around the substance particles to bring a substance closer to the isoelectric point, the repulsive force of the same substance can be weakened. Therefore, the isoelectric point will be described. The ζ-potential of a substance varies depending on the pH value of surrounding water. That is, if a positive (+) potential in the low pH region shifts to a negative (-) potential at a high pH value, a situation occurs in which the ζ potential becomes zero in the process. The pH value at which this ζ potential becomes zero is called the isoelectric point. At this isoelectric point, the substance can be said to be in an ideal state in which it does not lose its electrical repulsive force and aggregates.

【0011】同一物質同志の反発力が弱まると、異物質
同志のヘテロ凝集が弱まり、特定の同一物質が凝集しや
すい状況をつくり出すことになる。具体的には、水中に
分散している異種物質は、灰分と未燃炭分であるが両者
はそれぞれのζ電位を有しており、等電点付近以外の同
物質同志は電気的には反発している。又、状況によって
は灰分と未燃炭分がヘテロ凝集を起こしている。ここ
で、両者の溶媒である水の雰囲気の調整を行い、未燃炭
分同志の反発力を弱め、灰分と未燃炭分のヘテロ凝集を
弱める方向にもっていくことにより、未燃炭分同志の凝
集及び未燃炭分と灰分の分離を促進することができる。
即ち、pH値を低pH域の範囲内にすることにより未燃
炭分のζ電位をゼロに近づけることができるとともに、
未燃炭分と灰分とのヘテロ凝集を弱めることができるの
である。
When the repulsive force of the same substance weakens, the hetero-aggregation of different substances comrades weakens, and a situation where a specific same substance easily aggregates is created. Specifically, the dissimilar substances dispersed in water are ash and unburned coal, but both have their respective ζ potentials, and the same substances other than near the isoelectric point electrically repel each other. is doing. Also, depending on the situation, ash content and unburned coal content cause heterocoagulation. Here, by adjusting the atmosphere of water, which is the solvent of both, by weakening the repulsive force of the unburned coal comrades and weakening the heteroaggregation of ash and unburned coal, the cohesion of the unburned coal comrades and Separation of unburned coal and ash can be promoted.
That is, by keeping the pH value within the low pH range, the ζ potential of the unburned coal can be brought close to zero, and
Heteroaggregation of unburned coal and ash can be weakened.

【0012】又、本発明者は、試薬の投入順序により石
炭灰中の未燃炭分の分離効率が変化することに気ずき研
究したところ、次の結果を得た。即ち、試薬がA:pH
調整剤、B:分散剤、C:捕収剤、D:起泡剤、である
場合には、BとCは互いに反応を起こさない試薬を使用
する限り同時投入が許される。又、B、Cが鉱物に対し
て効果を発揮するまでの時間(条件付与時間)をある程
度必要とするのに対して、Dは鉱物と反応するのではな
いので、条件付与時間は原則として必要ない。従って、
B、CはDとは時間をずらして投入される。更に、Bと
Cとは試薬同志の反応が起こるとすればそれぞれの役割
(Bにより粒子の分散、Cによる粒子の疎水化)を考え
れば、B→Cの順に別々の槽で加えるのが合理的であ
る。
[0012] The present inventor has made the following research results by noticing that the separation efficiency of the unburned carbon component in the coal ash changes depending on the order of adding the reagents. That is, the reagent is A: pH
In the case of the adjusting agent, B: dispersant, C: collector, D: foaming agent, B and C are allowed to be charged simultaneously as long as reagents that do not react with each other are used. In addition, B and C require a certain amount of time (condition application time) until they exert their effects on minerals, whereas D does not react with minerals, so condition application time is required in principle. Absent. Therefore,
B and C are input at a time different from that of D. Furthermore, if B and C react in the same way as reagents, considering their respective roles (dispersion of particles by B, hydrophobicization of particles by C), it is reasonable to add them in the order of B → C in separate tanks. Target.

【0013】以上の理由でB→C→Dの順にするのが原
則となるが、ここで更にAを加える場合を考える。Aを
最初に添加せねばならない理由は、捕収剤CのpH依存
性とpH調整剤A(酸またはアルカリ)と他の試薬の反
応の可能性にある。pH依存性は捕収剤の捕集作用をコ
ントロールする最も重要なファクタであるので、一番先
にpH調整剤を加えなければならない。又、AとBにつ
いては各々のもつ役割から試薬同志の反応が危惧されれ
ばA→Bの順にし、そのおそれがない場合は同時投入も
許される。いずれにせよAはC以前に投入されていなけ
ればならない。この発明は、以上の知見に基いてなされ
たものである。
For the above reasons, the order is B → C → D in principle, but consider the case where A is further added. The reason why A must be added first is the pH dependence of the scavenger C and the possible reaction of the pH adjuster A (acid or alkali) with other reagents. Since pH dependence is the most important factor controlling the collecting action of the scavenger, the pH adjuster must be added first. Also, regarding A and B, if there is a concern that the reaction of the reagents will be due to their respective roles, the order will be A → B. If there is no such possibility, simultaneous injection is also permitted. In any case, A must be thrown in before C. The present invention has been made based on the above findings.

【0014】この発明は、石炭灰の水スラリに捕収剤を
添加して未燃炭分を凝集させる凝集工程と、該水スラリ
に気泡剤を添加して気泡を発生させ、その気泡に前記未
燃炭分を付着させ浮上させる浮選工程と、を備えた石炭
灰の処理方法において、予め石炭灰の水スラリにpH調
整剤を添加して低pH域にした後前記凝集工程、浮選工
程を行うことを特徴とする石炭灰の処理方法、により前
記目的を達成しようとするものである。
This invention relates to an aggregating step of adding a collecting agent to a water slurry of coal ash to agglomerate unburned carbon content, and adding a foaming agent to the water slurry to generate bubbles, and the bubbles are the above-mentioned In a method of treating coal ash, which comprises a flotation step in which fuel coal is adhered and floated, in the low pH range by previously adding a pH adjuster to the water slurry of coal ash, the flocculation step, the flotation step The present invention is intended to achieve the above object by a method for treating coal ash characterized by being carried out.

【0015】[0015]

【作用】石炭灰の水スラリにpH調整剤を添加して予
め、該水スラリを低pH域に調整する。その後前記水ス
ラリに捕収剤を添加して未燃炭分を疎水化させるととも
に、該水スラリに起泡剤を添加して起泡を発生させ、そ
の起泡の表面に未燃炭分を付着させて浮上させる。
Function: A pH adjusting agent is added to the water slurry of coal ash to adjust the water slurry to a low pH range in advance. Thereafter, a collector is added to the water slurry to make the unburned carbon content hydrophobic, and a foaming agent is added to the water slurry to generate foaming, and the unburned carbon content is attached to the surface of the foaming. To surface.

【0016】[0016]

【実施例】この発明の実施例を添付図面により説明する
が、同一図面符号はその名称も機能も同一である。ま
ず、第1実施例について説明する。微粉炭焚きボイラ等
から発生するIg−Loss5.11%の石炭灰(原
料)Mは、集塵機を介して原料投入タンク1に供給され
る。pH調整槽2に前記原料M5gと水タンク5の水4
00mlとを供給し、攪拌混合し水スラリにする。この
水スラリのpHは11.3であり、所謂高pH域の範囲
であった。この水スラリに塩酸等のpH調整剤20を添
加し、攪拌混合する(pH調整工程)。このpH調整剤
20の添加量を次第に増やし、図3に示す様にpH1
1.3からpH2.0まで低下させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the accompanying drawings, in which the same reference numerals have the same names and functions. First, the first embodiment will be described. Ig-Loss 5.11% coal ash (raw material) M generated from a pulverized coal burning boiler or the like is supplied to the raw material charging tank 1 via a dust collector. In the pH adjusting tank 2, 5 g of the raw material M and water 4 in the water tank 5
00 ml is supplied and mixed by stirring to make a water slurry. The pH of this water slurry was 11.3, which was in the so-called high pH range. A pH adjusting agent 20 such as hydrochloric acid is added to this water slurry and mixed by stirring (pH adjusting step). The amount of the pH adjuster 20 added is gradually increased to a pH of 1 as shown in FIG.
Reduce from 1.3 to pH 2.0.

【0017】pH調整工程終了後、前記スラリを疎水化
槽3に供給して水ガラスなどの分散剤21と灯油等の捕
収剤22とを添加し、2分間攪拌混合する(疎水化工
程)。これにより石炭灰中の未燃灰分を疎水化する。
After completion of the pH adjusting step, the slurry is supplied to the hydrophobizing tank 3, a dispersant 21 such as water glass and a collecting agent 22 such as kerosene are added, and the mixture is stirred and mixed for 2 minutes (hydrophobizing step). .. This makes the unburned ash in the coal ash hydrophobic.

【0018】疎水化工程終了後、前記水スラリを浮選槽
4に供給してパインオイル等の起泡剤23を添加し、2
分間攪拌混合する。その後、浮選槽4の底部から空気を
吹き込んで気泡を発生させ、該気泡の表面に未燃炭分の
凝集物を付着させて浮上させる(浮選工程)。この浮上
した気泡は浮選槽4からオーバフロー分として取り出さ
れる。このオーバフロー分として取り出された未燃炭分
は、脱水機6で脱水され、セメント焼成窯炉等へ送られ
るとともに分離水は水タンク5に戻される。一方、灰分
はテール分として浮選槽4の底部から取り出され、固液
分離装置7により脱水された後、セメント混和剤などに
利用されるとともにその分離水は水タンク5に戻される
(脱水工程)。
After completion of the hydrophobizing step, the water slurry is supplied to the flotation tank 4 to add a foaming agent 23 such as pine oil,
Stir mix for minutes. After that, air is blown from the bottom of the flotation tank 4 to generate bubbles, and agglomerates of unburned coal are attached to the surface of the bubbles to float (flotation step). The floating bubbles are taken out from the flotation tank 4 as an overflow. The unburned carbon component extracted as the overflow component is dehydrated by the dehydrator 6, sent to the cement firing kiln, etc., and the separated water is returned to the water tank 5. On the other hand, the ash is taken out from the bottom of the flotation tank 4 as a tail, dehydrated by the solid-liquid separator 7, and then used as a cement admixture and the separated water is returned to the water tank 5 (dehydration step). ).

【0019】このオーバフロー分の取り出し作業は、5
分間継続して行った。その結果、浮選槽4内に残った石
炭灰の歩留まりAとIg−LossBとの関係は図1の
通りであった。この図において、横軸はpH、左縦軸は
Ig−Loss(%)、右縦軸は石炭灰の歩留まり
(%)をそれぞれ示す。この図3から明らかな様にpH
が4以下、即ち、低pH域において石炭灰の歩留まりに
差がないにもかかわらず、Ig−Lossがきわめて小
さくなり工業上好ましい値となる。
The work for taking out this overflow is 5
Continued for a minute. As a result, the relationship between the yield A of the coal ash remaining in the flotation tank 4 and the Ig-Loss B was as shown in FIG. In this figure, the horizontal axis represents pH, the left vertical axis represents Ig-Loss (%), and the right vertical axis represents coal ash yield (%). As is clear from this FIG.
Is 4 or less, that is, although there is no difference in the yield of coal ash in the low pH range, Ig-Loss is extremely small, which is a value industrially preferable.

【0020】第2実施例について説明する。混合槽30
に原料タンク1中のIg−Loss13.69%の石炭
灰210gと、水タンク5の水750Mlを供給して攪
拌混合し、水スラリをつくる。この水スラリのpHは1
1.8であった。この水スラリにpH調整剤31として
の塩酸を添加して攪拌混合し、pHを2.1まで下げる
(pH調整工程)。pH調整工程終了後、前記水スラリ
に捕収剤32としての灯油を1g添加し、30秒間攪拌
混合する(疎水化工程)。
The second embodiment will be described. Mixing tank 30
210 g of Ig-Loss 13.69% coal ash in the raw material tank 1 and 750 Ml of water in the water tank 5 are supplied and stirred and mixed to form a water slurry. The pH of this water slurry is 1
It was 1.8. Hydrochloric acid as a pH adjuster 31 is added to this water slurry and mixed by stirring to lower the pH to 2.1 (pH adjusting step). After the completion of the pH adjusting step, 1 g of kerosene as the collector 32 is added to the water slurry, and the mixture is stirred and mixed for 30 seconds (hydrophobizing step).

【0021】その後、前記水スラリに気泡剤32として
のパインオイルを0.5g添加し、30秒間攪拌混合す
る。しかる後に混合槽30の底部より空気を吹き込んで
気泡を生成させると同時に生成した気泡をオーバフロー
分とし取り出す。この取り出し作業を5分間継続する
(浮選工程)。その結果、気泡と共に取り出された石炭
灰は78gであり、そのIg−Lossは29.4%、
また、槽30内に残った石炭灰は139gであり、その
Ig−Lossは2.83%であった。
Then, 0.5 g of pine oil as the foaming agent 32 is added to the water slurry, and the mixture is stirred and mixed for 30 seconds. Thereafter, air is blown from the bottom of the mixing tank 30 to generate bubbles, and at the same time, the generated bubbles are taken out as an overflow. This take-out work is continued for 5 minutes (flotation step). As a result, the coal ash taken out together with the bubbles was 78 g, and the Ig-Loss was 29.4%,
In addition, the coal ash remaining in the tank 30 was 139 g, and its Ig-Loss was 2.83%.

【0022】次に、第3実施例について説明する。この
実施例は第2実施例の装置を用い、次のようにして実施
される。Ig−Loss2.18%の石炭灰210gを
750mlの水に混合して水スラリとする。この水スラ
リのpHは4.23であったが、捕収剤としての塩酸を
用い、このpHを2.0まで下げた。その後、前記第2
実施例と同様の工程を行ったところ、オーバフロー分の
石炭灰は58gであり、そのIg−Lossは6.7
%、又、槽内に残った石炭灰は152gであり、そのI
g−Lossは0.48%であった。
Next, a third embodiment will be described. This embodiment is carried out as follows using the apparatus of the second embodiment. 210 g of coal ash of Ig-Loss 2.18% is mixed with 750 ml of water to form a water slurry. The pH of this water slurry was 4.23, but this pH was lowered to 2.0 by using hydrochloric acid as a scavenger. Then, the second
When the same process as in the example was performed, the amount of coal ash in the overflow portion was 58 g, and the Ig-Loss thereof was 6.7.
%, And the coal ash remaining in the tank was 152 g.
The g-Loss was 0.48%.

【0023】[0023]

【発明の効果】この発明は、以上の様に、予め石炭灰の
水スラリにpH調整剤を添加して低pH域にした後に疎
水化工程、浮選工程等を行うので、従来例に比べ多くの
未燃炭分が気泡に付着する。そのため、石炭灰中の未燃
炭分の分離を極めて効率良く行うことができる。
As described above, according to the present invention, since the pH adjusting agent is previously added to the water slurry of coal ash to bring it to a low pH range, the hydrophobicizing step, the flotation step and the like are carried out. A large amount of unburned coal adheres to the bubbles. Therefore, the unburned coal content in the coal ash can be separated extremely efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示すフローチャートであ
る。
FIG. 1 is a flowchart showing a first embodiment of the present invention.

【図2】他の実施例を示すフローチャートである。FIG. 2 is a flowchart showing another embodiment.

【図3】第1実施例における浮遊槽内に残った石炭灰の
量とIg−LossとpHとの関係を示すグラフであ
る。 20 pH調整剤 21 分散剤 22 捕収剤 23 起泡剤 30 pH調整剤 31 分散剤 32 捕収剤 33 起泡剤
FIG. 3 is a graph showing the relationship between the amount of coal ash remaining in the floating tank, Ig-Loss, and pH in the first example. 20 pH adjuster 21 Dispersant 22 Scavenger 23 Foaming agent 30 pH adjuster 31 Dispersing agent 32 Scavenger 33 Foaming agent

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】石炭灰の水スラリに捕収剤を添加して未燃
炭分を疎水化させる疎水化工程と、該水スラリに気泡剤
を添加して気泡を発生させ、その気泡に前記未燃炭分を
付着させ浮上させる浮選工程と、を備えた石炭灰の処理
方法において、予め石炭灰の水スラリにpH調整剤を添
加して低pH域にした後前記疎水化工程、浮選工程を行
うことを特徴とする石炭灰の処理方法。
1. A hydrophobizing step of adding a collector to a water slurry of coal ash to make unburned carbon content hydrophobic, and adding a foaming agent to the water slurry to generate bubbles. In a method for treating coal ash, which comprises a flotation step in which fuel coal is adhered and floated, in the low pH range by previously adding a pH adjusting agent to water slurry of coal ash, the hydrophobicizing step, the flotation step A method for treating coal ash, which comprises:
【請求項2】低pH域が、pH4以下であることを特徴
とする請求項1記載の石炭灰の処理方法。
2. The method for treating coal ash according to claim 1, wherein the low pH range is pH 4 or less.
JP22208091A 1991-08-07 1991-08-07 Processing method of coal ash Expired - Fee Related JP3243568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22208091A JP3243568B2 (en) 1991-08-07 1991-08-07 Processing method of coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22208091A JP3243568B2 (en) 1991-08-07 1991-08-07 Processing method of coal ash

Publications (2)

Publication Number Publication Date
JPH0538468A true JPH0538468A (en) 1993-02-19
JP3243568B2 JP3243568B2 (en) 2002-01-07

Family

ID=16776815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22208091A Expired - Fee Related JP3243568B2 (en) 1991-08-07 1991-08-07 Processing method of coal ash

Country Status (1)

Country Link
JP (1) JP3243568B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525727A (en) * 1999-12-09 2003-09-02 オンデオ デグレマン Membrane filtration method
WO2005035134A1 (en) 2003-10-09 2005-04-21 Taiheiyo Cement Corporation Method of removing unburned carbon from fly ash
WO2007066534A1 (en) * 2005-12-07 2007-06-14 Taiheiyo Cement Corporation Apparatus for removing of unburned carbon from fly ash and relevant removing method
WO2007074627A1 (en) * 2005-12-26 2007-07-05 Mitsui Engineering & Shipbuilding Co., Ltd. Method for removal of unburned carbon contained in fly ash
WO2008078389A1 (en) * 2006-12-26 2008-07-03 Mitsui Engineering & Shipbuilding Co., Ltd. Apparatus for removing unburned carbon in fly ash
JP2011156472A (en) * 2010-01-29 2011-08-18 Ihi Corp Particle separation apparatus and particle separation method
KR101161116B1 (en) * 2010-10-22 2012-06-28 주식회사 미네월드 Recovering Method of High Purity Un-burned Carbon and Ash Using Bottom Ash
KR101402937B1 (en) * 2012-06-22 2014-06-02 코카스엔텍 주식회사 A Method for floatation bottom ash from unburned coal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102284372B (en) * 2011-07-26 2013-01-02 昆明理工大学 Flotation method for carbonate minerals
CN102397820B (en) * 2011-11-18 2013-05-08 中国铝业股份有限公司 Method for utilizing bauxite dust

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525727A (en) * 1999-12-09 2003-09-02 オンデオ デグレマン Membrane filtration method
EP1685907A4 (en) * 2003-10-09 2008-10-22 Taiheiyo Cement Corp Method of removing unburned carbon from fly ash
WO2005035134A1 (en) 2003-10-09 2005-04-21 Taiheiyo Cement Corporation Method of removing unburned carbon from fly ash
EP1685907A1 (en) * 2003-10-09 2006-08-02 Taiheiyo Cement Corporation Method of removing unburned carbon from fly ash
WO2007066534A1 (en) * 2005-12-07 2007-06-14 Taiheiyo Cement Corporation Apparatus for removing of unburned carbon from fly ash and relevant removing method
JPWO2007066534A1 (en) * 2005-12-07 2009-05-14 太平洋セメント株式会社 Apparatus and method for removing unburned carbon in fly ash
WO2007074627A1 (en) * 2005-12-26 2007-07-05 Mitsui Engineering & Shipbuilding Co., Ltd. Method for removal of unburned carbon contained in fly ash
US7703610B2 (en) 2005-12-26 2010-04-27 Mitsui Engineering & Shipbuilding Co., Ltd. Method for removal of unburned carbon contained in fly ash
WO2008078389A1 (en) * 2006-12-26 2008-07-03 Mitsui Engineering & Shipbuilding Co., Ltd. Apparatus for removing unburned carbon in fly ash
US8127931B2 (en) 2006-12-26 2012-03-06 Mitsui Engineering & Shipbuilding Co., Ltd. Apparatus for removing unburned carbon in fly ash
JP2011156472A (en) * 2010-01-29 2011-08-18 Ihi Corp Particle separation apparatus and particle separation method
KR101161116B1 (en) * 2010-10-22 2012-06-28 주식회사 미네월드 Recovering Method of High Purity Un-burned Carbon and Ash Using Bottom Ash
KR101402937B1 (en) * 2012-06-22 2014-06-02 코카스엔텍 주식회사 A Method for floatation bottom ash from unburned coal

Also Published As

Publication number Publication date
JP3243568B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
US4040852A (en) Lightweight aggregate
CA1144496A (en) Process for removal of sulfur and ash from coal
JPH0538468A (en) Disposal method for coal ash
US4857221A (en) Recovering coal fines
CA2566456A1 (en) Process and reagent for separating finely divided titaniferrous impurities from kaolin
US4064212A (en) Method of making pellets usable as aggregate or filler
CA1146893A (en) Process for removal of sulfur and ash from coal
JPS58109127A (en) Treatment for ash
US4859318A (en) Recovering coal fines
US6126014A (en) Continuous air agglomeration method for high carbon fly ash beneficiation
JPS6247416B2 (en)
EP0246105B1 (en) Recovering coal fines
US4735707A (en) Removing mineral matter from solid carbonaceous fuels
US4308132A (en) Bituminous coal reagent and flotation process
US4452714A (en) Bituminous coal reagent and flotation process
GB2031020A (en) Process for Removing Sulfur from Coal
JP2004230284A (en) Method for treating powder content containing combustible solid content
SU1403995A3 (en) Method of burning up sulfur-containing fuel
US4412842A (en) Coal beneficiation process
Gray et al. Continuous air agglomeration method for high carbon fly ash beneficiation
Groppo et al. The beneficiation of coal combustion ash
JP2003284973A (en) Method for treating coal ash
JP3505000B2 (en) Coal ash treatment method
RU2241770C1 (en) Batch for manufacturing of iron-ore pellets
Ga̧siorek Waste pyritic coal as a raw material for energetic industry

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees