JPH0538313U - Catalyst early activation device - Google Patents

Catalyst early activation device

Info

Publication number
JPH0538313U
JPH0538313U JP089310U JP8931091U JPH0538313U JP H0538313 U JPH0538313 U JP H0538313U JP 089310 U JP089310 U JP 089310U JP 8931091 U JP8931091 U JP 8931091U JP H0538313 U JPH0538313 U JP H0538313U
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen storage
storage alloy
temperature activated
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP089310U
Other languages
Japanese (ja)
Inventor
英輝 波田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP089310U priority Critical patent/JPH0538313U/en
Publication of JPH0538313U publication Critical patent/JPH0538313U/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

(57)【要約】 【目的】 水素吸蔵合金の反応熱によって触媒を早期に
活性化できる触媒の早期活性化装置を提供する。 【構成】 排気管の内筒3に設けた触媒4の周囲にこの
触媒4を加熱する水素吸蔵合金を収容する外筒11を設
ける。また、外筒11の内部に低温活性形水素吸蔵合金
21と高温活性形水素吸蔵合金22および水素ガスを収
容し、さらに、低温活性形水素吸蔵合金21を加熱する
電気ヒータ23を設ける。電気ヒータ23に通電し、低
温活性形、高温活性形の水素吸蔵合金に順に水素反応を
起こして反応熱を発生させて前記触媒4を活性化する。
(57) [Abstract] [Purpose] To provide a catalyst early activation device capable of early activation of the catalyst by reaction heat of a hydrogen storage alloy. [Structure] An outer cylinder 11 for accommodating a hydrogen storage alloy for heating the catalyst 4 is provided around the catalyst 4 provided in the inner cylinder 3 of the exhaust pipe. Further, an electric heater 23 for accommodating the low-temperature activated hydrogen storage alloy 21, the high-temperature activated hydrogen storage alloy 22 and hydrogen gas inside the outer cylinder 11 and further heating the low-temperature activated hydrogen storage alloy 21 is provided. The electric heater 23 is energized to cause hydrogen reactions in the low temperature activated type and high temperature activated type hydrogen storage alloys in order to generate reaction heat and activate the catalyst 4.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、自動車エンジンの排気経路に設けられる触媒を早期に活性化す る触媒の早期活性化装置に関する。 The present invention relates to a catalyst early activation device that early activates a catalyst provided in an exhaust path of an automobile engine.

【0002】[0002]

【従来の技術】[Prior Art]

ガソリン・エンジンを燃焼して走行する自動車の排気ガスは、HCとCOの 酸化還元反応を3元触媒によって行うことによってエミッションを低減している 。しかし、3元触媒は高温度域で活性化して触媒としての働きを行うために、冷 間始動時にはその役目を果たさない。 Emissions from exhaust gas from automobiles that burn gasoline engines are reduced by performing a redox reaction of HC and CO with a three-way catalyst. However, since the three-way catalyst is activated in a high temperature range and functions as a catalyst, it does not play its role in cold starting.

【0003】 すなわち、エンジンの停止中は3元触媒は常温であり、触媒としての働きをし ないが、エンジンを始動すると、エンジンから排気される排気ガスによって触媒 が加熱され、約350℃に達すると、触媒がHCとCOの酸化還元反応を行うが 、その温度まで上昇するのに約3分の時間が必要である。That is, when the engine is stopped, the three-way catalyst is at room temperature and does not function as a catalyst. However, when the engine is started, the catalyst is heated by the exhaust gas discharged from the engine, and the temperature reaches about 350 ° C. Then, the catalyst carries out redox reaction of HC and CO, but it takes about 3 minutes to rise to the temperature.

【0004】 したがって、エンジンを始動後、触媒の温度が上昇するまでに多くのHC,C Oが大気中に放出されてしまうという問題があり、触媒の早期活性化が要望され ている。Therefore, there is a problem that a large amount of HC and C 2 O are released into the atmosphere after the engine starts and before the temperature of the catalyst rises, and there is a demand for early activation of the catalyst.

【0005】 触媒を加熱する手段として従来はヒータを用いたり、高周波を用いることが知 られているが、触媒を早期に高温に加熱するためには、約700Aという大電流 が必要となり、実用化が難しい。Conventionally, it has been known to use a heater or a high frequency as a means for heating the catalyst, but in order to heat the catalyst to a high temperature at an early stage, a large current of about 700 A is required, and it is put to practical use. Is difficult.

【0006】 また、最近では、水素ガスと反応性に富む合金として水素吸蔵合金の反応熱を 利用してエンジンの冷却水、オイルあるいは吸気等を加熱する加熱装置が知られ ている。Further, recently, a heating device has been known which heats engine cooling water, oil, intake air, etc. by utilizing reaction heat of a hydrogen storage alloy as an alloy highly reactive with hydrogen gas.

【0007】 この加熱装置は、例えば特開昭63−198714号公報に示すように、水素 吸蔵合金を収容した加熱器と、水素ガスを貯蔵した水素タンクと、この加熱器と 水素タンクとを連通する制御弁を有するガス通路とから構成されている。This heating device, as disclosed in, for example, Japanese Patent Laid-Open No. 63-198714, connects a heater containing a hydrogen storage alloy, a hydrogen tank storing hydrogen gas, and the heater to the hydrogen tank. And a gas passage having a control valve for controlling.

【0008】 そして、冷寒始動時などにおいてエンジンの排気ガスで水素タンクを加熱する と、水素ガスが放出され、加熱器の内部の水素吸蔵合金が水素ガスを吸蔵して加 熱し、その熱でエンジンの冷却水を加熱するとともに、水素吸蔵合金に吸蔵され た水素ガスを解離させて水素タンク内に戻すヒートポンプシステムである。When the hydrogen tank is heated by the exhaust gas of the engine during cold start or the like, the hydrogen gas is released, and the hydrogen storage alloy inside the heater absorbs the hydrogen gas and heats it. This is a heat pump system that heats the engine cooling water and dissociates the hydrogen gas stored in the hydrogen storage alloy into the hydrogen tank.

【0009】[0009]

【考案が解決しようとする課題】[Problems to be solved by the device]

このように水素吸蔵合金の反応熱を利用することにより、電力を使用すること なく、エンジンの冷却水、オイルあるいは吸気等を加熱する加熱装置は公知であ るが、エンジンを始動後、触媒の温度が上昇するまでに多くのHC,COが大気 中に放出されてしまうという問題を解決したものはないのが現状である。 As described above, a heating device for heating engine cooling water, oil, intake air, etc. without using electric power by utilizing the reaction heat of the hydrogen storage alloy is known. At present, no one has solved the problem that a large amount of HC and CO are released into the atmosphere before the temperature rises.

【0010】 この考案は、前記事情に着目してなされたもので、その目的とするところは、 エンジンを始動後、触媒の温度を早期に上昇させ、触媒の活性化を図ることがで きる触媒の早期活性化装置を提供することにある。The present invention has been made in view of the above circumstances, and an object thereof is to make it possible to increase the temperature of the catalyst early after starting the engine to activate the catalyst. It is to provide an early activation device.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

この考案は、前記目的を達成するために、エンジンの排気経路に設けられた 触媒を活性化するものにおいて、触媒を覆うように設けられたケースに前記触媒 を加熱する低温活性形と高温活性形の少なくとも2種類の水素吸蔵合金および水 素ガスを収容し、このケースに前記低温活性形の水素吸蔵合金を加熱する電気ヒ ータを設ける。 In order to achieve the above object, the present invention is directed to activating a catalyst provided in an exhaust path of an engine, in which a case provided to cover the catalyst heats the catalyst and a high temperature activated type. An electric heater for accommodating at least two kinds of hydrogen storage alloy and hydrogen gas is provided in this case for heating the low temperature activated hydrogen storage alloy.

【0012】[0012]

【作用】[Action]

エンジンの始動信号等によって電気ヒータに通電すると、電気ヒータによって 低温活性形の水素吸蔵合金が加熱されて水素反応を起こし、その反応熱を高温活 性形の水素吸蔵合金に伝え、高温活性形の水素吸蔵合金は化学変化し、その際に 反応熱を発生する。この反応熱によって触媒が加熱され、早期に活性化される。 When the electric heater is energized by an engine start signal, etc., the low temperature activated hydrogen storage alloy is heated by the electric heater to cause a hydrogen reaction, and the reaction heat is transferred to the high temperature activated hydrogen storage alloy, and the high temperature activated type The hydrogen storage alloy chemically changes and generates heat of reaction at that time. The heat of reaction heats the catalyst and activates it early.

【0013】[0013]

【実施例】【Example】

以下、この考案の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

【0014】 図1は原理図、図2は全体の構成図である。1は自動車のガソリン・エンジン であり、2はエンジン1から排気される排気ガスを排出する排気経路としての排 気管である。排気管2の途中には内筒3が設けられ、この内筒3の内部には3元 触媒4が設けられている。FIG. 1 is a principle diagram and FIG. 2 is an overall configuration diagram. Reference numeral 1 is an automobile gasoline engine, and 2 is an exhaust pipe as an exhaust path for exhausting the exhaust gas exhausted from the engine 1. An inner cylinder 3 is provided in the middle of the exhaust pipe 2, and a three-way catalyst 4 is provided inside the inner cylinder 3.

【0015】 図3に示すように、前記内筒3にはこれを覆うようにケースとしての外筒11 が設けられ、内筒3と外筒11との間には環状空間部12が形成されている。こ の環状空間部12の両端部には開口を閉塞するためのバックアップリング13が 設けられている。As shown in FIG. 3, the inner cylinder 3 is provided with an outer cylinder 11 as a case so as to cover the inner cylinder 3, and an annular space 12 is formed between the inner cylinder 3 and the outer cylinder 11. ing. Backup rings 13 for closing the openings are provided at both ends of the annular space 12.

【0016】 このバックアップリング13は金属板で、その表面には水素ガスを透過しにく い材料のコーティング膜が施されている。さらに、バックアップリング13の外 周縁および内周縁には熱膨張の大きい銅材料のガスケット14,14が装着され 、前記内筒3と外筒11との間を密封している。The backup ring 13 is a metal plate, and the surface of the backup ring 13 is coated with a coating film of a material that is difficult to permeate hydrogen gas. Furthermore, gaskets 14 and 14 made of a copper material having a large thermal expansion are attached to the outer peripheral edge and the inner peripheral edge of the backup ring 13 to seal between the inner cylinder 3 and the outer cylinder 11.

【0017】 前記バックアップリング13の外側には前記内筒3の外周部の全周に亘ってベ ローズ15が設けられている。このベローズ15の一端部は前記内筒3の外周面 に溶接され、他端部は前記外筒11の内周面に溶接されている。このベローズ1 5は内筒3および外筒11の軸方向に伸縮自在であり、内筒3および外筒11の 熱膨張を吸収するとともに、排気ガス圧の変動による3元触媒4の振動を吸収す る役目をしている。A bellows 15 is provided on the outer side of the backup ring 13 around the entire outer peripheral portion of the inner cylinder 3. One end of the bellows 15 is welded to the outer peripheral surface of the inner cylinder 3, and the other end is welded to the inner peripheral surface of the outer cylinder 11. The bellows 15 is expandable / contractible in the axial direction of the inner cylinder 3 and the outer cylinder 11, absorbs thermal expansion of the inner cylinder 3 and the outer cylinder 11, and absorbs vibration of the three-way catalyst 4 due to fluctuation of exhaust gas pressure. Play a role.

【0018】 さらに、前記バックアップリング13とベローズ15との間にはシム15aが 介在されている。このように内筒3の外周には外筒11とバックアップリング1 3によって密封された環状空間部12が形成され、この環状空間部12の内部に は低温活性形水素吸蔵合金21と高温活性形水素吸蔵合金22の2種類の水素吸 蔵合金が収容されている。Further, a shim 15 a is interposed between the backup ring 13 and the bellows 15. In this way, the outer cylinder 11 and the annular space 12 sealed by the backup ring 13 are formed on the outer periphery of the inner cylinder 3. Inside the annular space 12, the low temperature activated hydrogen storage alloy 21 and the high temperature activated alloy 21 are formed. Two types of hydrogen storage alloys, hydrogen storage alloy 22, are stored.

【0019】 低温活性形水素吸蔵合金21は、Zr・Ti・Fe・V・Cr系の合金で約1 0℃で水素反応を起こし、高温活性形水素吸蔵合金22は、Ti・Fe・Co, Zr系の合金で約70℃で水素反応を起こすように形成されている。The low-temperature activated hydrogen storage alloy 21 is a Zr.Ti.Fe.V.Cr-based alloy that undergoes a hydrogen reaction at about 10 ° C., and the high-temperature activated hydrogen storage alloy 22 is formed of Ti.Fe.Co. It is a Zr-based alloy and is formed so as to cause a hydrogen reaction at about 70 ° C.

【0020】 前記低温活性形水素吸蔵合金21は、芯部に電気ヒータ23を有したワイヤメ ッシュ24の内部に収容され、略円柱状に形成された合金ブロックで、これら合 金ブロックは帯状板体を湾曲形成したホルダー25によって前記環状空間部12 に支持されている。さらに、この低温活性形水素吸蔵合金21の周囲は高温活性 形吸蔵合金22によって覆われ、さらに、この環状空間部12の内部には水素ガ スが収容されている。The low-temperature activated hydrogen storage alloy 21 is an alloy block which is housed inside a wire mesh 24 having an electric heater 23 in its core and is formed into a substantially columnar shape. These alloy blocks are strip-shaped plate members. Is supported by the annular space 12 by a holder 25 that is curved. Further, the periphery of the low-temperature activated hydrogen storage alloy 21 is covered with the high-temperature activated hydrogen storage alloy 22, and hydrogen gas is accommodated inside the annular space 12.

【0021】 また、前記電気ヒータ23はタイマスイッチ26を介してエンジン1を始動す るためにエンジンキー9に電気的に接続されており、タイマスイッチ26は通電 後20秒でOFFするように設定されている。The electric heater 23 is electrically connected to the engine key 9 to start the engine 1 via the timer switch 26, and the timer switch 26 is set to be turned off 20 seconds after being energized. Has been done.

【0022】 前記エンジンキー9は自動車の運転席に設けられバッテリー10に電気的に接 続されている。エンジンキー9はOFF,ACC,ON,IGNの端子を有して おり、可動接点9aが前記ON端子9bに接したとき、つまりIGNスイッチが ONする前にタイマスイッチ26がONするようになっている。The engine key 9 is provided in a driver's seat of an automobile and is electrically connected to a battery 10. The engine key 9 has terminals for OFF, ACC, ON, and IGN. When the movable contact 9a contacts the ON terminal 9b, that is, before the IGN switch is turned on, the timer switch 26 is turned on. There is.

【0023】 このように、この考案の触媒の早期活性化装置は、図1に示すように、3元触 媒4を覆うように設けたケースとしての外筒11の内部には低温活性形水素吸蔵 合金21と高温活性形吸蔵合金22および水素ガスが収容されており、これらは 電気ヒータ23によって覆われた構造である。As described above, the catalyst early activation device of the present invention, as shown in FIG. 1, has a low temperature activated hydrogen inside the outer cylinder 11 as a case provided so as to cover the ternary catalyst 4. The storage alloy 21, the high-temperature activated storage alloy 22, and hydrogen gas are contained, and these are covered by the electric heater 23.

【0024】 次に、前述のように構成された触媒の早期活性化装置の作用について説明する 。今、気温が0℃とすると、図4に示すように、低温活性形水素吸蔵合金21と 高温活性形水素吸蔵合金22のいずれも水素反応を起こさないことが分かる。Next, the operation of the catalyst early activation device configured as described above will be described. Now, when the temperature is 0 ° C., it can be seen that neither the low temperature activated hydrogen storage alloy 21 nor the high temperature activated hydrogen storage alloy 22 causes a hydrogen reaction, as shown in FIG.

【0025】 ここで、エンジン1を始動するためにエンジンキー9を入力し、可動接点9a がON端子9bに接触すると、タイマスイッチ26がONとなり、電気ヒータ2 3に通電される。Here, when the engine key 9 is input to start the engine 1 and the movable contact 9a comes into contact with the ON terminal 9b, the timer switch 26 is turned ON and the electric heater 23 is energized.

【0026】 そして、電気ヒータ23が発熱して低温活性形水素吸蔵合金21の温度が10 ℃以上になると、反応が始まり、水素ガスの吸蔵とともに反応熱が発生する。低 温活性形水素吸蔵合金21の反応熱はこの周囲を取り囲む高温活性形水素吸蔵合 金22に伝わる(TaからTb)。Then, when the electric heater 23 generates heat and the temperature of the low temperature activated hydrogen storage alloy 21 becomes 10 ° C. or higher, the reaction starts, and the reaction heat is generated with the storage of hydrogen gas. The heat of reaction of the low temperature activated hydrogen storage alloy 21 is transferred to the high temperature activated hydrogen storage alloy 22 surrounding it (Ta to Tb).

【0027】 高温活性形水素吸蔵合金22は温度がTb´になると、反応を始め、水素ガス の吸蔵とともに反応熱が発生してTc´まで反応が進む。高温活性形水素吸蔵合 金22も低温活性形水素吸蔵合金21と同じ温度なので、その時には低温活性形 水素吸蔵合金21はTcとなり、Pcの圧力の水素ガスを放出して高温活性形水 素吸蔵合金22に水素ガスを供給する。この反応は高温活性形水素吸蔵合金22 の上限、約25atm,190℃まで続き、その間の反応熱によって3元触媒4 が活性化される。When the temperature of the high-temperature activated hydrogen storage alloy 22 reaches Tb ′, the reaction starts, and when the hydrogen gas is stored, reaction heat is generated and the reaction proceeds to Tc ′. Since the high temperature activated hydrogen storage alloy 22 also has the same temperature as the low temperature activated hydrogen storage alloy 21, the low temperature activated hydrogen storage alloy 21 becomes Tc at that time, releasing hydrogen gas at a pressure of Pc to release the high temperature activated hydrogen storage alloy 21. Hydrogen gas is supplied to the alloy 22. This reaction continues up to the upper limit of the high temperature activated hydrogen storage alloy 22 at about 25 atm and 190 ° C., and the heat of reaction during that time activates the three-way catalyst 4.

【0028】 3元触媒4が活性化し、エンジン1等の暖気が終了して定常運転が可能になる と、今度はエンジン1から排気される排気ガスの熱によって触媒温度は上昇し、 低温活性形水素吸蔵合金21と高温活性形水素吸蔵合金22に吸蔵された水素ガ スが環状空間部12の内部に放出される。When the three-way catalyst 4 is activated and warming up of the engine 1 and the like is completed and steady operation becomes possible, this time, the catalyst temperature rises due to the heat of the exhaust gas exhausted from the engine 1, and the low temperature activated type The hydrogen gas stored in the hydrogen storage alloy 21 and the high temperature activated hydrogen storage alloy 22 is released into the annular space 12.

【0029】 また、低温活性形および高温活性形水素吸蔵合金21,22が化学変化を起こ し、その反応熱によって内筒3および外筒11が加熱され、熱膨張を起こし、熱 膨張率の違いにより、熱応力が発生するが、内筒3と外筒11とはベローズ15 によって連結されているため、ベローズ15が伸縮して熱膨張を吸収し、熱歪の 発生を防止できる。 なお、前記実施例においては、低温活性形水素吸蔵合金と高温活性形水素吸蔵 合金の2種類の合金を用いたが、3種類以上の水素吸蔵合金を用いてもよい。Further, the low temperature activated type and the high temperature activated type hydrogen storage alloys 21 and 22 undergo a chemical change, the inner cylinder 3 and the outer cylinder 11 are heated by the reaction heat, and thermal expansion occurs, resulting in a difference in thermal expansion coefficient. As a result, thermal stress is generated, but since the inner cylinder 3 and the outer cylinder 11 are connected by the bellows 15, the bellows 15 expands and contracts to absorb thermal expansion, and the occurrence of thermal strain can be prevented. Although two types of alloys, a low temperature activated hydrogen storage alloy and a high temperature activated hydrogen storage alloy, were used in the above-mentioned examples, three or more types of hydrogen storage alloys may be used.

【0030】[0030]

【考案の効果】[Effect of the device]

以上説明したように、この考案によれば、エンジンの排気経路に設けた触媒 を加熱する水素吸蔵合金を、低温活性形と高温活性形の少なくとも2種類とし、 さらに水素を共存させるとともに、電気ヒータを設けることにより、この水素吸 蔵合金に水素反応を起こして反応熱を発生させて前記触媒を活性化することがで き、水素吸蔵合金の反応熱によって触媒を早期に活性化できる。したがって、エ ンジンを始動後、触媒の温度が上昇するまでに多くのHC,COが大気中に放出 されてしまうという公害問題を解決することができる。 さらに、小さな消費電力で、触媒を活性化でき、水素ボンベを設ける必要もな く、構造的に簡単であり、廉価に提供できる。 As described above, according to the present invention, the hydrogen storage alloy for heating the catalyst provided in the exhaust path of the engine is at least two types, that is, the low temperature activated type and the high temperature activated type. By providing the hydrogen storage alloy, it is possible to cause a hydrogen reaction in the hydrogen storage alloy and generate reaction heat to activate the catalyst, and the catalyst can be activated early by the reaction heat of the hydrogen storage alloy. Therefore, it is possible to solve the pollution problem that much HC and CO are released into the atmosphere after the engine is started and before the temperature of the catalyst rises. Furthermore, the catalyst can be activated with a small amount of power consumption, and it is not necessary to provide a hydrogen cylinder, which is structurally simple and can be provided at a low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案の一実施例に係わる触媒の早期活性化
装置の原理図。
FIG. 1 is a principle view of a catalyst early activation device according to an embodiment of the present invention.

【図2】同実施例に係わる触媒の早期活性化装置におけ
る全体の構成図。
FIG. 2 is an overall configuration diagram of a catalyst early activation device according to the embodiment.

【図3】同実施例のケース部分の拡大した縦断側面図。FIG. 3 is an enlarged vertical sectional side view of a case portion of the embodiment.

【図4】同実施例のグラフ図。FIG. 4 is a graph of the example.

【符号の説明】[Explanation of symbols]

4…3元触媒、11…外筒、21…低温活性形水素吸蔵
合金、22…高温活性形水素吸蔵合金、23…電気ヒー
タ。
4 ... 3-way catalyst, 11 ... Outer cylinder, 21 ... Low temperature activated hydrogen storage alloy, 22 ... High temperature activated hydrogen storage alloy, 23 ... Electric heater.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 エンジンの排気経路に設けられた触媒を
早期に活性化する触媒の早期活性化装置において、触媒
と、この触媒を覆うように設けられ内部に前記触媒を加
熱する低温活性形と高温活性形の少なくとも2種類の水
素吸蔵合金および水素ガスを収容したケースと、このケ
ースに設けられ前記低温活性形の水素吸蔵合金を加熱す
る電気ヒータとを具備したことを特徴とする触媒の早期
活性化装置。
1. A catalyst early activation device for activating a catalyst provided in an exhaust path of an engine at an early stage, and a catalyst and a low-temperature activation type which is provided so as to cover the catalyst and heats the catalyst therein. An early catalyst, comprising: a case containing at least two types of high temperature activated hydrogen storage alloys and hydrogen gas; and an electric heater provided in the case for heating the low temperature activated hydrogen storage alloys. Activation device.
JP089310U 1991-10-30 1991-10-30 Catalyst early activation device Pending JPH0538313U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP089310U JPH0538313U (en) 1991-10-30 1991-10-30 Catalyst early activation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP089310U JPH0538313U (en) 1991-10-30 1991-10-30 Catalyst early activation device

Publications (1)

Publication Number Publication Date
JPH0538313U true JPH0538313U (en) 1993-05-25

Family

ID=13967100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP089310U Pending JPH0538313U (en) 1991-10-30 1991-10-30 Catalyst early activation device

Country Status (1)

Country Link
JP (1) JPH0538313U (en)

Similar Documents

Publication Publication Date Title
US5450721A (en) Exhaust gas preheating system
Burch et al. Reducing cold-start emissions by catalytic converter thermal management
EP0832346B9 (en) Thermal management of vehicle exhaust systems
JP3616136B2 (en) Reversible vacuum insulation jacket and insulated device
JP6064591B2 (en) Thermoelectric generator
JPH11501378A (en) Method and apparatus for heating a catalytic converter to reduce emissions
GB1349426A (en) Catalytic converter for exhaust gases of an internal combustion engine
WO2020208875A1 (en) Reformer system and engine system
JPH0460108A (en) Catalyst converter for purifying exhaust gas of vehicle and purification method of exhaust gas of vehicle
Korin et al. Reducing cold-start emission from internal combustion engines by means of a catalytic converter embedded in a phase-change material
JPH1182000A (en) Exhaust gas purifying device in internal combustion engine
JP2017096109A (en) Automobile exhaust emission control method and device
JPH04241715A (en) Resistance adjusting type heater
JPH04347320A (en) Catalyst heating device
JPH0538314U (en) Catalyst early activation device
JPH0538313U (en) Catalyst early activation device
JPH05125929A (en) Activating device of catalyst in early stage
JPH10507505A (en) Catalytic reactor
US5623987A (en) Modular manifold gas delivery system
S. Socha Jr et al. Optimization of extruded electrically heated catalysts
JP4974678B2 (en) Fuel cell system that can be used for transportation with adsorption accumulator
JPH07247832A (en) Quick heating device for exhaust emission control
JP2017133698A (en) Chemical heat storage device
JPH05277379A (en) Catalytic convertor device for purifying exhaust gas
JPH06137142A (en) Holding structure for catalyst converter

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970408