JPH0537928U - Quartz-based porous glass body heat treatment equipment - Google Patents
Quartz-based porous glass body heat treatment equipmentInfo
- Publication number
- JPH0537928U JPH0537928U JP9725191U JP9725191U JPH0537928U JP H0537928 U JPH0537928 U JP H0537928U JP 9725191 U JP9725191 U JP 9725191U JP 9725191 U JP9725191 U JP 9725191U JP H0537928 U JPH0537928 U JP H0537928U
- Authority
- JP
- Japan
- Prior art keywords
- tubular member
- glass body
- porous glass
- heat treatment
- core tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
(57)【要約】
【目的】 不純物の揮散を抑制し、炉心管の耐久性をも
高めることのできる石英系多孔質ガラス体の熱処理装置
を提供する。
【構成】 炉心管21を構成している各管状部材22、
23のうち、相対的に外側の管状部材23が、少なくと
も表面に炭化ケイ素を備えた耐熱材料からなり、相対的
に内側の管状部材22が石英からなる。
【効果】 上述した各管状部材22、23に依存して、
不純物混入のない高品位のガラス熱処理品を得ることが
でき、炉心管21の耐久性も高まる。
(57) [Abstract] [Purpose] To provide a heat treatment apparatus for a silica-based porous glass body capable of suppressing volatilization of impurities and enhancing durability of a core tube. [Structure] Each tubular member 22 constituting the core tube 21,
Of the 23, the relatively outer tubular member 23 is made of a heat-resistant material having silicon carbide on at least the surface thereof, and the relatively inner tubular member 22 is made of quartz. [Effect] Depending on the tubular members 22 and 23 described above,
It is possible to obtain a high-quality heat-treated glass product that does not contain impurities, and the durability of the furnace tube 21 is also improved.
Description
【0001】[0001]
本考案は、通信、光学の分野で用いられる石英系の多孔質ガラス体を熱処理す るための装置に関する。 The present invention relates to an apparatus for heat-treating a silica-based porous glass body used in the fields of communication and optics.
【0002】[0002]
光ファイバ用、イメージファイバ用、ライトガイド用、ロッドレンズ用として つくられた各種の石英系多孔質ガラス体は、これに必要な熱処理が施されて所定 の母材に仕上げられる。 ちなみに、VAD法、OVD法のごとき気相反応法で合成された多孔質ガラス 体の場合は、脱水、燒結などの熱処理を受けて透明ガラス化され、泥漿鋳込法、 静水圧成形法、押出成形法のごとき粉末成形法で成形された多孔質ガラス体の場 合は、いったん乾燥された後に、精製、燒結などの熱処理を受けて透明ガラス化 される。 Various kinds of silica-based porous glass bodies made for optical fibers, image fibers, light guides, and rod lenses are subjected to necessary heat treatment to finish them into a predetermined base material. By the way, in the case of a porous glass body synthesized by a vapor phase reaction method such as VAD method or OVD method, it is subjected to heat treatment such as dehydration and sintering to be transparent vitrified, sludge casting method, hydrostatic molding method, extrusion method. In the case of a porous glass body formed by a powder forming method such as a forming method, it is once dried and then subjected to heat treatment such as refining and sintering to be a transparent vitrification.
【0003】 上述した多孔質ガラス体の熱処理装置として、炉心管と炉心管外周の発熱体と を備えたものが広く用いられており、この種の装置によるときは、所定の温度、 所定の雰囲気に保持された炉心管内に石英系の多孔質ガラス体を入れてこれを前 記のとおり熱処理する。As a heat treatment device for the above-mentioned porous glass body, one having a core tube and a heating element around the core tube is widely used. When using this type of apparatus, a predetermined temperature and a predetermined atmosphere are used. A quartz-based porous glass body is placed in the furnace core tube held in the furnace and heat-treated as described above.
【0004】 一般に、石英系多孔質ガラス体の熱処理装置においては、炉心管内において多 孔質ガラス体に不純物を混入させないこと、高温ないし高熱に曝される炉心管の 耐久性を高めることが、技術的に重要な課題である。Generally, in a heat treatment apparatus for a silica-based porous glass body, it is a technical technique to prevent impurities from being mixed into the porous glass body in the core tube and to enhance the durability of the core tube exposed to high temperature or high heat. Is an important issue.
【0005】 その対策として、たとえば、特開昭59−137334号公報、特開昭60− 96536号公報に開示された公知技術の場合は、炉心管をカーボン管(外管) と石英管(内管)とによる二重管構造にして、カーボン管により炉心管の耐久性 を高め、石英管により多孔質ガラス体への不純物の混入を防止している。As a countermeasure, for example, in the case of the known technique disclosed in JP-A-59-137334 and JP-A-60-96536, the core tube is made of a carbon tube (outer tube) and a quartz tube (inner tube). The tube has a double tube structure, the carbon tube enhances the durability of the core tube, and the quartz tube prevents impurities from entering the porous glass body.
【0006】[0006]
上述した公知技術の場合、炉心管として、石英管、カーボン管を併用したこと により、先の技術的課題が解決されたかにみえるが、実際上は、以下に指摘する 問題が残されている。 In the case of the above-mentioned known technology, it seems that the above technical problem was solved by using the quartz tube and the carbon tube together as the core tube, but in reality, the problems pointed out below remain.
【0007】 その一つは、カーボン管として超高純度のものが得がたく、これが種々の不純 物を含んでいることである。 このようなカーボン管は、高温の熱処理時においてCu、Fe、Na、Caな どの不純物を揮散させるので、これが原因で石英管の汚染、結晶化が生じ、ひい ては、多孔質ガラス体へ不純物を混入させる。特に、カーボン管が酸化雰囲気に 曝されたとき、多孔質ガラス体への不純物の混入が顕著になる。[0007] One of the reasons is that it is difficult to obtain an ultra-high purity carbon tube, which contains various impurities. Such a carbon tube volatilizes impurities such as Cu, Fe, Na, and Ca during heat treatment at high temperatures, which causes contamination and crystallization of the quartz tube, which in turn causes impurities in the porous glass body. Mix in. In particular, when the carbon tube is exposed to an oxidizing atmosphere, the mixing of impurities into the porous glass body becomes remarkable.
【0008】 他の一つは、カーボン管が気体(気化した水分も含む)を透過させやすいこと であり、たとえば、多孔質ガラス体への水分混入により、透明ガラス母材の特性 が低下する。 このほか、カーボン管の場合は、熱処理装置の炉本体、発熱体などから激しく 揮散する不純物に対しても、これらを遮断するバリア機能がなく、したがって、 かかる観点からも、多孔質ガラス体を高品位に熱処理することができない。The other is that the carbon tube easily allows gas (including vaporized water) to pass therethrough, and, for example, mixing of water into the porous glass body deteriorates the characteristics of the transparent glass preform. In addition, in the case of carbon tubes, there is no barrier function to block the impurities that are volatilized violently from the furnace body of the heat treatment device, the heating element, etc. Therefore, from this viewpoint as well, the porous glass body can It cannot be heat treated to a high quality.
【0009】 本考案はこのような技術的課題に鑑み、不純物の揮散を抑制し、炉心管の耐久 性をも高めることのできる石英系多孔質ガラス体の熱処理装置を提供しようとす るものである。In view of the above technical problems, the present invention intends to provide a heat treatment apparatus for a silica-based porous glass body capable of suppressing the volatilization of impurities and enhancing the durability of the core tube. is there.
【0010】[0010]
本考案は所期の目的を達成するため、炉心管と炉心管外周の発熱体とを備え、 その炉心管が、内外に重ね合わされた複数の管状部材により構成されている石英 系多孔質ガラス体の熱処理装置において、径方向に隣接する前記管状部材相互の うち、相対的に外側の管状部材が、少なくとも表面に炭化ケイ素を備えた耐熱材 料からなり、相対的に内側の管状部材が石英からなることを特徴とする。 In order to achieve the intended purpose, the present invention is provided with a core tube and a heating element on the outer periphery of the core tube, and the core tube is composed of a plurality of tubular members that are superposed inside and outside. In the heat treatment apparatus, the relatively outer tubular member of the tubular members adjacent to each other in the radial direction is made of a heat-resistant material having at least silicon carbide on the surface, and the relatively inner tubular member is made of quartz. It is characterized by
【0011】[0011]
本考案に係る熱処理装置の場合、従来装置と同様、所定の雰囲気ガスで満たさ れている炉心管内を発熱体により高温に保持した後、この炉心管内において石英 系の多孔質ガラス体を脱水または精製または燒結する。 In the case of the heat treatment apparatus according to the present invention, as in the case of the conventional apparatus, after the inside of the core tube filled with the predetermined atmospheric gas is kept at a high temperature by the heating element, the silica-based porous glass body is dehydrated or purified in this core tube. Or sinter.
【0012】 上記における炉心管は、複数の管状部材が内外に重ね合わされた構成を有し、 外側の管状部材が少なくとも表面に炭化ケイ素を備えた耐熱材料からなり、内側 の管状部材が石英からなるので、多孔質ガラス体の熱処理に際して、つぎのよう な有効性を発揮する。The above-described core tube has a structure in which a plurality of tubular members are laminated inside and outside, the outer tubular member is made of a heat-resistant material having silicon carbide on at least the surface, and the inner tubular member is made of quartz. Therefore, the following effectiveness is exhibited in the heat treatment of the porous glass body.
【0013】 たとえば、外側管状部材における炭化ケイ素の部分は、2700℃以上の高融 点を有し、化学的に不活性で緻密な組成であるから、既述の熱処理時において外 側管状部材から不純物が揮散することはなく、さらに、熱処理装置の他の部分か ら揮散した不純物が炉心管内へ侵入するのも、外側管状部材が遮断する。 ゆえに、所要の熱処理に際して、外側の管状部材内にある石英製の内側管状部 材が結晶化しないばかりか、多孔質ガラス体に不純物を混入させるような事態も 起こらない。For example, the portion of silicon carbide in the outer tubular member has a high melting point of 2700 ° C. or higher, is chemically inert, and has a dense composition. The impurities do not evaporate, and further, the evaporative impurities from other parts of the heat treatment device also invade the core tube, and the outer tubular member blocks them. Therefore, during the required heat treatment, not only does the quartz inner tubular member in the outer tubular member not crystallize, but also a situation in which impurities are mixed into the porous glass body does not occur.
【0014】 このほかにも、これら内外側管状部材間の内圧と内側管状部材の内圧とを均衡 させることにより、その内側管状部材の熱変形を防止することができる。 かくて、内側の管状部材が高温の熱に対して安定するとき、多孔質ガラス体の 熱処理も安定して行なえるようになり、その結果、多孔質ガラス体の熱処理品と して、より高品位のものが得られる。In addition, by balancing the internal pressure between the inner and outer tubular members and the inner pressure of the inner tubular member, thermal deformation of the inner tubular member can be prevented. Thus, when the inner tubular member is stable to high temperature heat, the heat treatment of the porous glass body can be performed stably, and as a result, the heat treatment of the porous glass body can be performed at a higher temperature. You can get quality.
【0015】[0015]
本考案に係る熱処理装置の一実施例について、図面を参照して説明する。 図1において、11は加熱炉本体、21は炉心管、31は石英系の多孔質ガラ ス体をそれぞれ示す。 An embodiment of the heat treatment apparatus according to the present invention will be described with reference to the drawings. In FIG. 1, 11 is a heating furnace body, 21 is a furnace core tube, and 31 is a silica-based porous glass body.
【0016】 加熱炉本体11は、中空にしてリング状をなす炉殻12と、炉殻12内に備え つけられたリング状の発熱体13とを含んで構成されており、炉殻12にはガス 供給口14が設けられている。 上記における炉殻12は、炉材として公知ないし周知の耐熱材料からなり、こ れの具体例として、石英を含むセラミック、または、カーボンをあげることがで きる。 上記における発熱体13は、たとえば、周知の発熱体材料であるカーボン、ジ ルコニア等からなる。The heating furnace main body 11 includes a hollow and ring-shaped furnace shell 12 and a ring-shaped heating element 13 provided in the furnace shell 12, and the furnace shell 12 includes A gas supply port 14 is provided. The furnace shell 12 in the above is made of a heat-resistant material known or well-known as a furnace material, and specific examples thereof include ceramics containing quartz or carbon. The heating element 13 in the above is made of, for example, well-known heating material such as carbon and zirconia.
【0017】 炉心管21は、一端(上端)が開放され、他端(下端)が閉塞された内側の管 状部材22と、同じく、一端(上端)が開放され、他端(下端)が閉塞された外 側の管状部材23とが内外二重に組み合わされてなり、内側管状部材22と外側 管状部材23との間には、気密な圧力調整空間24が介在されている。 内側の管状部材22には、その下端にガス入口25、その上端にガス出口26 がそれぞれ設けられており、これらガス入口25、ガス出口26は、外側管状部 材23を貫通して外部に突出している。 外側管状部材23の下端には、圧力調整空間24に通じるガス供給口27が設 けられている。 上記一方の管状部材22は純粋な石英からなる。 上記他方の管状部材23は、一例として、表面が炭化ケイ素(SiC)により コーティングされた耐熱材料からなり、他の一例として、全体が炭化ケイ素から なる。 この場合の炭化ケイ素としては、CVD法により製造されたものが緻密である ので好ましい。さらに、管状部材23用の耐熱材料としては、カーボンあるいは カーボンと同程度の融点をもつセラミックをあげることができる。 その他、炉心管21には、これの開放端を塞ぐための上蓋33が開閉自在に組 み合わされる。The core tube 21 has one end (upper end) opened and the other end (lower end) closed, and similarly, the core tube 21 has one end (upper end) opened and the other end (lower end) closed. The outer tubular member 23 is combined with the outer tubular member in a double manner, and an airtight pressure adjusting space 24 is interposed between the inner tubular member 22 and the outer tubular member 23. The inner tubular member 22 is provided with a gas inlet 25 at its lower end and a gas outlet 26 at its upper end. These gas inlet 25 and gas outlet 26 penetrate the outer tubular member 23 and project to the outside. ing. A gas supply port 27 communicating with the pressure adjusting space 24 is provided at the lower end of the outer tubular member 23. The one tubular member 22 is made of pure quartz. The other tubular member 23 is made of a heat-resistant material whose surface is coated with silicon carbide (SiC), for example, and is entirely made of silicon carbide as another example. In this case, the silicon carbide produced by the CVD method is preferable because it is dense. Further, as the heat-resistant material for the tubular member 23, carbon or ceramic having a melting point similar to that of carbon can be used. Besides, an upper lid 33 for closing the open end of the core tube 21 is openably and closably combined.
【0018】 石英系の多孔質ガラス体31は、VAD法、OVD法のごとき気相反応法、あ るいは、泥漿鋳込法、静水圧成形法、押出成形法のごとき粉末成形法により作製 されたものである。 多孔質ガラス体31としては、コア用ガラス微粒子層(多孔質)のみからなる もの、コア用ガラス微粒子層(多孔質)とクラッド用ガラス微粒子層(多孔質) とを備えたもの、コア用ガラス棒の外周にクラッド用ガラス微粒子層(多孔質) が形成されたものなど、各種のものがある。 図1の場合は、多孔質ガラス体31として、VAD法によりコア用ガラス微粒 子層とクラッド用ガラス微粒子層とが形成されたものを例示しており、これに支 持棒32が取りつけられている。The quartz-based porous glass body 31 is produced by a gas phase reaction method such as the VAD method or the OVD method, or a powder molding method such as the slurry casting method, the hydrostatic molding method, or the extrusion molding method. It is a thing. The porous glass body 31 includes only the glass fine particle layer for core (porous), the glass fine particle layer for core (porous) and the glass fine particle layer for clad (porous), the glass for core There are various types such as those in which a glass fine particle layer for clad (porous) is formed on the outer periphery of the rod. In the case of FIG. 1, as the porous glass body 31, a glass fine particle layer for core and a glass fine particle layer for cladding are formed by the VAD method, and the supporting rod 32 is attached to this. There is.
【0019】 図1において、多孔質ガラス体31を脱水または精製または燒結するために熱 処理するとき、一例として、以下のようになる。In FIG. 1, when the porous glass body 31 is subjected to heat treatment for dehydration, refining or sintering, the following will be given as an example.
【0020】 はじめ、クリーン状態に保持された炉心管21の管状部材22内に多孔質ガラ ス体31を入れてこれを管内の上部でいったん待機させ、かつ、炉心管21の上 面を上蓋33で閉じてから、装置の各部を運転状態にする。 すなわち、管状部材22内には、ガス入口25からガス出口26にわたって雰 囲気ガスを流通させ、圧力調整空間24内にはガス供給口27から圧力調整用の ガスを供給し、炉殻12内にはガス供給口14から発熱体劣化防止用のガスを供 給し、発熱体13はこれに通電して発熱させ、管状部材22内が所定の温度に達 したならば、多孔質ガラス体31を回転させつつ管状部材22内の下方へ移動さ せる。First, the porous glass body 31 is put in the tubular member 22 of the core tube 21 kept in a clean state, and the porous glass body 31 is once made to stand by at the upper part of the tube, and the upper surface of the core tube 21 is covered with the upper lid 33. After closing with, make each part of the device operational. That is, the atmosphere gas is circulated in the tubular member 22 from the gas inlet 25 to the gas outlet 26, and the gas for pressure adjustment is supplied from the gas supply port 27 into the pressure adjustment space 24 so as to be supplied into the furnace shell 12. Supplies a gas for preventing deterioration of the heating element from the gas supply port 14, and the heating element 13 is energized to generate heat, and when the inside of the tubular member 22 reaches a predetermined temperature, the porous glass body 31 is removed. It is moved downward in the tubular member 22 while being rotated.
【0021】 かかる運転状態において、管状部材22内の多孔質ガラス体31が高温部(発 熱体13に対応した位置)に移動したとき、多孔質ガラス体31は、所定温度の 熱を受けて処理される。In such an operating state, when the porous glass body 31 inside the tubular member 22 moves to a high temperature portion (a position corresponding to the heat generating body 13), the porous glass body 31 receives heat of a predetermined temperature. It is processed.
【0022】 上記において、多孔質ガラス体31を脱水するときは、雰囲気ガス(管状部材 22内のガス)としてCl2 、Heが用いられるとともに、発熱体13による熱 処理温度が1200℃前後に設定される。 なお、多孔質ガラス体31を精製するときも、これとほぼ同様である。 さらに、多孔質ガラス体31を燒結(透明ガラス化)するときは、雰囲気ガス としてHeが用いられ、発熱体13による熱処理温度が1600℃前後に設定さ れる。 炉殻12内、圧力調整空間24内に供給するガスとしては、Ar、He、N2 のごとき不活性ガスが用いられる。 その他、圧力調整用ガスの供給を受ける圧力調整空間24の内圧は、管状部材 22の変形を防止するために、図示しないガス圧制御手段を介して管状部材22 の内圧と均衡するように制御される。In the above, when dehydrating the porous glass body 31, Cl 2 and He are used as the atmosphere gas (gas in the tubular member 22), and the heat treatment temperature by the heating element 13 is set to about 1200 ° C. To be done. It should be noted that the same applies to the case of purifying the porous glass body 31. Further, when the porous glass body 31 is sintered (transparent vitrification), He is used as an atmosphere gas, and the heat treatment temperature of the heating element 13 is set to around 1600 ° C. As the gas supplied into the furnace shell 12 and the pressure adjusting space 24, an inert gas such as Ar, He or N 2 is used. In addition, the internal pressure of the pressure adjusting space 24 receiving the supply of the pressure adjusting gas is controlled so as to be balanced with the internal pressure of the tubular member 22 via a gas pressure control means (not shown) in order to prevent the tubular member 22 from being deformed. It
【0023】 つぎに、図示の熱処理装置を用いて石英系の多孔質ガラス体31を熱処理する 際の具体例について述べる。Next, a specific example of heat treatment of the silica-based porous glass body 31 using the illustrated heat treatment apparatus will be described.
【0024】 熱処理すべき石英系の多孔質ガラス体31は、VAD法により作製されたシン グルモード光ファイバ用のものであり、これは、コア用ガラス微粒子層とクラッ ド用ガラス微粒子層とを備えている。The quartz-based porous glass body 31 to be heat-treated is for a single mode optical fiber manufactured by the VAD method, and it comprises a glass fine particle layer for core and a glass fine particle layer for cladding. ing.
【0025】 この多孔質ガラス体31を脱水処理するとき、炉殻12内、圧力調整空間24 内にそれぞれ不活性ガスArを供給し、管状部材22内の雰囲気を1%のCl2 を含有するHeガスにより形成し、発熱体13を介した管状部材22内の温度を 1125℃に設定し、さらに、管状部材22内における多孔質ガラス体31の移 動速度(降下速度)を4mm/minにした。When dehydrating the porous glass body 31, an inert gas Ar is supplied into the furnace shell 12 and the pressure adjusting space 24, respectively, and the atmosphere in the tubular member 22 contains 1% of Cl 2 . It is formed of He gas, the temperature inside the tubular member 22 through the heating element 13 is set to 1125 ° C., and the moving speed (falling speed) of the porous glass body 31 inside the tubular member 22 is set to 4 mm / min. did.
【0026】 引き続いて、脱水処理後の多孔質ガラス体31を燒結処理するとき、管状部材 22内の雰囲気を100%Heガスに交換し、発熱体13を介した管状部材22 内の温度を1650℃に上昇させ、さらに、管状部材22内における多孔質ガラ ス体31の移動速度(降下速度)を2mm/minにした。Subsequently, when the porous glass body 31 after the dehydration treatment is sintered, the atmosphere inside the tubular member 22 is replaced with 100% He gas, and the temperature inside the tubular member 22 via the heating element 13 is set to 1650. C., and the moving speed (falling speed) of the porous glass body 31 in the tubular member 22 was set to 2 mm / min.
【0027】 かくて、脱水ならびに燒結された透明ガラス体を、周知の加熱延伸手段で線引 きしてシングルモード光ファイバをつくり、その線引き直後の光ファイバ外周を 紫外線硬化樹脂でコーティングした。Thus, the dehydrated and sintered transparent glass body was drawn by a well-known heating and drawing means to form a single mode optical fiber, and the outer circumference of the optical fiber immediately after the drawing was coated with an ultraviolet curable resin.
【0028】 上述した具体例においては、両管状部材22、23の変形、管状部材22の結 晶化などがみられず、光ファイバについても、炉材の熱分解に起因した不純物の 混入がみられなかった。In the above-described specific examples, neither the tubular members 22 and 23 were deformed, the tubular member 22 was crystallized, and the optical fiber was also contaminated with impurities due to thermal decomposition of the furnace material. I couldn't do it.
【0029】 なお、図示例では、炉心管21を構成するための管状部材が二本組み合わされ ているが、これは三本以上の組み合わせでもよい。 たとえば、炉心管21の外周から中心に向けて、管状部材23→管状部材22 →同部材22、または、管状部材23→同部材23→管状部材22のように組み 合わせたり、あるいは、管状部材23→管状部材22→管状部材23→管状部材 22、または、管状部材23→同部材23→管状部材22→同部材22のように 組み合わせる。In the illustrated example, two tubular members for forming the core tube 21 are combined, but three or more tubular members may be combined. For example, from the outer periphery of the core tube 21 toward the center, the tubular member 23, the tubular member 22, the same member 22, or the tubular member 23, the same member 23, and the tubular member 22 may be combined, or the tubular member 23 may be combined. -> Tubular member 22-> tubular member 23-> tubular member 22 or tubular member 23-> same member 23-> tubular member 22-> same member 22 and so on.
【0030】 上述の実施例は、光ファイバ用の多孔質ガラス体に関する熱処理例であるが、 イメージファイバ用、ライトガイド用、ロッドレンズ用の各多孔質ガラス体も、 既述の内容に準じてこれを熱処理することができる。The above-mentioned embodiment is an example of heat treatment for a porous glass body for an optical fiber, but each porous glass body for an image fiber, a light guide, and a rod lens also conforms to the contents described above. This can be heat treated.
【0031】[0031]
本考案に係る熱処理装置は、炉心管を構成している各管状部材のうち、相対的 に外側の管状部材が、少なくとも表面に炭化ケイ素を備えた耐熱材料からなり、 相対的に内側の管状部材が石英からなるので、これら各管状部材に依存して、不 純物混入のない高品位のガラス熱処理品を得ることができ、炉心管の耐久性も高 めることができる。 In the heat treatment apparatus according to the present invention, among the tubular members constituting the core tube, the relatively outer tubular member is made of a heat-resistant material having silicon carbide on at least the surface, and the relatively inner tubular member is provided. Since quartz is made of quartz, depending on each of these tubular members, a high-quality heat-treated glass product free of impurities can be obtained, and the durability of the core tube can be improved.
【図1】本考案に係る熱処理装置の一実施例を略示した
断面図である。1 is a schematic cross-sectional view of an embodiment of a heat treatment apparatus according to the present invention.
11 加熱炉本体 12 炉殻 13 発熱体 21 炉心管 22 内側の管状部材 23 外側の管状部材 31 多孔質ガラス体 33 炉心管の上蓋 11 heating furnace main body 12 furnace shell 13 heating element 21 core tube 22 inner tubular member 23 outer tubular member 31 porous glass body 33 upper lid of furnace tube
Claims (1)
その炉心管が、内外に重ね合わされた複数の管状部材に
より構成されている石英系多孔質ガラス体の熱処理装置
において、径方向に隣接する前記管状部材相互のうち、
相対的に外側の管状部材が、少なくとも表面に炭化ケイ
素を備えた耐熱材料からなり、相対的に内側の管状部材
が石英からなることを特徴とする石英系多孔質ガラス体
の熱処理装置。1. A core tube and a heating element around the core tube are provided,
The furnace core tube, in the heat treatment apparatus of the silica-based porous glass body constituted by a plurality of tubular members that are superposed on the inside and outside, among the tubular members adjacent to each other in the radial direction,
A heat treatment device for a silica-based porous glass body, wherein the relatively outer tubular member is made of a heat-resistant material having at least silicon carbide on its surface, and the relatively inner tubular member is made of quartz.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9725191U JP2521219Y2 (en) | 1991-10-30 | 1991-10-30 | Quartz-based porous glass body heat treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9725191U JP2521219Y2 (en) | 1991-10-30 | 1991-10-30 | Quartz-based porous glass body heat treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0537928U true JPH0537928U (en) | 1993-05-21 |
JP2521219Y2 JP2521219Y2 (en) | 1996-12-25 |
Family
ID=14187353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9725191U Expired - Fee Related JP2521219Y2 (en) | 1991-10-30 | 1991-10-30 | Quartz-based porous glass body heat treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2521219Y2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005000752A1 (en) * | 2003-06-25 | 2005-01-06 | Fujikura Ltd. | Method and apparatus for producing base material of optical fiber |
JP2013032266A (en) * | 2011-06-27 | 2013-02-14 | Furukawa Electric Co Ltd:The | Heat treatment apparatus for porous glass preform |
-
1991
- 1991-10-30 JP JP9725191U patent/JP2521219Y2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005000752A1 (en) * | 2003-06-25 | 2005-01-06 | Fujikura Ltd. | Method and apparatus for producing base material of optical fiber |
EP1650171A1 (en) * | 2003-06-25 | 2006-04-26 | Fujikura Ltd. | Method and apparatus for producing base material of optical fiber |
JPWO2005000752A1 (en) * | 2003-06-25 | 2006-07-27 | 株式会社フジクラ | Optical fiber preform manufacturing method and apparatus |
US7921676B2 (en) | 2003-06-25 | 2011-04-12 | Fujikura Ltd. | Method for manufacturing optical fiber preform and optical fiber preform apparatus |
US7946132B2 (en) | 2003-06-25 | 2011-05-24 | Fujikura Ltd. | Method for manufacturing optical fiber preform and optical fiber preform apparatus |
EP1650171A4 (en) * | 2003-06-25 | 2011-08-10 | Fujikura Ltd | Method and apparatus for producing base material of optical fiber |
JP2013032266A (en) * | 2011-06-27 | 2013-02-14 | Furukawa Electric Co Ltd:The | Heat treatment apparatus for porous glass preform |
Also Published As
Publication number | Publication date |
---|---|
JP2521219Y2 (en) | 1996-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69304693T2 (en) | DEVICE FOR THERMALLY TREATING OBJECTS OF SYNTHETIC GLASS-LIKE SILICO | |
US3806570A (en) | Method for producing high quality fused silica | |
US8167282B2 (en) | Aerosol generator | |
US4082420A (en) | An optical transmission fiber containing fluorine | |
SE439480B (en) | PROCEDURE FOR THE PREPARATION OF A RODFORM GLASS FOR OPTICAL FIBERS | |
JP2008524113A (en) | Alkali metal silicate glass, raw material and method for producing glass article formed therefrom | |
JP2012509245A (en) | Apparatus and method for sintering optical fiber preforms | |
US4654065A (en) | Quasi-containerless glass formation method and apparatus | |
KR101084393B1 (en) | Process for producing optical fiber base and apparatus therefor | |
JPS6081033A (en) | Manufacture of optical fiber | |
JPH0537928U (en) | Quartz-based porous glass body heat treatment equipment | |
FI115134B (en) | A method for producing doped glass material | |
GB2033373A (en) | Process for the production of light-conducting fibres | |
US8857372B2 (en) | Method of fabricating optical fiber using an isothermal, low pressure plasma deposition technique | |
JP2006516526A (en) | Method of manufacturing a hollow cylinder of synthetic quartz glass using a holding device and a holding device suitable for carrying out this method | |
JP2813752B2 (en) | Manufacturing method of optical waveguide preform | |
US20020083740A1 (en) | Process and apparatus for production of silica grain having desired properties and their fiber optic and semiconductor application | |
GB1559768A (en) | Optical fibre preform manufacture | |
JPS63134531A (en) | Device for synthesizing glass fine particle | |
JPS62153130A (en) | Production of parent material for optical fiber glass | |
JPH0699163B2 (en) | Vitrification method of optical fiber base material | |
JPS59184735A (en) | Transparent vitrification of optical porous glass | |
JPS63147839A (en) | Doping method for porous glass base material | |
JPH10218627A (en) | Production of glass and optical fiber | |
JPH0421534A (en) | Preparation of rare earth element-doped optical fiber preform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |