JPH053780A - Method for separating microorganism - Google Patents

Method for separating microorganism

Info

Publication number
JPH053780A
JPH053780A JP15440491A JP15440491A JPH053780A JP H053780 A JPH053780 A JP H053780A JP 15440491 A JP15440491 A JP 15440491A JP 15440491 A JP15440491 A JP 15440491A JP H053780 A JPH053780 A JP H053780A
Authority
JP
Japan
Prior art keywords
cells
added
aggregates
sodium polyacrylate
microbial cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15440491A
Other languages
Japanese (ja)
Inventor
Toshio Matsumoto
俊男 松本
Toru Miyahara
徹 宮原
Nobuhiro Fukuhara
信裕 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15440491A priority Critical patent/JPH053780A/en
Publication of JPH053780A publication Critical patent/JPH053780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE:To form firm aggregates of microbial cells excellent in settling properties and efficiently separate the microbial cells by regulating an aqueous suspension of microorganisms to an acidic state and then adding sodium polyacrylate to the regulated aqueous suspension. CONSTITUTION:An aqueous suspension of microorganisms is regulated to pH <=4 and sodium polyacrylate in an amount of preferably >=0.002 based on the dry weight of the suspended microbial cells is then added to form aggregates of the microbial cells. The resultant aggregates are then separated by a method for normally settling the aforementioned aggregates and separating liquids, etc. The pH is normally regulated by using an acid such as sulfuric acid or hydrochloric acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微生物、特に細菌の懸
濁液から微生物菌体を効率よく分離する方法に関する。
TECHNICAL FIELD The present invention relates to a method for efficiently separating microbial cells from a suspension of microorganisms, particularly bacteria.

【0002】[0002]

【従来の技術】微生物を用いて有用物質を生産する方法
として、有用物質を微生物の菌体内に蓄積させる方法
と、微生物の菌体外に放出させ、微生物を懸濁させてい
る水中に蓄積させる方法がある。有用物質を微生物の菌
体内に蓄積させる場合には微生物菌体を回収することが
必要だし、反対に有用物質を微生物の菌体外に蓄積させ
る場合には微生物菌体を除去することが必要となる。い
ずれの方法においても、有用物質を単離精製するために
は、懸濁状態にある微生物を分離することが必要であ
る。
2. Description of the Related Art As a method for producing a useful substance by using a microorganism, a useful substance is accumulated inside the microbial cell, and it is released outside the microbial cell and accumulated in water in which the microorganism is suspended. There is a way. It is necessary to collect the microbial cells when the useful substance is accumulated in the microbial cells, and conversely, it is necessary to remove the microbial cell when the useful substance is accumulated outside the microbial cells. Become. In any of these methods, it is necessary to separate microorganisms in a suspended state in order to isolate and purify useful substances.

【0003】微生物の分離方法として遠心分離による方
法が知られている。シャープレス遠心機を用いると菌体
と上清液を分離する効果には優れるものの、微生物の量
によってはボウルの交換を頻繁に行う必要があり、操作
性に問題がある。連続遠心分離機を用いるとこの欠点を
改善できるが、装置の構造上、強い遠心力がかけられ
ず、微生物の完全な分離は困難である。
As a method for separating microorganisms, a method using centrifugation is known. When a Sharpless centrifuge is used, the effect of separating the bacterial cells and the supernatant liquid is excellent, but the bowl needs to be replaced frequently depending on the amount of microorganisms, and there is a problem in operability. This drawback can be remedied by using a continuous centrifuge, but due to the structure of the device, strong centrifugal force cannot be applied, and complete separation of microorganisms is difficult.

【0004】微生物菌体の大きさは0.5〜2.0μ程
度と微小なので濾紙や濾布を用いての濾過はできない。
そこで、微生物懸濁液をpH4に調整し、濾過助剤とな
る活性炭とともに加熱、熱濾過する方法が知られている
(特開昭59−28488)。この方法では有用物質が
菌体外の水相に蓄積されている場合、有用物質の種類に
よっては活性炭に吸着されて多大のロスを生じる。一
方、菌体内に有用物質が蓄積されている場合には菌体の
回収が困難なので実施することができない。
Since the size of microbial cells is as small as 0.5 to 2.0 μ, it cannot be filtered using a filter paper or filter cloth.
Therefore, a method is known in which the microbial suspension is adjusted to pH 4 and heated and hot filtered together with activated carbon that serves as a filter aid (JP-A-59-28488). In this method, when the useful substance is accumulated in the aqueous phase outside the cells, depending on the type of the useful substance, the useful substance is adsorbed on the activated carbon to cause a large loss. On the other hand, when useful substances are accumulated in the microbial cells, the microbial cells cannot be collected because it is difficult to recover them.

【0005】微生物菌体の凝集塊を形成させ重力により
沈降させる方法は、これらの欠点を改善する方法であ
り、いくつかの方法が提案されている。たとえば、ポリ
塩化アルミニウムを加え、pH5〜8に調整した後、ポ
リアクリル酸ナトリウムを加える方法(特開昭49−1
33585)、カチオン性高分子凝集剤を添加する方法
(特開昭61−40784)、塩化物を添加する方法
(特開昭63−27648)、ほう酸またはその塩を加
え、pH8以上に調整する方法(特開平2−26547
0)、水酸化カルシウムを添加してpH10以上で微生
物菌体の凝集塊を形成させ、引続き塩化第二鉄を添加し
て凝集塊を成長させて分離する方法(特公昭55−49
826)などが知られている。これらの方法は有用物質
の種類によっては変性がおこるほか、凝集性、沈降性に
問題があって菌体分離が満足のいくものではない。
The method of forming aggregates of microbial cells and allowing them to settle by gravity is a method of improving these drawbacks, and several methods have been proposed. For example, a method of adding polyaluminum chloride to adjust the pH to 5 to 8 and then adding sodium polyacrylate (JP-A-49-1)
33585), a method of adding a cationic polymer flocculant (JP-A-61-40784), a method of adding a chloride (JP-A-63-27648), a method of adding boric acid or a salt thereof to adjust the pH to 8 or more. (JP-A-2-26547
0), a method of adding calcium hydroxide to form an aggregate of microbial cells at a pH of 10 or more, and subsequently adding ferric chloride to grow and separate the aggregate (Japanese Patent Publication No. 55-49).
826) and the like are known. These methods cause denaturation depending on the type of useful substance, and have problems with aggregating property and sedimentation property, so that cell separation is not satisfactory.

【0006】[0006]

【発明が解決しようとする課題】微生物菌体の分離方法
として、遠心分離や濾過による方法には、上記のような
問題があり、菌体の凝集塊を形成させる方法にも満足の
できる方法が知られていない。本発明が解決しようとす
る課題は、従来から知られているよりも効果的に微生物
の凝集塊を形成させ、微生物菌体を分離することであ
る。
As a method for separating microbial cells, a method using centrifugation or filtration has the above-mentioned problems, and a method that is satisfactory as a method for forming aggregates of microbial cells is also available. unknown. The problem to be solved by the present invention is to more effectively form aggregates of microorganisms and separate the microbial cells than conventionally known.

【0007】[0007]

【課題を解決するための手段】本発明者らは、水に懸濁
状態にある微生物菌体の凝集塊を形成させることによ
り、微生物菌体を分離する方法について鋭意検討を重ね
た結果、微生物菌体の懸濁液をpH4以下に調整し、ポ
リアクリル酸ナトリウムを添加すれば、沈降性が良く、
強固な微生物菌体の凝集塊が形成されることを見い出
し、この知見に基づいて本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive investigations by the present inventors, a method for separating microbial cells by forming an aggregate of microbial cells suspended in water If the suspension of cells is adjusted to pH 4 or lower and sodium polyacrylate is added, the sedimentation is good,
It was found that a strong aggregate of microbial cells was formed, and the present invention was completed based on this finding.

【0008】即ち、本発明は、微生物の水懸濁液を、p
H4以下に調整し、ポリアクリル酸ナトリウムを加えて
菌体の凝集塊を形成させ、微生物を分離するものであ
る。
That is, according to the present invention, an aqueous suspension of microorganisms is
It is adjusted to H4 or less and sodium polyacrylate is added to form aggregates of bacterial cells to separate microorganisms.

【0009】例えば、微生物が大腸菌である場合、参考
例1に示すように、pH4以下の菌体懸濁液にポリアク
リル酸ナトリウムを微量添加することによって菌体凝集
塊が形成されて、菌体の沈降がおこる。ところが、アク
リルアミド−アクリル酸共重合体のアニオン系高分子凝
集剤を添加しても微生物菌体の凝集塊は形成されない。
酸性溶液中でのポリアクリル酸ナトリウムと、アクリル
アミド−アクリル酸共重合体とでは、カルボキシル基の
解離や、ポリマー分子の形状が異なり、微生物の凝集塊
の形成に差が生じてくるものと推察される。
For example, when the microorganism is Escherichia coli, as shown in Reference Example 1, a small amount of sodium polyacrylate is added to a bacterial cell suspension having a pH of 4 or less to form a bacterial cell aggregate, and Sedimentation occurs. However, even if an anionic polymer flocculant of acrylamide-acrylic acid copolymer is added, a lump of microbial cells is not formed.
Sodium polyacrylate in an acidic solution and acrylamide-acrylic acid copolymer are presumed to cause a difference in the dissociation of the carboxyl group and the shape of the polymer molecule, resulting in the formation of aggregates of microorganisms. It

【0010】微生物懸濁液をpH4以下に調整するため
には酸を添加すればよいが、酸の種類は限定されず、硫
酸、塩酸、燐酸、硝酸などの無機酸のほか、蟻酸、酢
酸、クエン酸などの有機酸を用いることができる。
An acid may be added to adjust the pH of the microbial suspension to 4 or less, but the kind of the acid is not limited, and inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid and nitric acid, as well as formic acid, acetic acid, Organic acids such as citric acid can be used.

【0011】ポリアクリル酸ナトリウムは粉末状で市販
されたものが入手できる。粉末のまま微生物懸濁液に添
加しても良いし、水溶液を調製しこれを微生物懸濁液に
添加してもよい。ポリアクリル酸ナトリウムが微生物懸
濁液全体に分散して溶解した後、菌体の凝集塊がすみや
かに形成される。参考例2に示すようにpH4以下の菌
体懸濁液に微量のポリアクリル酸ナトリウムを添加する
だけで菌体凝集塊が形成されるが、凝集塊の形成を最も
効果的に行うためには、懸濁させた微生物菌体の乾燥重
量に対して0.002倍量以上のポリアクリル酸ナトリ
ウムを添加することが 望ましい。しかし、ポリアクリ
ル酸ナトリウムを大過剰に添加しても、その添加量に比
例した凝集効果の増大につながらないので、ポリアクリ
ル酸ナトリウムの浪費である。
Sodium polyacrylate is available in the form of powder in the market. The powder may be added as it is to the microbial suspension, or an aqueous solution may be prepared and added to the microbial suspension. After sodium polyacrylate is dispersed and dissolved in the entire microbial suspension, an aggregate of bacterial cells is immediately formed. As shown in Reference Example 2, microbial cell aggregates are formed only by adding a trace amount of sodium polyacrylate to the microbial cell suspension having a pH of 4 or less. However, in order to form the aggregates most effectively, It is desirable to add 0.002 times or more of sodium polyacrylate based on the dry weight of the suspended microbial cells. However, even if a large excess of sodium polyacrylate is added, it does not lead to an increase in the agglomeration effect in proportion to the added amount, and thus sodium polyacrylate is wasted.

【0012】本発明方法における微生物懸濁液とは、微
生物(例えば、細菌、酵母、かび、放線菌、単細胞藻類
等)が浮遊している懸濁液を意味する。参考例2に示す
ように、微生物は多種類の塩類や有機物の混合した培養
液中に懸濁状態にあってもよく、また、充分洗浄して、
水、生理的食塩水、緩衝液等に懸濁させたものでもよ
い。すなわち、微生物菌体の凝集塊形成のためには、菌
体懸濁液をpH4以下に調整した後にポリアクリル酸ナ
トリウムを添加すればよいのであって、特定の成分の共
存を要求しない。
The microbial suspension in the method of the present invention means a suspension in which microorganisms (for example, bacteria, yeast, mold, actinomycetes, single cell algae, etc.) are suspended. As shown in Reference Example 2, the microorganism may be in a suspended state in a culture solution in which various kinds of salts and organic substances are mixed, or it may be washed thoroughly,
It may be suspended in water, physiological saline, buffer solution or the like. That is, in order to form aggregates of microbial cells, it is sufficient to adjust the cell suspension to pH 4 or less and then add sodium polyacrylate, without requiring the coexistence of specific components.

【0013】さらに特定の酵素の生産能が高い微生物菌
体そのものを触媒として有用物質を合成した後、反応液
をpH4以下に調整し、ポリアクリル酸ナトリウムを添
加することにより菌体残さの凝集塊を形成させ、有用物
質の溶解した水相を回収する方法も可能である。たとえ
ば、微生物を用いて製造したアミノ酸類を精製するにあ
たり、微生物を除去する工程に適用できる。数例を挙げ
るならば、エシェリヒア・コリ(Escherichi
a coli)、コリネバクテリウム(Corineb
acterium)属、ブレビバクテリウム(Brev
ibacterium)属の細菌などの生理作用を利用
して、L−トリプトファンを製造する場合や、エシェリ
ヒア・コリ(Escherichia coli)、シ
トロバクタ(Citrobacter)属、エルウィニ
ア(Erwinia)属の細菌などの生理作用を利用し
て3,4−ジヒドロキシ−L−フェニルアラニン(以後
L−DOPAと略記)を製造する場合等、例示すること
ができる。
Further, after synthesizing a useful substance by using as a catalyst the microbial cells themselves having a high ability to produce a specific enzyme, the reaction solution is adjusted to pH 4 or less, and sodium polyacrylate is added to the lumps of microbial cell residues. It is also possible to recover the aqueous phase in which the useful substance is dissolved by forming For example, it can be applied to the step of removing microorganisms when purifying amino acids produced using the microorganisms. To give a few examples, Escherichia coli
a coli), Coryneb
genus Lactobacillus, Brevibacterium (Brev
When L-tryptophan is produced by utilizing the physiological actions of the bacterium of the genus ibacterium, the physiological actions of the bacteria of the genus Escherichia coli, the genus Citrobacterium, the genus Erwinia are used. For example, the case of producing 3,4-dihydroxy-L-phenylalanine (hereinafter abbreviated as L-DOPA) can be exemplified.

【0014】微生物菌体の凝集塊形成の温度は限定され
ない。ただし、高温になると液が対流して凝集塊が浮遊
してくるので、沈降させることができなくなる。菌体の
凝集塊を沈降させ、分液することによって菌体を分離す
る場合には、菌体を凝集させる容器の特性に応じて、凝
集塊が浮遊してこない温度範囲で実施することが望まし
い。
The temperature for forming aggregates of microbial cells is not limited. However, at high temperature, the liquid convection causes the aggregates to float, making it impossible to settle. When the lumps of microbial cells are settled and separated to separate the microbial cells, it is desirable to carry out in a temperature range in which the flocculated lumps do not float depending on the characteristics of the container in which the microbial cells are aggregated. ..

【0015】このようにして形成された菌体の凝集塊は
通常の菌体よりも大きな粒子になっているので、沈降性
が向上している。したがって、菌体を水相から分離する
ために、静置して菌体の凝集塊を容器底部に沈降させ、
分液する方法をとることができる。また、通常の菌体で
は遠心力が不足しているため問題点のあった連続遠心分
離機にかけても良好な分離結果が得られる。一方、通常
の菌体を濾過する場合よりも少ない量の濾過助剤を用い
ても高い除菌効果が得られるので、有用物質が水溶媒中
に蓄積されている場合には、濾過による菌体の分離が容
易になる。濾過助剤として活性炭を用いるのが一般的で
あるが、有用物質が活性炭に吸着されやすい物質の場合
には損失が大幅に低減されるのである。
Since the aggregate of bacterial cells thus formed is larger than that of normal bacterial cells, the sedimentation property is improved. Therefore, in order to separate the bacterial cells from the aqueous phase, let stand to allow the aggregate of bacterial cells to settle to the bottom of the container,
A method of separating the liquid can be adopted. In addition, since normal cells lack centrifugal force, good separation results can be obtained even with a continuous centrifuge, which has a problem. On the other hand, since a high sterilization effect can be obtained by using a smaller amount of filter aid than that used in the case of filtering normal bacterial cells, when useful substances are accumulated in the water solvent, bacterial cells by filtration are Separation becomes easy. Activated carbon is generally used as a filter aid, but when the useful substance is a substance that is easily adsorbed by activated carbon, the loss is greatly reduced.

【0016】[0016]

【実施例】以下、本発明を参考例、実施例および比較例
により具体的に説明する。 参考例1 酵素トリプトファンシンターゼ(EC4.2.1.2
0)活性を有する大腸菌、エシェリヒア・コリ(Esc
herichia coli)MT−10242(FE
RM BP−20)の菌株を表1のLB寒天平板培地に
植菌し、35℃にて一夜培養を行い、生育した菌体を2
白金耳、表2のLB液体培地150mlの入った綿栓付
き500ml坂口フラスコに接種した。接種した坂口フ
ラスコは35℃にて24時間振とう培養(120rp
m)した。この培養液を、表3のPT最少培地を20l
仕込んだ30lジャーファーメンターに移液して35
℃、通気量1vvm、撹はん回転数600rpmにて培
養した。この時、培養液がpH6.8となるようにpH
コントローラーによりアンモニア水を添加して制御を行
い、かつ殺菌した40%グルコース水溶液を逐次添加し
ながら40時間培養を行った。
EXAMPLES The present invention will be specifically described below with reference to Reference Examples, Examples and Comparative Examples. Reference Example 1 The enzyme tryptophan synthase (EC 4.2.1.2
0) Escherichia coli having activity (Esc.
herichia coli) MT-10242 (FE
The RM BP-20) strain was inoculated on the LB agar plate medium of Table 1 and cultured overnight at 35 ° C.
A 500 ml Sakaguchi flask equipped with a cotton plug containing 150 ml of LB liquid medium shown in Table 2 was inoculated. The inoculated Sakaguchi flask was shake-cultured at 35 ° C for 24 hours (120 rp).
m) 20 L of this broth was added to the PT minimal medium of Table
Transfer to the prepared 30l jar fermenter and transfer to 35
Culturing was carried out at 0 ° C., an aeration rate of 1 vvm, and a stirring rotation speed of 600 rpm. At this time, the pH of the culture solution was adjusted to pH 6.8.
Ammonia water was added by a controller for control, and sterilized 40% glucose aqueous solution was sequentially added, and culture was performed for 40 hours.

【0017】培養液90ml(大腸菌濃度29g/l)
を100mlメスシリンダー(内径2.7cm)に取
り、硫酸または水酸化ナトリウムでpH2からpH9の
範囲の各種pHに調整し、25℃に保温した。0.5%
ポリアクリル酸ナトリウム水溶液を1g添加した後、水
を加えて全量を100mlとしてよく混合した。そのま
ま25℃に保温しながら30分間静置し、沈降した菌体
相の体積を測定したところ、図1に示すような結果にな
った。大腸菌の懸濁した培養液のpHが4以下では菌体
の凝集塊が形成されて、メスシリンダーの底部に沈降し
たが、それよりも高いpHでは菌体の凝集塊は形成され
ず、沈降も見られなかった。
90 ml culture solution (E. coli concentration 29 g / l)
Was placed in a 100 ml graduated cylinder (inner diameter 2.7 cm), adjusted to various pHs in the range of pH 2 to pH 9 with sulfuric acid or sodium hydroxide, and kept at 25 ° C. 0.5%
After adding 1 g of an aqueous solution of sodium polyacrylate, water was added to bring the total amount to 100 ml and mixed well. While keeping the temperature at 25 ° C. as it was, it was allowed to stand for 30 minutes, and the volume of the precipitated bacterial cell phase was measured. The result was as shown in FIG. When the pH of the culture solution in which Escherichia coli was suspended was 4 or less, aggregates of bacterial cells were formed and settled at the bottom of the measuring cylinder, but at higher pH, aggregates of bacterial cells were not formed and sedimentation did not occur. I couldn't see it.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】参考例2 参考例1の方法で培養した培養液中に懸濁している菌体
を遠心分離して集め、水に懸濁して再度遠心分離するこ
とによって洗浄した。こうして得た湿菌体から乾燥菌体
重量換算で11.1g/l、5.0g/l、2.2g/
lの大腸菌水懸濁液(硫酸でpH4に調整)を調製し
た。一方、実施例1の方法で培養した培養液も硫酸でp
H4に調整した。これらの大腸菌懸濁液を90mlず
つ、100mlメスシリンダー(内径2.7cm)に取
り、25℃に保温した。0.5%ポリアクリル酸ナトリ
ウム水溶液の添加量を変動させて各種のポリアクリル酸
ナトリウム濃度とし、水を加えて全量を100mlにし
てよく混合した。そのまま25℃に保温しながら30分
間静置し、沈降した菌体相の体積を測定したところ、図
2に示すような結果になった。ポリアクリル酸ナトリウ
ムの添加すべき量は、懸濁している菌体の乾燥重量の
0.002倍以上である。また、洗浄菌体でも同様の凝
集塊を形成したことから、特定の物質を共存させる必要
のないことがわかる。菌体の沈降後の上清液は澄明だっ
た。
Reference Example 2 The cells suspended in the culture solution cultured by the method of Reference Example 1 were collected by centrifugation, suspended in water and centrifuged again to wash. 11.1 g / l, 5.0 g / l, 2.2 g /
1 E. coli aqueous suspension (adjusted to pH 4 with sulfuric acid) was prepared. On the other hand, the culture medium cultivated by the method of Example 1 was p
Adjusted to H4. 90 ml of each of these E. coli suspensions was placed in a 100 ml graduated cylinder (inner diameter 2.7 cm) and kept at 25 ° C. The amount of 0.5% sodium polyacrylate aqueous solution added was varied to obtain various sodium polyacrylate concentrations, and water was added to bring the total amount to 100 ml and mixed well. While keeping the temperature at 25 ° C. as it was, the mixture was allowed to stand for 30 minutes, and the volume of the precipitated bacterial cell phase was measured. The result was as shown in FIG. The amount of sodium polyacrylate to be added is 0.002 times or more the dry weight of the suspended cells. In addition, since the same aggregates were formed in the washed bacterial cells, it can be seen that it is not necessary to allow a specific substance to coexist. The supernatant liquid after the sedimentation of the bacterial cells was clear.

【0022】実施例1 エシェリヒア・コリ(Escherichia col
i)MT−10242(FERM BP−20),コリ
ネバクテリウム・グルタミカム(Corinebact
erium glutamicum)(ATCC 21
253), ブレビバクテリウム・フラバム(Brev
ibacterium flavum)(ATCC 2
1128), バチルス ズブチリス(Bucillu
s subtilis)(ATCC 14618)をそ
れぞれ表1のLB寒天培地に植菌し、35℃にて一夜培
養を行った。表2のLB液体培地150mlの入った綿
線付500ml坂口フラスコ2本に、LB寒天培地上に
生育した菌体を2白金耳ずつ接種した。接種した坂口フ
ラスコは35℃にて24時間、振とう培養(120rp
m)した。培養後、2本のフラスコの培養液を混合し、
2本の100ml容メスシリンダーに95mlずつ分注
した。それぞれ硫酸でpH4.0に調節し、1本のメス
シリンダーには0.5%ポリアクリル酸ナトリウム水溶
液を1g添加して100mlに定容、もう1本のメスシ
リンダーには何も加えずに100mlに定容し、それぞ
れよく混合した。25℃に保温しながら30分間静置
し、菌体相の体積を測定したところ、表4に示すような
結果になった。いずれの菌でもポリアクリル酸ナトリウ
ムの添加によって菌体の沈降性が向上した。
Example 1 Escherichia col
i) MT-10242 (FERM BP-20), Corynebacterium glutamicum (Corinebact)
erium glutamicum) (ATCC 21
253), Brevibacterium flavum (Brev
ibacterium flavum) (ATCC 2
1128), Bacillus subtilis
S. subtilis) (ATCC 14618) was inoculated into the LB agar medium of Table 1 and cultured at 35 ° C. overnight. Two 500 ml Sakaguchi flasks with a cotton wire containing 150 ml of the LB liquid medium shown in Table 2 were inoculated with 2 platinum loops of the cells grown on the LB agar medium. The inoculated Sakaguchi flask was shake-cultured (120 rp for 24 hours at 35 ° C).
m) After culturing, mix the culture solutions in the two flasks,
95 ml was dispensed into two 100 ml measuring cylinders. The pH was adjusted to 4.0 with sulfuric acid, 1 g of 0.5% sodium polyacrylate aqueous solution was added to one graduated cylinder to a constant volume of 100 ml, and the other graduated cylinder was added with 100 ml without adding anything. , And mixed well. The mixture was allowed to stand for 30 minutes while keeping the temperature at 25 ° C., and the volume of the bacterial cell phase was measured. The results shown in Table 4 were obtained. In all the bacteria, the addition of sodium polyacrylate improved the sedimentation of the bacteria.

【0023】[0023]

【表4】 [Table 4]

【0024】実施例2 参考例1の方法で得た菌体の乾燥重量換算にして3.4
gを、L−セリン25g、ピリドキサール燐酸0.02
gと共に水に溶解し全量を206gにしたあと、水酸化
ナトリウム水溶液を加えてpH8.3に調整した。この
水溶液にインドール 25gをトルエン89gに溶解し
た溶液を添加した。35℃にて20時間撹はんしたとこ
ろ、L−トリプトファン41.9gが蓄積された。この
溶液を硫酸にてpH4に調整、水を加えて全量を900
gに希釈し、 加熱してトルエンを留去した。水を加え
て全量を1000gに希釈し、80℃に加熱してL−ト
リプトファンの溶解液を得た。
Example 2 3.4 in terms of dry weight of the cells obtained by the method of Reference Example 1.
g, L-serine 25 g, pyridoxal phosphoric acid 0.02
After being dissolved in water together with g to make the total amount 206 g, an aqueous sodium hydroxide solution was added to adjust the pH to 8.3. A solution prepared by dissolving 25 g of indole in 89 g of toluene was added to this aqueous solution. When stirred at 35 ° C. for 20 hours, 41.9 g of L-tryptophan was accumulated. The pH of this solution was adjusted to 4 with sulfuric acid, and water was added to bring the total volume to 900.
It was diluted to g and heated to distill off the toluene. Water was added to dilute the total amount to 1000 g, and the mixture was heated to 80 ° C. to obtain a solution of L-tryptophan.

【0025】このL−トリプトファン溶解液500g
(L−トリプトファン21.0g含有)を80℃に保温
したまま0.5%ポリアクリル酸ナトリウム水溶液を5
g添加、緩やかに15分間撹はんし、菌体の凝集塊を形
成させた。これを充分に加熱した遠心管にとり、350
0Gの遠心力で5分間、遠心分離した。充分に除菌され
て澄明な上清液が490g得られ、L−トリプトファン
が20.1g含まれていた。除菌操作後のL−トリプト
ファンの回収率は95.2%だった。
500 g of this L-tryptophan solution
While maintaining the temperature (containing 21.0 g of L-tryptophan) at 80 ° C., add 5% of 0.5% sodium polyacrylate aqueous solution.
g, and gently stirred for 15 minutes to form an aggregate of bacterial cells. Transfer this to a sufficiently heated centrifuge tube and
Centrifugation was carried out for 5 minutes at 0 G of centrifugal force. Sufficiently sterilized to obtain 490 g of a clear supernatant liquid, which contained 20.1 g of L-tryptophan. The recovery rate of L-tryptophan after the disinfection operation was 95.2%.

【0026】比較例1 実施例1で調製したL−トリプトファン溶解液500g
(L−トリプトファン21.0g含有)にポリアクリル
酸ナトリウムを添加しないで、充分に加熱した遠心管に
取り、3500Gの遠心力で5分間、遠心分離した。し
かし、菌体と液相の分離ができなかったために上清液が
澄明とはならなかった。実施例1との比較から菌体の凝
集塊を形成させることによって遠心分離が容易になって
いることがわかる。
Comparative Example 1 500 g of L-tryptophan solution prepared in Example 1
Without adding sodium polyacrylate to (containing 21.0 g of L-tryptophan), it was placed in a sufficiently heated centrifuge tube and centrifuged at a centrifugal force of 3500 G for 5 minutes. However, the supernatant was not clear because the cells could not be separated from the liquid phase. From the comparison with Example 1, it can be seen that centrifugation is facilitated by forming an aggregate of bacterial cells.

【0027】実施例3 酵素チロシンフェノールリアーゼ(EC 4.1.9
9.2)活性を有する大腸菌、エシェリヒア・コリ(E
scherichia coli)MT−10473
(FERM P−10182)の菌株を表5のLB−A
P寒天平板培地に植菌して、30℃にて一夜培養を行
い、生育した菌体を2白金耳ずつ、表6のLB−AP液
体培地100mlの入った綿栓付き500ml坂口フラ
スコ4本に接種した。接種した坂口フラスコは 30℃
にて12時間振とう培養(120rpm)を行い、所定
時間培養後、表7のチロシンフェノールリアーゼ活性を
有する大腸菌の培養培地を20l仕込んだ30lジャー
ファーメンターに移液して30℃、通気量1vvm、撹
はん回転数600rpmにて培養した。この時培養液が
pH6.8になるようにpHコントローラーによりアン
モニア水を添加して制御を行い、かつ殺菌した40%グ
ルコース水溶液を逐次添加しながら38時間培養を行っ
た。
Example 3 Enzyme tyrosine phenol lyase (EC 4.1.9)
9.2) Escherichia coli having activity, Escherichia coli (E
scherichia coli) MT-10473
The strain (FERM P-10182) was designated as LB-A in Table 5.
P agar plate medium was inoculated and cultured overnight at 30 ° C., and 2 platinum loops each of the grown bacterial cells were placed in 4 500 ml Sakaguchi flasks with 100 ml of LB-AP liquid medium in Table 6 with a cotton plug. I inoculated. Inoculated Sakaguchi flask is 30 ℃
Shake culture (120 rpm) for 12 hours, and after culturing for a predetermined time, the culture medium of Escherichia coli having tyrosine phenol lyase activity shown in Table 7 was transferred to a 30-liter jar fermenter charged with 20-liter, and the aeration rate was 1 vvm at 30 ° C. The culture was carried out at a stirring rotation speed of 600 rpm. At this time, ammonia water was added and controlled by a pH controller so that the culture solution had a pH of 6.8, and the culture was continued for 38 hours while successively adding a sterilized 40% glucose aqueous solution.

【0028】このようにして得た菌体の乾燥重量換算に
して9.0gを、L−セリン20g、カテコール20
g、ほう酸12.4g、2−メルカプトエタノール0.
5g、EDTA0.5g、ピリドキサール燐酸0.05
gと共に水に溶解し全量を500gにしたあと、アンモ
ニア水にてpH9.0に調整した。窒素パージをしなが
ら30℃にて20時間撹はんしたところ、L−DOPA
68.8gが蓄積された。この溶液に硫酸を加えてpH
4に調整、水を加えて全量を2000gに希釈し、ハイ
ドロサルファイト2gを加えて、80℃に加熱してL−
DOPA溶解液を得た。
9.0 g of the cells thus obtained, in terms of dry weight, was converted into 20 g of L-serine and 20 of catechol.
g, boric acid 12.4 g, 2-mercaptoethanol 0.
5 g, EDTA 0.5 g, pyridoxal phosphoric acid 0.05
After being dissolved in water together with g to make the total amount 500 g, the pH was adjusted to 9.0 with aqueous ammonia. After stirring at 30 ° C. for 20 hours while purging with nitrogen, L-DOPA
68.8 g was accumulated. Add sulfuric acid to this solution to adjust the pH.
Adjust to 4, dilute the total amount to 2000 g with water, add 2 g of hydrosulfite, heat to 80 ° C. and add L-
A DOPA solution was obtained.

【0029】このL−DOPA溶解液 500g(L−
DOPA28.6g含有)を80℃に保温したまま0.
5%ポリアクリル酸ナトリウム水溶液を5g添加、緩や
かに15分間撹はんし、菌体の凝集塊を形成させた。こ
れを30分間静置させて菌体の凝集塊を沈降させ、上清
液を汲み上げて455gのL−DOPA水溶液を回収し
た。さらに沈降した菌体の凝集相 50gに80℃の温
水50gを加え、緩やかに撹はん後、静置したところ、
菌体凝集塊は再び沈降した。上清液相を汲み上げ、50
gのL−DOPA水溶液を回収した。菌体凝集塊の1回
目の静置、沈降後に得た上清液と合液し、L−DOPA
27.3gを含む水溶液505gを得た。このL−DO
PA水溶液には、わずかに菌体凝集塊が混入していたの
で、粉末活性炭1.0gを添加して80℃で30分間撹
はん後、熱濾過し、更に熱水100gで活性炭を洗浄し
た。こうして菌体凝集塊を含まないL−DOPA水溶液
500gを得た。L−DOPAは26.8g含まれてい
て、回収率は93.7%だった。
500 g of this L-DOPA solution (L-DOPA
DOPA (containing 28.6 g) was kept at 80 ° C. and kept at 0.
5 g of a 5% sodium polyacrylate aqueous solution was added and gently stirred for 15 minutes to form an aggregate of bacterial cells. This was allowed to stand for 30 minutes to allow the aggregate of bacterial cells to settle, and the supernatant was pumped up to collect 455 g of an L-DOPA aqueous solution. When 50 g of warm water at 80 ° C. was added to 50 g of the aggregated phase of the settled cells, the mixture was gently stirred and allowed to stand,
The aggregate of bacterial cells settled again. Pump up the supernatant liquid phase, 50
g of L-DOPA aqueous solution was recovered. L-DOPA was mixed with the supernatant obtained after the first settling of bacterial cell aggregates and sedimentation.
505 g of an aqueous solution containing 27.3 g was obtained. This L-DO
Since the bacterial cell aggregate was slightly mixed in the PA aqueous solution, 1.0 g of powdered activated carbon was added, the mixture was stirred at 80 ° C. for 30 minutes, hot filtered, and the activated carbon was washed with 100 g of hot water. .. Thus, 500 g of an L-DOPA aqueous solution containing no aggregate of bacterial cells was obtained. L-DOPA was contained in an amount of 26.8 g, and the recovery rate was 93.7%.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 [Table 6]

【0032】[0032]

【表7】 [Table 7]

【0033】比較例2 実施例2の方法で得たL−DOPA溶解液 500g
(L−DOPA28.6g含有)に粉末活性炭5.4g
を添加して80℃で30分間撹はん後、熱濾過し、更に
熱水65gで活性炭を洗浄した。こうして菌体を含まな
いL−DOPA水溶液 523gを得た。L−DOPA
は25.5g含まれていて、回収率は89.3%だっ
た。
Comparative Example 2 500 g of L-DOPA solution obtained by the method of Example 2
5.4 g of powdered activated carbon in (containing 28.6 g of L-DOPA)
Was added, and the mixture was stirred at 80 ° C. for 30 minutes, hot-filtered, and the activated carbon was washed with 65 g of hot water. Thus, 523 g of an aqueous L-DOPA solution containing no cells was obtained. L-DOPA
Was contained in an amount of 25.5 g, and the recovery rate was 89.3%.

【0034】濾過助剤としての活性炭をこの量より少な
くすると、熱濾過の速度は急激に低下して実用性を持た
なくなる。同時に、活性炭へのL−DOPAの吸着量も
多く、実施例3の場合と比較して除菌液へのL−DOP
Aの回収率が低くなっている。この例からもポリアクリ
ル酸ナトリウムを用いて菌体の凝集塊を形成させる、菌
体の除去方法の有効性がわかる。
If the amount of activated carbon as a filter aid is less than this amount, the rate of hot filtration will be drastically reduced and it will be impractical. At the same time, the amount of L-DOPA adsorbed on the activated carbon was large, and L-DOP was added to the sterilized solution as compared with the case of Example 3.
The recovery rate of A is low. This example also shows the effectiveness of the method for removing bacterial cells by forming aggregates of bacterial cells using sodium polyacrylate.

【図面の簡単な説明】[Brief description of drawings]

【図1】ポリアクリル酸ナトリウムの添加によって大腸
菌の凝集塊が形成されるpH範囲を示す図である。
FIG. 1 is a diagram showing a pH range in which an aggregate of Escherichia coli is formed by the addition of sodium polyacrylate.

【図2】大腸菌の凝集塊を形成するのに必要なポリアク
リル酸ナトリウムの添加量を示す図である。
FIG. 2 is a diagram showing the amount of sodium polyacrylate added necessary to form E. coli aggregates.

Claims (1)

【特許請求の範囲】 【請求項1】 微生物の水懸濁液を、pH4以下に調整
し、ポリアクリル酸ナトリウムを加えることによって、
菌体の凝集塊を形成させることを特徴とする、微生物の
分離方法。
Claims: 1. An aqueous suspension of microorganisms is adjusted to pH 4 or less, and sodium polyacrylate is added to the suspension.
A method for separating a microorganism, which comprises forming an aggregate of bacterial cells.
JP15440491A 1991-06-26 1991-06-26 Method for separating microorganism Pending JPH053780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15440491A JPH053780A (en) 1991-06-26 1991-06-26 Method for separating microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15440491A JPH053780A (en) 1991-06-26 1991-06-26 Method for separating microorganism

Publications (1)

Publication Number Publication Date
JPH053780A true JPH053780A (en) 1993-01-14

Family

ID=15583409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15440491A Pending JPH053780A (en) 1991-06-26 1991-06-26 Method for separating microorganism

Country Status (1)

Country Link
JP (1) JPH053780A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141351A (en) * 2004-11-24 2006-06-08 Fuji Electric Holdings Co Ltd Method for concentration of microorganism
WO2011043443A1 (en) * 2009-10-07 2011-04-14 三菱化学株式会社 Method for producing aliphatic dicarboxylic acid
JP2011212624A (en) * 2010-04-01 2011-10-27 Toyota Motor Corp Method for flocculation separation of algae
WO2013059754A1 (en) * 2011-10-20 2013-04-25 Board Of Regents, The University Of Texas System Continuous flocculation deflocculation process for efficient harvesting of microalgae from aqueous solutions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141351A (en) * 2004-11-24 2006-06-08 Fuji Electric Holdings Co Ltd Method for concentration of microorganism
JP4656489B2 (en) * 2004-11-24 2011-03-23 富士電機ホールディングス株式会社 Microbial concentration method
WO2011043443A1 (en) * 2009-10-07 2011-04-14 三菱化学株式会社 Method for producing aliphatic dicarboxylic acid
JP2011212624A (en) * 2010-04-01 2011-10-27 Toyota Motor Corp Method for flocculation separation of algae
WO2013059754A1 (en) * 2011-10-20 2013-04-25 Board Of Regents, The University Of Texas System Continuous flocculation deflocculation process for efficient harvesting of microalgae from aqueous solutions

Similar Documents

Publication Publication Date Title
EP3412650B1 (en) Method for extracting 1,5-pentanediamine from solution system containing 1,5-pentanediamine salt
CN109095623B (en) Microcarrier for improving culture density of aerobic nitrobacteria and nitrosobacteria and preparation method thereof
JPH053780A (en) Method for separating microorganism
JP4560155B2 (en) Purification and crystallization method of riboflavin
JP4668444B2 (en) A method for producing acrylamide using a microbial catalyst washed with an aqueous acrylic acid solution.
JP2002176996A (en) Production of exopolysaccharide unattached to surface of bacterial cell
JP2006503578A (en) Separation of biomass from lactic acid-containing fermentation products by coagulation
JP2001514679A (en) Homopolymers and copolymers of polyaspartic acid, their biotechnological production and use
JPS60180596A (en) Production of l-alpha-amino acid
JP3017264B2 (en) Method for producing L-serine by enzymatic method
JPS61293383A (en) Separation and recovery of nosiheptide
JP2801689B2 (en) Method of inhibiting intracellular serine degrading enzyme activity
US6503739B1 (en) Processes for producing S,S-2-hydroxypropylenediamine-N-N′-disuccinic acid
JPS6237959B2 (en)
JPH0455669B2 (en)
WO2004009829A1 (en) Process for the production of methionine
JPH01132394A (en) Heat treatment of immobilized cell
JP2931629B2 (en) Crystallization method of L-tryptophan
JPH0344759B2 (en)
JPH0435156B2 (en)
JPH0817718B2 (en) Method for producing D-(-)-tartaric acid
JPH0319695A (en) Preparation of trans-4-cyanocyclohexane carboxylic amide and enzyme used therefor
JPH0632619B2 (en) Method for producing immobilized cells
JPH01132380A (en) Heat treatment of cell
JPS5914796A (en) Preparation of l-phenylalanine