JPH053694A - Driving method for synchronous motor - Google Patents

Driving method for synchronous motor

Info

Publication number
JPH053694A
JPH053694A JP3183230A JP18323091A JPH053694A JP H053694 A JPH053694 A JP H053694A JP 3183230 A JP3183230 A JP 3183230A JP 18323091 A JP18323091 A JP 18323091A JP H053694 A JPH053694 A JP H053694A
Authority
JP
Japan
Prior art keywords
synchronous motor
connection
switching
speed
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3183230A
Other languages
Japanese (ja)
Inventor
Tsuneo Kume
常生 久米
Kensho Iwabuchi
憲昭 岩渕
Sadaaki Yamazaki
貞明 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP3183230A priority Critical patent/JPH053694A/en
Publication of JPH053694A publication Critical patent/JPH053694A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/56Structural details of electrical machines with switched windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To obtain a highly efficient synchronous motor for driving vehicle having excellent operating characteristics by externally switching the windings between star-connection and delta--connection while shifting so that the current to be applied on the motor has synchronous phase when the rotor reaches a preset rotational speed. CONSTITUTION:Connection of unit windings 10 for respective phases of a synchronous motor 1 is switched through contactors A, B based on a switching command. A rotational angle detector 4 mounted at the end of rotor shaft of the synchronous motor detects a signal Sd which is converted through a polarity detector 24 into a pole position signal Sp of rotor. A phase shifter 25 then regulates the pole position signal Sp to be synchronous with the current being applied on each phase winding 10 of the synchronous motor according to star/delta connection and the rotational angle of rotor to produce an output signal Sf. When switching is made from star connection to delta connection, switching commands are delivered from a switching timing commander 5 to a winding switcher 3 and an inverter 2 at the time when a detected value Vs of actual speed matches with a preset speed level Vo.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車等に用いる
同期電動機の駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving a synchronous motor used in an electric vehicle or the like.

【0002】[0002]

【従来の技術】内燃機関を用いた自動車のトルク特性は
一般論的には、低速域から高速域まで一様な加速特性を
得るには定トルク特性が望ましい。ところが、現在普及
している内燃機関を用いた自動車の走行は、燃費、静粛
性等の運転特性との整合上、図7に示すように、車速に
応じ低速ギヤから順次高速ギヤに切替え、内燃機関の回
転数とトルクを、燃費がよく適切な加速を行えるよう
に、選定し定出力特性で運転している。将来の自動車の
駆動装置として、無公害、保守が簡単かつ軽量である電
気駆動装置の実用化が検討されている。電気式で駆動す
る場合は、直流電動機より交流電動機が適しており、な
かでも同期電動機が効率が高く最適であり、速度制御範
囲が広いという電動機制御の特徴を活かし変速ギヤを省
きたいという要望が強い。一般に、電動機の寸法は基底
速度におけるトルクによって決まる。連続して変速する
ため、同期電動機をインバータ駆動する場合、定トルク
特性であれば速度に比例して出力が増加し、電動機を駆
動するインバータ装置の容量も大きくしなければならな
いという難点がある。一方、基底速度より高速側を定出
力特性にすれば、インバータの容量をあげることなし
に、現在普及している自動車の要求特性を満たすことが
出来る。効率が良い点で電気自動車の駆動に適してい
る、同期電動機の一例である永久磁石界磁形同期電動機
の基本的トルク−速度特性を図8に示す。 この電動機
をインバータ駆動した場合、基本特性を論ずるため電動
機の巻線抵抗による電圧降下や鉄損を無視すれば、速度
N1で誘起電圧が電源電圧V1になったとすると、N1
以上に速度を上げることは出来ない。 これを解決する
ために、電源の電圧を高くするか電動機の巻数を減らし
て定格電流を増せばよいが、インバータの容量が大きく
なる。 また、他の解決方法として、図9(a)に示す
ように、電動機の巻線を2組装着し、おのおのの巻線の
接続を直列、並列に切替えることにより、図9(b)に
示すような特性を得る方法がある。 しかし、この方法
では、リード線または端子の数(3相交流の場合12
個:中性点を内部で接続しても10個)が多くなり、接
点の数も多く(9組以上)必要となり、結線や接続が複
雑で製造上難しい。
2. Description of the Related Art Generally, the torque characteristic of an automobile using an internal combustion engine is preferably a constant torque characteristic in order to obtain a uniform acceleration characteristic from a low speed region to a high speed region. However, as shown in FIG. 7, the driving of automobiles using the currently popular internal combustion engine is switched from the low speed gear to the high speed gear sequentially in accordance with the vehicle speed in consideration of the driving characteristics such as fuel consumption and quietness. The engine speed and torque are selected and operated with constant output characteristics so that fuel consumption is good and proper acceleration can be performed. As a drive unit for future automobiles, practical application of an electric drive unit which is pollution-free, easy to maintain and lightweight is being studied. When driving by electric type, AC motors are more suitable than DC motors, and among them, synchronous motors are highly efficient and optimal, and there is a desire to omit the transmission gear by taking advantage of the characteristics of motor control that the speed control range is wide. strong. Generally, the size of the motor depends on the torque at base speed. Since the gears are continuously changed, when the synchronous motor is driven by an inverter, the output increases in proportion to the speed if the constant torque characteristic is used, and the capacity of the inverter device that drives the motor must be increased. On the other hand, if the high speed side of the base speed is made to have a constant output characteristic, it is possible to satisfy the required characteristics of currently popular automobiles without increasing the capacity of the inverter. FIG. 8 shows a basic torque-speed characteristic of a permanent magnet field type synchronous motor, which is an example of a synchronous motor and is suitable for driving an electric vehicle because of its high efficiency. When this motor is driven by an inverter, if the voltage drop and the iron loss due to the winding resistance of the motor are neglected in order to discuss the basic characteristics, it is assumed that the induced voltage becomes the power supply voltage V1 at the speed N1.
You can't go faster than that. To solve this, the voltage of the power supply may be increased or the number of turns of the electric motor may be decreased to increase the rated current, but the capacity of the inverter becomes large. In addition, as another solution, as shown in FIG. 9A, two sets of windings of the electric motor are mounted, and the connection of each winding is switched between series and parallel, so that it is shown in FIG. 9B. There is a method of obtaining such characteristics. However, with this method, the number of lead wires or terminals (12 for three-phase AC)
Pieces: Even if the neutral points are internally connected, the number is 10 and the number of contacts is also large (9 or more sets), which makes connection and connection complicated and is difficult to manufacture.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
問題を解決するため、効率がよく運転特性がすぐれ、か
つ製造容易な、自動車等の車両駆動用の同期電動機の駆
動方法を提供するものである。
SUMMARY OF THE INVENTION In order to solve such problems, the present invention provides a method for driving a synchronous motor for driving a vehicle such as an automobile, which is highly efficient, has excellent driving characteristics, and is easy to manufacture. It is a thing.

【0004】[0004]

【課題を解決しようとする手段】上記課題を解決するた
め、車両駆動等に適用するインバータ装置による同期電
動機の巻線接続を切替える可変速駆動方法において、電
動機の回転子の回転速度がプリセットした値になったと
きを切替えタイミングとし、回転子の磁極位置を基準に
電動機の印加電流の位相を同期するようにシフトさせ
て、低速域と高速域とで巻線をスター接続とデルタ接続
とに外部で切替えて、駆動電源の容量を増加させること
なく、低速時の大トルクと高速運転を両立して実現し、
定出力特性で自動運転するものである。さらに、切替え
の直前に、トルク指令を絞り、巻線接続切替え時の電流
サージを抑制し接触器の寿命を延長したり、切替えのタ
イミングにヒステリシスをもたせ、ショックレスに変速
する等のより運転特性のよいものにしてある。
In order to solve the above-mentioned problems, in a variable speed drive method for switching winding connection of a synchronous motor by an inverter device applied to vehicle driving or the like, a rotation speed of a rotor of a motor is preset. Is set as the switching timing, and the phase of the electric current applied to the motor is shifted so as to synchronize with the magnetic pole position of the rotor as a reference, and the winding is connected to the star connection and delta connection in the low speed range and the high speed range. To achieve both high torque at low speed and high speed operation without increasing the capacity of the drive power supply.
It operates automatically with a constant output characteristic. Immediately before switching, the torque command is throttled to suppress the current surge at the time of switching the winding connection to extend the life of the contactor, and hysteresis is provided at the switching timing to provide more shockless gear shifting. It is a good one.

【0006】[0006]

【実施例】以下、本考案の具体的実施例を図1から図6
により説明する。図1(a)は、本発明の制御回路のブ
ロック図である。図1(b)は、外部に設ける巻線切替
装置を示めす。 同期電動機の各相用の単一巻線10
は、通常誘導電動機で用いるスター/デルタ切替装置と
同様に、コンタクタAとBにより、切替え指令により接
続を切替えるようにしてある。運転者が指令するトルク
指令Tが、電流指令器23に入力される。 一方、同期
電動機1の回転子の軸端に設けたレゾルバ等の回転角度
検出器4で検出した信号Sdは、磁極検出器24で回転
子の磁極位置信号Spに変換され、さらに移相器25
で、図5に示すようなタイミングで、スター/デルタ接
続に応じ回転子の回転角度に応じて、同期電動機の各相
(U,V,W)巻線10の印加電流の位相に同期するよ
うに調整した出力信号Sfを出力する。電流指令器23
では、トルク指令Tに比例した振幅を持ち、Sfと同位
相の電流指令信号Icを出力する。 電流指令信号Ic
は電流制御増幅器22に正の符号で入力される。一方、
インバータ主回路21の出力電流Idは電流変成器26
で検出され、電流制御増幅器22に負の符号でフィドバ
ックされ、結果として(Ic−Id)が電流制御増幅器
22に加えられる。電流制御増幅器22では、(Ic−
Id)に対応する駆動指令信号Vrをインバータ主回路
21に与えると、インバータ主回路21は、巻線切替器
3を介し、交流同期電動機1に駆動電流を供給する。ま
た、回転角度検出器4の出力Sdは切替タイミング指令
装置5にも入力されパルス−速度変換器27で速度信号
Vsに変換された後、プリセットされた基準速度指令信
号Vo(図2のN1に相当)と比較器28で比較され
(Vs−Vo)が0になったとき、切替タイミング指令
装置5は、スター/デルタの切替えタイミング信号を巻
線切替器3に指令する。 なお、比較器28には、動作
の安定化のために、ヒステリシス特性を持たせてある。
一方、切替タイミング指令装置5の出力はインバータ装
置2にも入力され、巻線切替え時のインバータ主回路2
1の駆動指令信号Vrの制御やゲート信号のON−OF
Fに使われる。巻線切替え時の制御は、下記の4ケース
がある。 (1) 図2に示すように、スター接続からデルタ接続への
切替えは、実速度の検出値Vsがプリセットした速度レ
ベルVo(基底速度N1に相当)に等しくなったとき、
切替タイミング指令装置5から低速時のスター接続と高
速時のデルタ接続との切替え指令が巻線切替器3とイン
バータ装置2に与えられる。 この時、トルク指令Tが
一定であれば、実トルクは低速時のトルクT1から高速
時のT2に変化する。 トルクT2は最高速度N2まで
維持する。 このとき、N1:N2=T2:T1(=
1:√3)となり、N1とN2との動作点を比較する
と、定出力の関係が保たれる。 (2) 図3に示すよう、巻線の切替えタイミングTchよ
りあらかじ設定してある時間Tadだけ先行させて、関
数発生器等によりトルク指令Tを絞り、さらに切り替え
の直前の僅かな時間インバータ主回路21のゲート信号
をOFFにして無通電状態にし、再び巻線切替え直後ト
ルク指令を立ち上げて、インバータ回路の巻線接続切替
え時の電流サージを抑制する。実際は、切り替え指令を
受けた時点をTchとし遅行させればよい。 (3) 図4に示すよう、実速度の検出値Vsがプリセット
した速度レベルVo(基底速度N1に相当)を超えた時
に、スター接続からデルタ接続に切替えるのとは逆に、
デルタ接続からスター接続に切替える点をVoより少し
低いレベルVo’にすることにより、切替え特性にヒス
テリシスを持たせ、より安定な動作を確保する。 (4) 図6に示すように、指令トルクを基底速度以下(0
からN1まで)の間はスター/デルタいずれの接続も選
択できるようにし、基底速度N1から最高速度N2の間
はデルタ接続のみとし、回転速度が0からN1までの範
囲で急加速が必要な場合、アクセルペダルの踏込み量
(トルク指令)に応じてデルタ接続からスター接続に切
替えるいわゆるキックダウン特性をもたせるようにして
ある。他の実施例として、電動機の固定子、回転子と制
御回路の定数をあらかじめ記憶し、電流制御増幅器22
で等価回路網等を用い制御パラメータを演算し、パラメ
ータに対応する駆動指令信号Vrを制御する、トルクの
制御方法がある。さらに、自動車の走行状態、蓄電池の
状態や車体重量の変化に応じ、N1,N2,T1,T
2,Voの関係を予測し、制御パラメータの設定をバリ
アブルにしてもよい。 その他の実施例として、スター接続用とデルタ接続用と
の2種類の磁極検出器を設け、巻線切替え時の印加電流
のシフト量を制御し、切替え時の同期化をスムーズに行
うようにするとよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to FIGS.
Will be described. FIG. 1A is a block diagram of a control circuit of the present invention. FIG. 1B shows a winding switching device provided outside. Single winding 10 for each phase of the synchronous motor
In the same manner as the star / delta switching device normally used in the induction motor, the contactors A and B are used to switch the connection by a switching command. The torque command T commanded by the driver is input to the current command device 23. On the other hand, the signal Sd detected by the rotation angle detector 4 such as a resolver provided at the shaft end of the rotor of the synchronous motor 1 is converted by the magnetic pole detector 24 into the magnetic pole position signal Sp of the rotor, and further the phase shifter 25.
Then, at the timing as shown in FIG. 5, according to the star / delta connection, according to the rotation angle of the rotor, it is synchronized with the phase of the current applied to each phase (U, V, W) winding 10 of the synchronous motor. The output signal Sf adjusted to is output. Current command device 23
Then, the current command signal Ic having an amplitude proportional to the torque command T and having the same phase as Sf is output. Current command signal Ic
Is input to the current control amplifier 22 with a positive sign. on the other hand,
The output current Id of the inverter main circuit 21 is the current transformer 26.
Is detected in the current control amplifier 22 and fed back to the current control amplifier 22 with a negative sign, and as a result, (Ic-Id) is added to the current control amplifier 22. In the current control amplifier 22, (Ic-
When the drive command signal Vr corresponding to Id) is given to the inverter main circuit 21, the inverter main circuit 21 supplies a drive current to the AC synchronous motor 1 via the winding switching device 3. The output Sd of the rotation angle detector 4 is also input to the switching timing command device 5 and converted into the speed signal Vs by the pulse-speed converter 27, and then the preset reference speed command signal Vo (indicated by N1 in FIG. 2). When (Vs-Vo) becomes 0, the switching timing command device 5 commands the winding switching device 3 to send a star / delta switching timing signal. The comparator 28 has a hysteresis characteristic in order to stabilize the operation.
On the other hand, the output of the switching timing command device 5 is also input to the inverter device 2, and the inverter main circuit 2 at the time of winding switching
Control of drive command signal Vr of No. 1 and ON-OF of gate signal
Used for F. There are the following four cases of control when switching windings. (1) As shown in FIG. 2, when switching from the star connection to the delta connection, when the detected value Vs of the actual speed becomes equal to the preset speed level Vo (corresponding to the base speed N1),
The switching timing command device 5 gives a switching command between the star connection at low speed and the delta connection at high speed to the winding switching device 3 and the inverter device 2. At this time, if the torque command T is constant, the actual torque changes from the torque T1 at low speed to T2 at high speed. The torque T2 is maintained up to the maximum speed N2. At this time, N1: N2 = T2: T1 (=
1: √3), and when the operating points of N1 and N2 are compared, the constant output relationship is maintained. (2) As shown in FIG. 3, the winding command timing Tch is preceded by a preset time Tad, the torque command T is narrowed down by a function generator, etc. The gate signal of the circuit 21 is turned off to bring it into a non-energized state, the torque command is started again immediately after switching the winding, and the current surge at the time of switching the winding connection of the inverter circuit is suppressed. Actually, the time when the switching command is received may be set to Tch and delayed. (3) As shown in FIG. 4, when the detected value Vs of the actual speed exceeds the preset speed level Vo (corresponding to the base speed N1), the star connection is switched to the delta connection.
By setting the point at which the delta connection is switched to the star connection at a level Vo ′ that is slightly lower than Vo, hysteresis is provided in the switching characteristic and more stable operation is secured. (4) As shown in FIG. 6, the command torque is less than the base speed (0
(From N1 to N1), either star / delta connection can be selected, only delta connection is available between base speed N1 and maximum speed N2, and rapid acceleration is required in the rotation speed range from 0 to N1. , A so-called kick-down characteristic of switching from delta connection to star connection according to the amount of depression of the accelerator pedal (torque command) is provided. As another embodiment, constants of the motor stator, rotor, and control circuit are stored in advance, and the current control amplifier 22 is used.
There is a torque control method in which a control parameter is calculated using an equivalent circuit network or the like and the drive command signal Vr corresponding to the parameter is controlled. Furthermore, N1, N2, T1, and T may be changed according to the running state of the automobile, the state of the storage battery, and the change of the vehicle body weight.
The relationship between 2, Vo may be predicted and the setting of control parameters may be made variable. As another embodiment, two types of magnetic pole detectors, one for star connection and one for delta connection, are provided to control the shift amount of the applied current at the time of switching the windings so that the synchronization at the time of switching can be smoothly performed. Good.

【0007】[0007]

【発明の効果】本発明は、上記のように構成することに
より、下記の効果がある。 (1) 同期電動機の単一巻線の接続切替えを、外部でおこ
なうので、リード線や端子の数が増加せず電動機の構造
が簡単になる。 (2) 基底速度N1と最高速度N2とで定出力特性関係を
持たせているので、同期電動機、インバータ装置と電源
容量を上げずにすむ。 (3) 巻線切替え前後の各種指令を実運転時にスムーズに
対応できるようにしたので、運転者が違和感をもたな
い。
The present invention has the following effects by being configured as described above. (1) Since the connection of the single winding of the synchronous motor is switched externally, the structure of the motor is simplified without increasing the number of lead wires or terminals. (2) Since the base speed N1 and the maximum speed N2 have a constant output characteristic relationship, it is not necessary to increase the synchronous motor, the inverter device, and the power supply capacity. (3) Various commands before and after winding changeover can be handled smoothly during actual operation, so the driver does not feel uncomfortable.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の実施例を示す制御回路のブロ
ック図,(b)は本発明に用いる巻線切替器(スター/
デルタ)の回路図。
1A is a block diagram of a control circuit showing an embodiment of the present invention, and FIG. 1B is a winding switching device (star / star) used in the present invention.
Delta) schematic.

【図2】本発明の実施例の回転速度と指令トルクの関係
を示すグラフ
FIG. 2 is a graph showing the relationship between the rotation speed and the command torque according to the embodiment of this invention.

【図3】本発明の実施例の切替えタイミングの関係を示
すタイミング・チャート
FIG. 3 is a timing chart showing the relationship of switching timing according to the embodiment of the present invention.

【図4】本発明の実施例の指令トルクのヒステリシスを
示すグラフ
FIG. 4 is a graph showing hysteresis of command torque according to the embodiment of the invention.

【図5】本発明の実施例の回転角度検出器の出力を示す
チャート
FIG. 5 is a chart showing the output of the rotation angle detector according to the embodiment of the present invention.

【図6】本発明の実施例のキックダウン特性をもった回
転速度とトルク指令の関係を示すグラフ
FIG. 6 is a graph showing a relationship between a rotation speed and a torque command having kickdown characteristics according to an embodiment of the present invention.

【図7】内燃機関を用いた自動車のギヤ変速による回転
数と駆動力の関係を示すグラフ
FIG. 7 is a graph showing a relationship between a rotational speed and a driving force due to gear shifting of an automobile using an internal combustion engine.

【図8】一般的な永久磁石形同期電動機のトルク特性を
示すグラフ
FIG. 8 is a graph showing torque characteristics of a general permanent magnet type synchronous motor.

【図9】(a)は従来の巻線切替装置(並列/直列)の
回路図、(b)はその回転速度と指令トルクの関係を示
すグラフ
9 (a) is a circuit diagram of a conventional winding switching device (parallel / series), and FIG. 9 (b) is a graph showing the relationship between its rotation speed and command torque.

【符号の説明】[Explanation of symbols]

1は同期電動機、2はインバータ装置、3は巻線切替
器、4は回転角度検出器、5は切替タイミング指令装
置、10は電動機の巻線、21はインバータ主回路、2
2は電流制御増幅器、23は電流指令器、24は磁極検
出器、25は移相器、26は電流変成器、27はパルス
−速度変換器、28は比較器である。
1 is a synchronous motor, 2 is an inverter device, 3 is a winding switching device, 4 is a rotation angle detector, 5 is a switching timing command device, 10 is a winding of an electric motor, 21 is an inverter main circuit, 2
2 is a current control amplifier, 23 is a current command device, 24 is a magnetic pole detector, 25 is a phase shifter, 26 is a current transformer, 27 is a pulse-speed converter, and 28 is a comparator.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 運転者がトルク指令を与える、車両駆動
等に適用するインバータ装置による同期電動機の巻線接
続を切り替える可変速駆動方法において、電動機の回転
子の回転速度がプリセットした値になったときを切替え
タイミングとし、回転子の磁極位置を基準に電動機の印
加電流の位相を同期するようにシフトさせて、低速域と
高速域とで巻線をスター接続とデルタ接続とに外部で切
替えて、駆動電源の容量を増加させることなく、低速時
の大トルクと高速運転を両立して実現し、自動運転する
ことを特徴とする同期電動機の駆動方法
1. In a variable speed drive method in which a driver gives a torque command and switches winding connection of a synchronous motor by an inverter device applied to drive a vehicle or the like, a rotational speed of a rotor of an electric motor reaches a preset value. Time is the switching timing, and the phase of the electric current applied to the motor is shifted so as to synchronize with the magnetic pole position of the rotor, and the winding is switched externally between star connection and delta connection in the low speed range and the high speed range. , A method of driving a synchronous motor characterized by achieving a large torque at a low speed and a high speed operation at the same time without increasing the capacity of the drive power source, and performing an automatic operation
【請求項2】 前記スター接続とデルタ接続との切り替
えの直前に、トルク指令を絞り、つぎにインバータ主回
路を無電流状態にし、巻線接続切替え時の電流サージを
抑制するとともに接触器の寿命を延長する請求項1記載
の同期電動機の駆動方法。
2. Immediately before switching between the star connection and the delta connection, the torque command is throttled, and then the inverter main circuit is put into a non-current state to suppress current surge at the time of switching the winding connection and to shorten the life of the contactor. The method for driving a synchronous motor according to claim 1, wherein the method is extended.
【請求項3】 前記スター接続とデルタ接続との切替え
を実速度の検出値とプリセットした速度レベルを比較
し、ヒステリシス発生回路等により、切替えのタイミン
グにヒステリシスをもたせ、ショックレスに変速する請
求項1または2記載の同期電動機の駆動方法。
3. The shift between the star connection and the delta connection is compared with a detected value of an actual speed and a preset speed level, and a hysteresis generation circuit or the like provides a hysteresis at a switching timing to shift gears in a shockless manner. 3. The method for driving a synchronous motor according to 1 or 2.
【請求項4】 前記電動機の印加電流を、固定子、回転
子とインバータ装置の回路定数から決定した制御パラメ
ータにより制御する請求項1ないし3記載の同期電動機
の駆動方法。
4. The method for driving a synchronous motor according to claim 1, wherein the applied current of the electric motor is controlled by a control parameter determined from the circuit constants of the stator, the rotor and the inverter device.
【請求項5】 前記電動機の印加電流の位相シフトを、
スター接続用とデルタ接続用との2種類の磁極検出器の
出力信号を切り替えることによって行う請求項1ないし
4記載の同期電動機の駆動方法。
5. The phase shift of the applied current of the electric motor
5. The method of driving a synchronous motor according to claim 1, wherein the method is performed by switching output signals of two types of magnetic pole detectors, one for star connection and the other for delta connection.
【請求項6】 通常は高速運転しておき、低速運転が必
要なときキックダウン動作により急速に運転速度を切替
える請求項1ないし5記載の同期電動機の駆動方法。
6. The method for driving a synchronous motor according to claim 1, wherein the driving is normally performed at a high speed, and the operating speed is rapidly switched by a kickdown operation when a low speed operation is required.
【請求項7】 通常は自動運転しておき、必要に応じ手
動運転に切替える請求項1ないし6記載の同期電動機の
駆動方法。
7. The method of driving a synchronous motor according to claim 1, wherein the automatic operation is normally performed, and the operation mode is switched to the manual operation if necessary.
JP3183230A 1991-06-26 1991-06-26 Driving method for synchronous motor Pending JPH053694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3183230A JPH053694A (en) 1991-06-26 1991-06-26 Driving method for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3183230A JPH053694A (en) 1991-06-26 1991-06-26 Driving method for synchronous motor

Publications (1)

Publication Number Publication Date
JPH053694A true JPH053694A (en) 1993-01-08

Family

ID=16132062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3183230A Pending JPH053694A (en) 1991-06-26 1991-06-26 Driving method for synchronous motor

Country Status (1)

Country Link
JP (1) JPH053694A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012264A1 (en) 2001-07-26 2003-02-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device
JP2007318826A (en) * 2006-05-23 2007-12-06 Toshiba Corp Motor controller for vehicle
JP2009225617A (en) * 2008-03-18 2009-10-01 Yaskawa Electric Corp Coil switching device and method for three-phase ac motor
US20110120090A1 (en) * 2009-11-25 2011-05-26 Sorensen Jr Charles Mitchel Processes And Devices For Regenerating Gasoline Particulate Filters
WO2011087126A1 (en) * 2010-01-18 2011-07-21 ヤマハ発動機株式会社 Saddled vehicle
JP2011199974A (en) * 2010-03-18 2011-10-06 Toyota Central R&D Labs Inc Power transmission device
DE102010054224A1 (en) 2010-12-11 2012-02-09 Daimler Ag Electric car operating method, involves operating electromotor in delta connection, and changing operation of electromotor from delta connection to star connection when power demand on electromotor falls below predetermined threshold value
CN102739134A (en) * 2011-04-08 2012-10-17 上海奥闻电机有限公司 Operation method and operation system of synchronous motor
WO2014112109A1 (en) * 2013-01-18 2014-07-24 トヨタ自動車株式会社 Control device for vehicle motor
CN103973195A (en) * 2013-01-31 2014-08-06 株式会社安川电机 Inverter apparatus, method of controlling inverter apparatus, and electric motor drive system
JP2014150685A (en) * 2013-02-01 2014-08-21 Yaskawa Electric Corp Inverter device and motor drive system
JP2019503163A (en) * 2016-01-07 2019-01-31 レイボルド ゲーエムベーハー Vacuum pump drive with star-delta switching
WO2019021374A1 (en) * 2017-07-25 2019-01-31 三菱電機株式会社 Drive device, air conditioner and drive method
WO2019167379A1 (en) 2018-03-02 2019-09-06 株式会社日立製作所 Rotating machine drive system
WO2020021681A1 (en) * 2018-07-26 2020-01-30 三菱電機株式会社 Electric motor drive device and refrigeration-cycle application device
JPWO2019087243A1 (en) * 2017-10-30 2020-11-12 三菱電機株式会社 Electric motor drive, refrigeration cycle device, air conditioner, water heater, and refrigerator
JP2020205707A (en) * 2019-06-18 2020-12-24 日立オートモティブシステムズ株式会社 Controller, rotary electric machine driver system, and method
IT202100028772A1 (en) 2021-11-12 2023-05-12 Eldor Corp Spa METHOD FOR RECONFIGURING AN ELECTRIC MACHINE

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012264A1 (en) 2001-07-26 2003-02-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device
JP2007318826A (en) * 2006-05-23 2007-12-06 Toshiba Corp Motor controller for vehicle
JP2009225617A (en) * 2008-03-18 2009-10-01 Yaskawa Electric Corp Coil switching device and method for three-phase ac motor
US20110120090A1 (en) * 2009-11-25 2011-05-26 Sorensen Jr Charles Mitchel Processes And Devices For Regenerating Gasoline Particulate Filters
WO2011087126A1 (en) * 2010-01-18 2011-07-21 ヤマハ発動機株式会社 Saddled vehicle
JP2011199974A (en) * 2010-03-18 2011-10-06 Toyota Central R&D Labs Inc Power transmission device
DE102010054224A1 (en) 2010-12-11 2012-02-09 Daimler Ag Electric car operating method, involves operating electromotor in delta connection, and changing operation of electromotor from delta connection to star connection when power demand on electromotor falls below predetermined threshold value
CN102739134A (en) * 2011-04-08 2012-10-17 上海奥闻电机有限公司 Operation method and operation system of synchronous motor
WO2014112109A1 (en) * 2013-01-18 2014-07-24 トヨタ自動車株式会社 Control device for vehicle motor
US9637025B2 (en) 2013-01-18 2017-05-02 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle motor
JP5971352B2 (en) * 2013-01-18 2016-08-17 トヨタ自動車株式会社 Control device for electric motor for vehicle
US9166513B2 (en) 2013-01-31 2015-10-20 Kabushiki Kaisha Yaskawa Denki Inverter apparatus, method of controlling inverter apparatus, and electric motor drive system
KR101434100B1 (en) * 2013-01-31 2014-08-25 가부시키가이샤 야스카와덴키 Inverter apparatus, method of controlling inverter apparatus, and electric motor drive system
JP2014150655A (en) * 2013-01-31 2014-08-21 Yaskawa Electric Corp Inverter device and control method therefor, and motor drive system
EP2763309A2 (en) 2013-01-31 2014-08-06 Kabushiki Kaisha Yaskawa Denki Inverter apparatus and method of controlling inverter apparatus
CN103973195A (en) * 2013-01-31 2014-08-06 株式会社安川电机 Inverter apparatus, method of controlling inverter apparatus, and electric motor drive system
EP2763309A3 (en) * 2013-01-31 2017-06-28 Kabushiki Kaisha Yaskawa Denki Inverter apparatus and method of controlling inverter apparatus
JP2014150685A (en) * 2013-02-01 2014-08-21 Yaskawa Electric Corp Inverter device and motor drive system
JP2019503163A (en) * 2016-01-07 2019-01-31 レイボルド ゲーエムベーハー Vacuum pump drive with star-delta switching
US10931218B2 (en) 2016-01-07 2021-02-23 Leybold Gmbh Vacuum pump drive with star-delta switchover
WO2019021374A1 (en) * 2017-07-25 2019-01-31 三菱電機株式会社 Drive device, air conditioner and drive method
CN110892634B (en) * 2017-07-25 2023-06-20 三菱电机株式会社 Driving device, air conditioner and driving method
JPWO2019021374A1 (en) * 2017-07-25 2019-11-07 三菱電機株式会社 Driving device, air conditioner, and driving method
CN110892634A (en) * 2017-07-25 2020-03-17 三菱电机株式会社 Driving device, air conditioner and driving method
JPWO2019087243A1 (en) * 2017-10-30 2020-11-12 三菱電機株式会社 Electric motor drive, refrigeration cycle device, air conditioner, water heater, and refrigerator
US11233474B2 (en) 2018-03-02 2022-01-25 Hitachi, Ltd. Rotating machine drive system
WO2019167379A1 (en) 2018-03-02 2019-09-06 株式会社日立製作所 Rotating machine drive system
WO2020021681A1 (en) * 2018-07-26 2020-01-30 三菱電機株式会社 Electric motor drive device and refrigeration-cycle application device
JPWO2020021681A1 (en) * 2018-07-26 2021-03-11 三菱電機株式会社 Motor drive device and refrigeration cycle applicable equipment
JP2020205707A (en) * 2019-06-18 2020-12-24 日立オートモティブシステムズ株式会社 Controller, rotary electric machine driver system, and method
IT202100028772A1 (en) 2021-11-12 2023-05-12 Eldor Corp Spa METHOD FOR RECONFIGURING AN ELECTRIC MACHINE

Similar Documents

Publication Publication Date Title
JPH053694A (en) Driving method for synchronous motor
US5029263A (en) Electric start control of a VSCF system
US5428275A (en) Controlled starting method for a gas turbine engine
CN109217755B (en) Speed regulating method of electric automobile in speed control mode and motor controller thereof
US6894455B2 (en) Performance improvement of integrated starter alternator by changing stator winding connection
WO1997012438A9 (en) Inverter-controlled induction machine with an extended speed range
US7116073B1 (en) Methods and apparatus for controlling a motor/generator
WO1997012438A1 (en) Inverter-controlled induction machine with an extended speed range
WO2009070089A1 (en) Method and system for controlling an electric ac motor
WO1990006016A1 (en) Variable speed constant frequency start system with selectable input power limiting
US4935686A (en) Ac motor drive with switched autotransformer coupling
GB2373111A (en) An induction machine with a selectable number of poles and vector control
US7135829B1 (en) Methods and apparatus for controlling a motor/generator
JP3463791B2 (en) Electric vehicle drive system
Singh et al. Direct torque control: a practical approach to electric vehicle
JPH07336971A (en) Induction motor and operation controller
CA2432555A1 (en) Method for operating a non-rail bound land motor vehicle with internal combustion engine-generator unit and electric drive motor, and such a motor vehicle
JPH06217596A (en) Controller for coil transfer type permanent magnet motor
JPH0632722Y2 (en) Pole switching induction motor for electric vehicles
CN111245310B (en) Asynchronous starting permanent magnet synchronous motor quick starting method based on torque characteristics
JPH09149689A (en) Operation controller for pole change motor
EP1122879A2 (en) Method and apparatus for controlling rotary machine coupled to a turbo engine
JPH0564554B2 (en)
JPH02111292A (en) Ac variable-speed driving gear
JP2646822B2 (en) Inverter operation state switching method