JPH0536497A - Electron accumulating ring - Google Patents

Electron accumulating ring

Info

Publication number
JPH0536497A
JPH0536497A JP21301391A JP21301391A JPH0536497A JP H0536497 A JPH0536497 A JP H0536497A JP 21301391 A JP21301391 A JP 21301391A JP 21301391 A JP21301391 A JP 21301391A JP H0536497 A JPH0536497 A JP H0536497A
Authority
JP
Japan
Prior art keywords
life
value
circular
electron
storage ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21301391A
Other languages
Japanese (ja)
Other versions
JP2807933B2 (en
Inventor
猛 ▲高▼山
Takeshi Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP21301391A priority Critical patent/JP2807933B2/en
Publication of JPH0536497A publication Critical patent/JPH0536497A/en
Application granted granted Critical
Publication of JP2807933B2 publication Critical patent/JP2807933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To extend the life of electron beam using a circular and weak convergent electron storage ring with a small trajectory radius by setting the n value of a magnetic field distribution to be within specified range by a circular weak convergent-type magnet which is built therein. CONSTITUTION:Electron beam moving a circular trajectory of an electron storage ring has a life and extending the life is one of the problem to be solved for an apparatus of this kind. In the case that the n value of the magnetic field generated by a circular and weak convergent-type magnet which is built in is defined as n=(-R/B).(dB/dR), the life (Touschen life) tau of the stored electrons is given based on a formula shown separately. Here, the lower limit of the n value is determined by the allowable error magnetic field and the upper limit of the n value is determined by the effectiveness of this invention and the range is 0.01<n<0.1. Consequently, the apparatus has an effect in the case that electrons with low energy are accumulated in a circular and weak convergent-type electron storage ring with 0.5m or less radius and by specifying the range of the n value, it is proved by theoretically that life can be extended.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシンクロトロン放射光発
生装置における電子蓄積リングの改良に関する。
FIELD OF THE INVENTION The present invention relates to improvements in electron storage rings in synchrotron radiation generators.

【0002】[0002]

【従来の技術】最近、荷電粒子(特に電子)を所定の曲
率を持つ軌道に沿って光速に近い速度で運動させること
により、軌道の接線方向へシンクロトロン放射光を発生
するシンクロトロン放射光発生装置が注目を浴びてい
る。加えて、この種の装置は、小型化の要求も高く軌道
半径が0.5m未満のものも提案されている。図1は小
形用の電子蓄積リングの概略を横断面で示している。断
面が環状のヨーク10内に真空容器12や超電導磁石に
よる集束用磁石等の磁場発生装置が配置されている。入
射加速器(図示せず)でつくられた電子ビームは、導入
部11から真空容器12内に導入され、磁気チャンネル
13,14、インフレクタ15を介して磁場の強度によ
り定まる曲率を有する円形軌道を描いて光速に近い速度
で運動する。電子ビームは円形軌道上で局部的に密集
し、バンチと呼ばれる状態で運動する。
2. Description of the Related Art Recently, generation of synchrotron radiation by synchrotron radiation in the tangential direction of the orbit by moving charged particles (particularly electrons) along a trajectory having a predetermined curvature at a velocity close to the speed of light. The device is in the spotlight. In addition, there is a demand for miniaturization of this type of device, and a device having an orbit radius of less than 0.5 m has been proposed. FIG. 1 shows a schematic cross section of a small electron storage ring. A magnetic field generator such as a vacuum magnet 12 or a focusing magnet using a superconducting magnet is arranged in a yoke 10 having an annular cross section. An electron beam produced by an injection accelerator (not shown) is introduced into the vacuum container 12 from the introduction part 11 and travels through the magnetic channels 13, 14 and the inflector 15 to form a circular orbit having a curvature determined by the strength of the magnetic field. Draw and move at a speed close to the speed of light. The electron beam is locally concentrated on a circular orbit and moves in a state called a bunch.

【0003】ところで、円形軌道上を運動している電子
ビームには寿命があり、この寿命を長くすることがこの
種装置の一つの課題でもある。図2を参照してバンチ内
の電子の寿命について説明する。バンチ内の電子が失わ
れる(寿命を決める)過程は3通りある。第1の過程は
真空容器内の残留ガスと衝突して電子の進行方向が曲げ
られ、真空容器に衝突して失われる(真空寿命)。第2
の過程はバンチ内で電子同士が衝突して運動エネルギー
が変化し、安定な運動をするエネルギー範囲の外に出る
ことで失われる(タウシェック寿命)。第3の過程はシ
ンクロトロン放射により光を放出し、その分運動エネル
ギーを失うことで安定な運動をするエネルギー範囲の外
に出て失われる(量子寿命)。
By the way, an electron beam moving on a circular orbit has a lifetime, and extending the lifetime is also one of the problems of this type of apparatus. The lifetime of the electrons in the bunch will be described with reference to FIG. There are three processes in which electrons in the bunch are lost (determine the lifetime). In the first process, electrons collide with the residual gas in the vacuum container to bend the traveling direction of the electrons and collide with the vacuum container to be lost (vacuum life). Second
The process of is lost when the electrons collide with each other in the bunch, the kinetic energy changes, and the electron moves out of the stable energy range (Tauschek life). In the third process, light is emitted by synchrotron radiation, and the kinetic energy is lost by that amount, so that the light goes out of the energy range for stable motion and is lost (quantum lifetime).

【0004】[0004]

【発明が解決しようとする課題】残留ガスとの衝突で軌
道上のある点Aでθだけ電子の進行方向が曲げられたと
すると、B点の電子の振幅yは(電子はバンチの中心を
中心として振動している)次の数式1で表わされる。
If the traveling direction of the electron is bent by θ at a certain point A on the orbit due to collision with the residual gas, the electron amplitude y at the point B is (the electron is centered around the bunch center). It is expressed by the following formula 1.

【0005】[0005]

【数1】 [Equation 1]

【0006】ここで、βA はA点のベータ関数値、βB
はB点のベータ関数値である。ビームダクトの半径をa
とすると、次の数式2で表わされる散乱に対しては電子
はビームダクトに衝突して失われる。
Where β A is the beta function value at point A, β B
Is the beta function value at point B. The radius of the beam duct is a
Then, the electrons collide with the beam duct and are lost in the scattering represented by the following formula 2.

【0007】[0007]

【数2】 [Equation 2]

【0008】この数式2からベータ関数が小さい程、θ
MAX は大きくなり、損失の確率は小さくなるか、または
寿命が延びる。しかしながら、ある程度以上に真空寿命
が延びると、タウシェック寿命が蓄積電子の寿命の主た
る要因になる。特に、蓄積リングの平均軌道半径が0.
5m以下になると、ベータ関数は通常の蓄積リングに比
較して非常に小さくなるので真空寿命は十分長くなる。
一方、バンチ内の電子密度分布はガウス分布をしてお
り、その標準偏差σは次式で表わされる。 σ=(εβ)1/2 但し、εはエミッタンス(蓄積リング固有の比例定
数)、βはベータ関数である。
From Equation 2, the smaller the beta function, the more θ
MAX increases, probability of loss decreases, or life extends. However, if the vacuum life is extended beyond a certain level, the Towsheck life becomes the main factor of the life of accumulated electrons. In particular, the average orbit radius of the storage ring is 0.
Below 5 m, the beta function is much smaller than that of a normal storage ring, and the vacuum life is sufficiently long.
On the other hand, the electron density distribution in the bunch has a Gaussian distribution, and its standard deviation σ is expressed by the following equation. σ = (εβ) 1/2 where ε is emittance (proportional constant unique to the storage ring) and β is a beta function.

【0009】この式より、ベータ関数が小さくなると、
ビームサイズは小さくなり、バンチ内の電子密度は高く
なる(実際は蓄積リングが小さくなるとエミッタンスが
大きくなる傾向があるのである程度緩和される。)。こ
の結果、電子同士の散乱確率が高くなり、タウシェック
寿命が短くなる。このような問題点に鑑み、本発明の課
題は軌道半径の小さい円型弱集束電子蓄積リングで、電
子ビームの長寿命化に適した電子蓄積リングを提供する
ことにある。
From this equation, if the beta function becomes smaller,
The beam size becomes smaller and the electron density in the bunch becomes higher (actually, the smaller the storage ring, the larger the emittance, so this is alleviated to some extent). As a result, the probability of scattering electrons is increased, and the Towschek life is shortened. In view of such problems, an object of the present invention is to provide an electron storage ring which is a circular weakly focused electron storage ring having a small orbital radius and which is suitable for extending the life of an electron beam.

【0010】[0010]

【課題を解決するための手段】本発明による電子蓄積リ
ングは、内蔵された円型弱集束型磁石により発生する磁
場分布のn値(n=[−R/B]・[dB/dR]で定
義される。)を0.01<n<0.1となるように設定
したことを特徴とする。
The electron storage ring according to the present invention has an n value (n = [-R / B]. [DB / dR]) of a magnetic field distribution generated by a built-in circular weakly focusing magnet. Defined) is set so that 0.01 <n <0.1.

【0011】[0011]

【実施例】以下、本発明の実施例について説明する。円
型弱集束電子蓄積リングのタウシェック寿命は次式で与
えられる。 τ=σx'γ3 (εmax /E0 2 B /[π1/2 e 2
cNC(ξ)] ここで VB =(4π)3/2 σx σy σL ξ=[εmax /(E0 γσx')]2 C(ξ)=log(1/1.78・ξ)−1.5 である。但し、 re =2.8 ×10-15 m:電子の古典半径 c=3.0 ×108 m/s :光速度 N:バンチ内の電子数 γ=E0 /mc2 :相対論的質量係数(mc2 は電子の
静止エネルギー) E0 :バンチ内電子のエネルギー分布の中心エネルギー εmax :電子の運動エネルギーの中心エネルギーからの
最大許容変位 VB :バンチの体積 σx :水平方向ビームの広がり σx':電子ビームの進行方向に対する水平方向角度広が
りの標準偏差 σy :垂直方向ビームの広がり σL :ビームの進行方向の広がり、またはバンチの長さ
EXAMPLES Examples of the present invention will be described below. The Tauschek life of a circular weakly focused electron storage ring is given by the following equation. τ = σ x 'γ 3 ( ε max / E 0) 2 V B / [π 1/2 r e 2
cNC (ξ)] where V B = (4π) 3/2 σ x σ y σ L ξ = [ε max / (E 0 γσ x ′ )] 2 C (ξ) = log (1 / 1.78 · ξ) It is −1.5. However, r e = 2.8 × 10 -15 m: electron classical radius c = 3.0 × 10 8 m / s: velocity of light N: electron number of the bunch γ = E 0 / mc 2: relativistic mass factor (mc (2 is the static energy of the electron) E 0 : Central energy of electron energy distribution in the bunch ε max : Maximum allowable displacement of the electron kinetic energy from the central energy V B : Bunch volume σ x : Horizontal beam divergence σ x ' : Standard deviation of horizontal angular spread with respect to the electron beam traveling direction σ y : Vertical beam divergence σ L : Beam traveling divergence, or bunch length

【0012】関数C(ξ)は電子のエネルギーが大きい
場合、σx'の変化に対して変化が少ないので、エネルギ
ーを一定とした場合、近似的に定数と考えられる。円型
弱集束蓄積リングの場合 εx 0 =3.84・10-13 ・γ2 /(n・(1−
n)1/2 ):自然エミッタンス εx =εx 0 /(1+k2 ) kは水平方向と垂直方向のエミッタンスの結合係数 εy =εx 0 2 /(1+k2 ) σx =(εx βx 1/2 ・{1+[(1+k2 )・n/
(3−4n)]}1/2 σx'=(εx /βx 1/2 σx σx'=εx ・{1+[(1+k2)n/(3−4
n)]}1/2 σy =(εy ・βy 1/2 βx =R・(1−n)-1/2 βy =R・n-1/2 σL は次の数式3で表わされる。
When the energy of the electron is large, the function C (ξ) does not change much with respect to the change of σ x ′. Therefore, when the energy is constant, it can be considered as an approximate constant. In case of circular weakly focused storage ring ε x 0 = 3.84 · 10 −13 · γ 2 / (n · (1-
n) 1/2 ): Natural emittance ε x = ε x 0 / (1 + k 2 ) k is the coupling coefficient of horizontal and vertical emittance ε y = ε x 0 k 2 / (1 + k 2 ) σ x = (ε x β x ) 1/2・ {1 + [(1 + k 2 ) ・ n /
(3-4n)]} 1/2 σ x ' = (ε x / β x ) 1/2 σ x σ x' = ε x · {1 + [(1 + k 2 ) n / (3-4
n)]} 1/2 σ y = (ε y · β y ) 1/2 β x = R · (1-n) −1/2 β y = R · n −1/2 σ L is the following mathematical formula It is represented by 3.

【0013】[0013]

【数3】 [Equation 3]

【0014】よって、次の数式4でも表わされる。Therefore, it is also expressed by the following equation 4.

【0015】[0015]

【数4】 [Equation 4]

【0016】また、次の数式5の関係が得られる。Further, the following relational expression 5 is obtained.

【0017】[0017]

【数5】 [Equation 5]

【0018】従って、タウシェック寿命は近似的に次の
数式6で表わされる。
Therefore, the Towsheck life is approximately expressed by the following equation (6).

【0019】[0019]

【数6】 [Equation 6]

【0020】以上のことから、円型弱集束リングのタウ
シェック寿命を長くするためにはnを小さくすることが
有効であることが判る。このときβy も大きくなるが、
Rが小さい場合、βy は真空寿命が十分長い範囲に保て
る。
From the above, it can be seen that it is effective to make n small in order to prolong the Tauschek life of the circular weak focusing ring. At this time, β y also becomes large,
When R is small, β y can be kept in a range where the vacuum life is sufficiently long.

【0021】従来の装置では、電子の軌道半径R=0.
5m、電子のエネルギー650MeVでn値は約0.3〜
0.4程度である。これに対し、本発明では電子の軌道
半径R=0.15m、電子のエネルギー250MeV 程度
の蓄積リングを対象とする。この蓄積リングのタウシェ
ック寿命は、電子のエネルギーが小さいことにより、
(250/650)7 (約0.0012)の比で短かく
なる。そこで、nを従来の1/20である0.015〜
0.02にすると、207/4 (約189倍)だけタウシ
ェック寿命を長くできる。従来のタウシェック寿命は約
30時間であるが、本発明で対象とする蓄積リングでは
約7時間の寿命となる。
In the conventional device, the orbital radius R = 0.
5m, electron energy 650MeV, n value is about 0.3 ~
It is about 0.4. On the other hand, the present invention is intended for a storage ring having an electron orbit radius R = 0.15 m and an electron energy of about 250 MeV. The Tawseck life of this storage ring is
It becomes shorter at a ratio of (250/650) 7 (about 0.0012). Therefore, n is 1/20 of the conventional value, which is 0.015 to 0.015.
If it is set to 0.02, the Tauschek life can be extended by 20 7/4 (about 189 times). The conventional Tauseck life is about 30 hours, while the storage ring targeted by the present invention has a life of about 7 hours.

【0022】n値の下限は許容誤差磁場から決まる。4
R=10mmで許容誤差磁場4B/Bを約10-3とする
と、(1/B)・(4B/4R)は約0.1(1/m)
である。よって、Rの最小値を約0.1mとすると、 4n=0.01 となる。そこでn値の下限を0.01とする。
The lower limit of the n value is determined by the allowable error magnetic field. Four
If R = 10mm and allowable error magnetic field 4B / B is about 10 -3 , (1 / B) · (4B / 4R) is about 0.1 (1 / m)
Is. Therefore, if the minimum value of R is about 0.1 m, then 4n = 0.01. Therefore, the lower limit of the n value is set to 0.01.

【0023】n値の上限は本発明の有効性で決まる。対
象とする蓄積リングの軌道半径は0.1〜0.5mで、
できるだけ低エネルギーの電子に対して、タウシェック
寿命を延ばしたり、n>0.1ではタウシェック寿命に
著しい変化は見られない。n=0.5と0.1では、後
者が前者の約10倍程度である。また、n=0.25以
上の蓄積リングについては既に設計例R=0.5mがあ
る。しかし、この例ではnをさらに小さくすると、ビー
ムサイズが大きくなり過ぎて、要求仕様に合わなくな
る。ここで対象とする蓄積リングでは軌道半径が小さい
ので、ビームサイズはそれほど大きくならない。そこ
で、n値の上限を0.1とする。
The upper limit of the n value is determined by the effectiveness of the present invention. The orbital radius of the target storage ring is 0.1-0.5 m,
There is no significant change in the Tauschek life when n = 0.1, and the Tauschek life is extended with respect to electrons having the lowest possible energy. When n = 0.5 and 0.1, the latter is about 10 times the former. Further, for the storage ring with n = 0.25 or more, there is already a design example R = 0.5 m. However, in this example, if n is further reduced, the beam size becomes too large and the required specifications cannot be met. The beam size is not so large because the radius of the orbit of the storage ring of interest is small. Therefore, the upper limit of the n value is set to 0.1.

【0024】[0024]

【発明の効果】以上説明してきたように、本発明は軌道
半径0.5m以下の円型弱集束型電子蓄積リングに低エ
ネルギーの電子を蓄積する場合に効果を有し、集束用電
磁石の磁場分布のn値をある決められた範囲にすること
で、タウシェック寿命を長くすることが理論的に確認さ
れた。
As described above, the present invention is effective in accumulating low-energy electrons in the circular weak-focusing electron storage ring having an orbital radius of 0.5 m or less, and the magnetic field of the focusing electromagnet. It was theoretically confirmed that the tau-seck life is lengthened by setting the n value of the distribution to a predetermined range.

【図面の簡単な説明】[Brief description of drawings]

【図1】電子蓄積リングの構造を概略的に示した横断面
図。
FIG. 1 is a cross-sectional view schematically showing the structure of an electron storage ring.

【図2】電子蓄積リング内を運動する電子ビーム(バン
チ)を説明するための図。
FIG. 2 is a diagram for explaining an electron beam (bunch) moving in an electron storage ring.

【符号の説明】[Explanation of symbols]

10 ヨーク 11 導入部 12 真空容器 13 磁気チャンネル 15 インフレクタ 10 Yoke 11 Introductory Part 12 Vacuum Container 13 Magnetic Channel 15 Inflector

Claims (1)

【特許請求の範囲】 【請求項1】 荷電粒子を所定の曲率を有する軌道に沿
って光速に近い速度で運動させることにより、前記軌道
の接線方向へシンクロトロン放射光を発生する電子蓄積
リングにおいて、内蔵された円型弱集束型磁石により発
生する磁場分布のn値を0.01<n<0.1となるよ
うに設定したことを特徴とする電子蓄積リング。
Claim: What is claimed is: 1. An electron storage ring for generating synchrotron radiation in a tangential direction of a trajectory by moving charged particles along a trajectory having a predetermined curvature at a velocity close to the speed of light. An electron storage ring, wherein an n value of a magnetic field distribution generated by a built-in circular weakly-focusing magnet is set to be 0.01 <n <0.1.
JP21301391A 1991-07-31 1991-07-31 Electron storage ring Expired - Lifetime JP2807933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21301391A JP2807933B2 (en) 1991-07-31 1991-07-31 Electron storage ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21301391A JP2807933B2 (en) 1991-07-31 1991-07-31 Electron storage ring

Publications (2)

Publication Number Publication Date
JPH0536497A true JPH0536497A (en) 1993-02-12
JP2807933B2 JP2807933B2 (en) 1998-10-08

Family

ID=16632057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21301391A Expired - Lifetime JP2807933B2 (en) 1991-07-31 1991-07-31 Electron storage ring

Country Status (1)

Country Link
JP (1) JP2807933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9585286B2 (en) 2012-04-26 2017-02-28 Nec Platforms, Ltd. Air-cooled case

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9585286B2 (en) 2012-04-26 2017-02-28 Nec Platforms, Ltd. Air-cooled case

Also Published As

Publication number Publication date
JP2807933B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
US4996496A (en) Bending magnet
JPH11513528A (en) Method for extracting charged particles from isochronous cyclotron and apparatus applying this method
JP2782076B2 (en) Charged particle beam cooling method
US4623847A (en) Method and apparatus for storing an energy-rich electron beam in a race-track microtron
JPH0536497A (en) Electron accumulating ring
RU2072643C1 (en) Method of production of small-sized bremsstrahlung focus in cyclic charged-particle accelerator
US4737726A (en) Charged particle beam storage and circulation apparatus
JP4276160B2 (en) Circular charged particle accelerator and method of operating the circular charged particle accelerator
US4961056A (en) Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring
JP2020071192A (en) Charged particle beam intensity distribution variable device, charged particle beam intensity distribution variable method, secondary particle generation device, and radioactive isotope generation device
WO1986002801A1 (en) Method and apparatus for storing an energy-rich electron beam in a race-track microtron
KR102627859B1 (en) Apparatus and method for generating free electron laser
CN111585162B (en) Gamma light generating device and radioisotope production device
SU1067972A1 (en) Method of producing negative ions
JPH02295100A (en) Synchrotron radiation generator
JPH0689800A (en) Particle accelerator
Kapoor General relativistic decollimation of a jet
Gisler et al. PIC Simulations of Electrodynamic Models for Astrophysical Jets
Forbes et al. A Comparison of Mass Distributions in Cluster and Field Spirals
Snyder et al. SPARTAN-1 X-ray Observation of the Perseus Cluster
Sternglass Observational Tests of an Explosive Lemaitre-type Cosmological Model
JPH05182799A (en) Charged particle acceleration and storage ring, and charged particle incidence method
Markiewicz et al. Interaction region issues at the NLC
JPH03190099A (en) Vacuum duct of acceleration accumulation ring
JPS6220300A (en) Charged particle apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980624