JPH0536487B2 - - Google Patents

Info

Publication number
JPH0536487B2
JPH0536487B2 JP58085370A JP8537083A JPH0536487B2 JP H0536487 B2 JPH0536487 B2 JP H0536487B2 JP 58085370 A JP58085370 A JP 58085370A JP 8537083 A JP8537083 A JP 8537083A JP H0536487 B2 JPH0536487 B2 JP H0536487B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
mmni
reaction rate
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58085370A
Other languages
Japanese (ja)
Other versions
JPS59211543A (en
Inventor
Shigeru Tsuboi
Koichi Yanai
Masataka Shichiri
Yoshio Imamura
Yoichi Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Toyobo Co Ltd
Original Assignee
Kubota Corp
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Toyobo Co Ltd filed Critical Kubota Corp
Priority to JP58085370A priority Critical patent/JPS59211543A/en
Publication of JPS59211543A publication Critical patent/JPS59211543A/en
Publication of JPH0536487B2 publication Critical patent/JPH0536487B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は水素吸収材、詳しくはヒートポンプシ
ステムやコンプレツサーシステム等での使用に適
した特性を有する混合系水素吸収材に関する。 〔従来の技術〕 近時、水素吸収材としてある種の金属(または
合金)と水素との反応(水素化物形成・解離)に
おける温度と平衡圧力との関係を利用し、これを
ヒートポンプシステムやサーマルコンプレツサー
システムなどのエネルギー源とする工学的応用が
注目されている。これらのシステムに適用される
水素吸収材としては、(i)使用される熱源温度に適
合する水素吸収・放出平衡圧力を有すること、(ii)
単位重量当りの水素吸蔵量・有効水素放出量が大
きいこと、(iii)水素吸蔵・放出に伴う発吸熱量が大
きいこと、(iv)水素平衡圧力曲線におけるヒステリ
シスが小さいこと、(v)プラトー平坦性が良いこ
と、(vi)活性化が容易なこと、および(vii)反応速度が
大きいことなどの特性が要求される。工学的応用
に際して、所望のシステム特性を得るには、上記
各特性のいづれも欠くことができないが、とりわ
け、反応速度が大きいことは、安定した反応を具
現するとともに、サイクル時間の短縮により装置
全体の経済性を高めるためにも極めて重要なフア
クターである。 〔発明が解決しようとする課題〕 これまでにも、水素吸収材として各種の水素化
合金が知られ、またその特性を改良するための合
金組成の工夫が試みられており、例えば異種合金
の混合によつて、対象システムに適合した平衡圧
力をもたせたものも提案されている。しかしなが
ら、平衡圧力やその他の特性にすぐれていなが
ら、反応速度が遅いために、装置化には適用でき
ないものとして取扱われ、実用化が妨げられてい
るものも少くない。 本発明者等は上記に鑑み、反応速度の低い水素
吸収材の特性改善に関し詳細な研究を重ねた結
果、反応速度の低い水素化合金に対し、反応速度
の大きい水素化合金を少量混合することにより、
混合比を越える高い反応速度を与え得ることを知
見し、本発明を完成するに到つた。 〔課題を解決するための手段および作用〕 本発明の混合系水素吸収材は、 MmNi(5-a)Feaおよび/または MmNi(5-a)Cra 〔但し、0<a≦1.0〕 で示される原子比組成のMm(ミツシユメタル)−
ニツケル−鉄(またはクロム)合金(以下、「A
合金」とも称する)の粉末に、 LaNi5合金および/または MmNi(5-b)AlbYd 〔但し、Y:Ti、Zr、SnまたはNb、0<.≦
1.0、0≦d≦1.0〕 で示される原子比組成のMm(ミツシユメタル)−
ニツケル−アルミニウム合金(以下、「B合金」
とも称する)の粉末を10〜30重量部混合してなる
ものである。 本発明の水素吸収材を構成する一方の成分であ
るA合金、すなわちMmNi(5-a)Fe(Cr)a合金は、
水素平衡圧や有効水素吸蔵・放出量等の特性にす
ぐれ、かつ廉価であるという長所を有している反
面において、反応速度が十分でないために工学的
応用に際しての制約を受ける水素化合金であり、
もう一方の構成系分であるB合金、すなわち
LaNi5、およびMmNi(5-a)AlbYd合金は、反応速
度の高い合金ではあるものの、高価であり、また
MmNi(5-a)Alb合金は水素吸蔵・放出平衡圧のヒ
ステリシスが大きいことや絶対水素吸蔵量が少な
い等の難点を有する水素化合金である。 しかるに、本発明に従つて上記A合金とB合金
とを混合して構成される混合系水素吸収材は、反
応速度の低いA合金を主構成分としているにも拘
わらず、これに少量配合されたB合金の触媒的作
用により、A合金の有する水素平衡圧、有効水素
吸蔵・放出量等の優れた特性を維持しながら、A
合金単独の場合に比べて著しく高い反応速度を示
し、また高価はB合金の使用量が少なく安価なA
合金を主たる構成分としていることによる経済性
をすると共に、後記実施例にも示したように活性
化処理に必要なエネルギーの消費も少なくて済む
等の利点を併せ有している。その水素吸収材を構
成するA合金はMmNi(5-a)FeaまたはMmNi(5-a)
Craのいづれか一方のみでもよく、あるいは両者
の混合物であつてもさしつかえない。また、B合
金であるLaNi5およびMmNi(5-b)AlbYdはいづれ
か一方を単独で使用してもよく、また両者を併用
してもよい。B合金の混合比は10重量部以上であ
ることを要する。それより少いと、混合効果が不
足するからである。LaNi5とMmNi(5-b)AlbYdを
併用するときは両者の合計量が10重量部以上であ
ればよい。10重量部以上の混合によつて、後記実
施例にも示されるように、混合比をはるかに越え
る高い反応速度が得られる。なお、反応速度の改
善の点に限れば、B合金の混合比に上限を付加す
る必要はないが、高価なB合金を多量に使用する
のはコスト負担を増すばかりでなく、A合金の活
用というメリツトが希釈される。実際上、30重量
部を越えて混合する必要はなく、10〜30重量部の
範囲内で十分実用に耐える諸特性が与えられる。 本発明に係る水素吸収材は、適当な粒径(例え
ば、80〜120メツシユ)に粉砕された粉末混合物
として上記規定の混合比に調製されたのち、活性
化処理を経て使用される。活性化処理は、常法に
従つて、加熱下の減圧処理を必要に応じて行つた
のち、加圧下の水素導入と水素脱気の操作を繰返
すことにより達成される。水素導入圧力は約10〜
20Kg/cm2程度と、従来一般に必要な圧力(約30
Kg/cm2)に比べて低くてよく、また水素導入・脱
気操作は、通常5回前後反復を要するのに対し、
1回で十分である。従つて活性化に必要なエネル
ギー量も大幅に低減する。 〔実施例〕 第1表は、A合金粉末およびB合金粉末を使用
した水素吸収材(いずれも粒度100メツシユアン
ダ)について、それぞれの水素吸蔵・放出特性を
活性化条件と併せて示している。 No.1〜4は発明例、No.11〜16は比較例である。
比較例No.11、No.12はA合金単独の例、No.13はA合
金とB合金との混合系であるが、B合金の配合割
合が不足している例、No.14〜16はB合金単独の例
である。活性化処理における水素導入・脱気操作
の実施回数は、発明例No.1〜4ではいずれも1回
とし、比較例No.11、No.12では5回、No.13では3
回、No.14〜16では1回とした。 同表より、A合金単独のもの(No.11、No.12)
は、一定時間における水素移動量が少なく、また
No.13のようにA合金にB合金を配合しても、配合
量が不足したのではその改善効果は乏しい。 これに対し、A合金を主構成分とし、これに所
定量のB合金を配合してなる発明例No.1〜4は、
比較的少量のB合金の配合効果として、No.11〜13
に比べて著しく高い反応速度を有している。しか
も、No.11〜13では、30Kg/cm2の高圧力での活性化
処理を3〜5回反復実施しているのに対し、発明
例No.1〜4のそれは高圧力を必要とせず、かつ1
回の処理であり、活性化の省エネルギー効果も大
である。
[Industrial Field of Application] The present invention relates to a hydrogen absorbing material, and more particularly to a mixed hydrogen absorbing material having characteristics suitable for use in heat pump systems, compressor systems, and the like. [Prior art] Recently, the relationship between temperature and equilibrium pressure in the reaction (hydride formation/dissociation) between a certain metal (or alloy) and hydrogen as a hydrogen absorbing material has been utilized, and this is used in heat pump systems and thermal Engineering applications such as energy sources for compressor systems are attracting attention. The hydrogen absorbing material applied to these systems must (i) have a hydrogen absorption/release equilibrium pressure compatible with the heat source temperature used; (ii)
Large amount of hydrogen storage and effective hydrogen release per unit weight, (iii) Large amount of heat generated and absorbed due to hydrogen storage and release, (iv) Small hysteresis in the hydrogen equilibrium pressure curve, (v) Flat plateau (vi) easy activation; and (vii) high reaction rate. In engineering applications, all of the above characteristics are indispensable in order to obtain the desired system characteristics, but in particular, a high reaction rate not only realizes a stable reaction but also reduces the cycle time of the entire device. This is an extremely important factor for increasing the economic efficiency of the industry. [Problem to be solved by the invention] Various hydrogenated alloys have been known as hydrogen absorbing materials, and attempts have been made to improve alloy compositions to improve their properties. have also proposed a system with an equilibrium pressure suitable for the target system. However, although they have excellent equilibrium pressure and other properties, many of them are treated as inapplicable to device development due to their slow reaction rates, preventing their practical application. In view of the above, the present inventors conducted detailed research on improving the characteristics of hydrogen absorbing materials with low reaction rates, and found that a small amount of a hydrogenated alloy with a high reaction rate is mixed with a hydrogenated alloy with a low reaction rate. According to
It was discovered that a high reaction rate exceeding the mixing ratio could be achieved, and the present invention was completed. [Means and effects for solving the problems] The mixed hydrogen absorbing material of the present invention contains MmNi (5-a) Fe a and/or MmNi (5-a) Cr a [provided that 0<a≦1.0]. Mm (Mitsushi Metal) with the indicated atomic ratio composition −
Nickel-iron (or chromium) alloy (hereinafter referred to as “A”)
LaNi 5 alloy and/or MmNi (5-b) Al b Y d [where Y: Ti, Zr, Sn or Nb, 0<. ≦
1.0, 0≦d≦1.0] Mm (Mitsushi Metal) with atomic ratio composition
Nickel-aluminum alloy (hereinafter referred to as "B alloy")
It is made by mixing 10 to 30 parts by weight of powder of The A alloy, which is one of the components constituting the hydrogen absorbing material of the present invention, that is, the MmNi (5-a) Fe (Cr) a alloy, is
Although it has the advantages of excellent properties such as hydrogen equilibrium pressure and effective hydrogen absorption/release amount, and is inexpensive, it is a hydrogenated alloy that is limited in its engineering applications due to its insufficient reaction rate. ,
The other constituent system component, B alloy, i.e.
Although LaNi 5 and MmNi (5-a) Al b Y d alloys are alloys with high reaction rates, they are expensive and
The MmNi (5-a) Al b alloy is a hydrogenated alloy that has drawbacks such as large hysteresis in the equilibrium pressure of hydrogen absorption and release and a small absolute hydrogen storage capacity. However, although the mixed hydrogen absorbing material made by mixing the above-mentioned A alloy and B alloy according to the present invention has the A alloy, which has a low reaction rate, as its main component, a small amount is added to the A alloy, which has a low reaction rate. Due to the catalytic action of Alloy B, A
The reaction rate is significantly higher than that of the alloy alone, and the more expensive A alloy uses less B alloy.
In addition to being economical due to the alloy being the main component, it also has the advantage of requiring less energy consumption for activation treatment, as shown in the examples below. The A alloy that makes up the hydrogen absorbing material is MmNi (5-a) Fea or MmNi (5-a)
Either one of Cra may be used alone, or a mixture of both may be used. Further, the B alloys LaNi 5 and MmNi (5-b) AlbYd may be used alone or in combination. The mixing ratio of Alloy B must be 10 parts by weight or more. If the amount is less than that, the mixing effect will be insufficient. When LaNi 5 and MmNi (5-b) AlbYd are used together, the total amount of both may be 10 parts by weight or more. By mixing 10 parts by weight or more, a high reaction rate far exceeding the mixing ratio can be obtained, as shown in the examples below. As far as improving the reaction rate, there is no need to impose an upper limit on the mixing ratio of B alloy, but using a large amount of expensive B alloy will not only increase the cost burden, but will also reduce the utilization of A alloy. The benefits of this will be diluted. In fact, it is not necessary to mix more than 30 parts by weight, and a range of 10 to 30 parts by weight provides sufficient practical properties. The hydrogen absorbing material according to the present invention is prepared as a powder mixture pulverized to a suitable particle size (for example, 80 to 120 mesh) at the above-specified mixing ratio, and then subjected to activation treatment before use. The activation treatment is achieved by carrying out a depressurization treatment under heating as necessary according to a conventional method, and then repeating the operations of hydrogen introduction under pressure and hydrogen degassing. Hydrogen introduction pressure is approximately 10~
About 20Kg/cm2, which is the pressure normally required (approximately 30Kg/cm2)
Kg/cm 2 ), and hydrogen introduction and degassing operations usually require about 5 repetitions.
One time is enough. Therefore, the amount of energy required for activation is also significantly reduced. [Example] Table 1 shows the hydrogen absorption and release characteristics of hydrogen absorbing materials using A alloy powder and B alloy powder (both have a particle size of 100 mesh) together with activation conditions. Nos. 1 to 4 are invention examples, and Nos. 11 to 16 are comparative examples.
Comparative examples No. 11 and No. 12 are examples of A alloy alone, No. 13 is a mixed system of A alloy and B alloy, but examples in which the blending ratio of B alloy is insufficient, and Nos. 14 to 16 is an example of B alloy alone. The number of times the hydrogen introduction/degassing operation was performed in the activation treatment was once in Invention Examples Nos. 1 to 4, 5 times in Comparative Examples No. 11 and No. 12, and 3 times in No. 13.
Nos. 14 to 16 were set to once. From the same table, A alloy alone (No.11, No.12)
The amount of hydrogen transferred in a certain period of time is small, and
Even if alloy B is blended with alloy A as in No. 13, the improvement effect will be poor if the blended amount is insufficient. On the other hand, invention examples Nos. 1 to 4, in which alloy A is the main component and a predetermined amount of alloy B is mixed therein,
As a blending effect of a relatively small amount of B alloy, Nos. 11 to 13
It has a significantly higher reaction rate than that of Moreover, in Nos. 11 to 13, the activation treatment was repeated 3 to 5 times at a high pressure of 30 kg/cm 2 , whereas inventive examples Nos. 1 to 4 do not require high pressure. , and 1
The energy saving effect of activation is also large.

〔発明の効果〕〔Effect of the invention〕

本発明の混合系水素吸収材は、単独では反応速
度が低く装置化への適用の困難なA合金を主構成
分とし、これに少量のB合金を配合した効果とし
て、水素平衡圧や有効水素吸蔵・放出量等と共に
良好な反応速度を具備し、またその主構成分であ
るA合金が安価であると共に、活性化に必要なエ
ネルギーも少なくて済むという経済的利点を併せ
有している。従つて、本発明の水素吸収材は、ヒ
ートポンプシステム、コンプレツサーシステムを
はじめとする各種分野での金属水素化反応を利用
する装置、商品等に有用である。
The mixed hydrogen absorbing material of the present invention is mainly composed of alloy A, which has a low reaction rate and is difficult to apply to equipment when used alone.The effect of blending a small amount of alloy B with this is that the hydrogen equilibrium pressure and effective hydrogen It has a good reaction rate as well as a good absorption/desorption amount, and has the economic advantage that its main component, alloy A, is inexpensive and requires less energy for activation. Therefore, the hydrogen absorbing material of the present invention is useful for devices and products that utilize metal hydrogenation reactions in various fields such as heat pump systems and compressor systems.

Claims (1)

【特許請求の範囲】 1 MmNi(5-a)Feaおよび/または MmNi(5-a)Cra 〔但し、0<a≦1.0〕 で示される合金の粉末に、 LaNi5合金および/または MmNi(5-a)AlbYd 〔但し、YはTi、Zr、Sn、またはNb、0<b≦
1.0、0≦d≦1.0〕 で示される合金の粉末を10〜30重量部混合してな
る混合系水素吸収材。
[Claims] 1 LaNi 5 alloy and/or MmNi is added to the powder of the alloy represented by MmNi (5-a ) Fe a and/or MmNi ( 5 -a) Cr a [however, 0<a≦1.0]. (5-a) Al b Y d [However, Y is Ti, Zr, Sn, or Nb, 0<b≦
1.0, 0≦d≦1.0] A mixed hydrogen absorbing material made by mixing 10 to 30 parts by weight of powder of an alloy represented by the following formula.
JP58085370A 1983-05-16 1983-05-16 Hydrogen absorbing mixed material Granted JPS59211543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58085370A JPS59211543A (en) 1983-05-16 1983-05-16 Hydrogen absorbing mixed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58085370A JPS59211543A (en) 1983-05-16 1983-05-16 Hydrogen absorbing mixed material

Publications (2)

Publication Number Publication Date
JPS59211543A JPS59211543A (en) 1984-11-30
JPH0536487B2 true JPH0536487B2 (en) 1993-05-31

Family

ID=13856825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58085370A Granted JPS59211543A (en) 1983-05-16 1983-05-16 Hydrogen absorbing mixed material

Country Status (1)

Country Link
JP (1) JPS59211543A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250992A (en) * 1987-12-18 1990-02-20 Asahi Glass Co Ltd High-durability low hydrogen overvoltage cathode and manufacture thereof
JP2610937B2 (en) * 1988-02-12 1997-05-14 旭硝子株式会社 High durability low hydrogen overvoltage cathode
JP2629963B2 (en) * 1989-06-30 1997-07-16 旭硝子株式会社 High durability low hydrogen overvoltage cathode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101632A (en) * 1980-12-15 1982-06-24 Seijiro Suda Novel alloy for occluding hydrogen
JPS58217655A (en) * 1982-06-11 1983-12-17 Agency Of Ind Science & Technol Hydrogen occluding multi-component alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101632A (en) * 1980-12-15 1982-06-24 Seijiro Suda Novel alloy for occluding hydrogen
JPS58217655A (en) * 1982-06-11 1983-12-17 Agency Of Ind Science & Technol Hydrogen occluding multi-component alloy

Also Published As

Publication number Publication date
JPS59211543A (en) 1984-11-30

Similar Documents

Publication Publication Date Title
Buschow et al. Hydrogen absorption in intermetallic compounds of thorium
Bobet et al. Structural and hydrogen sorption studies of NdNi5− xAlx and GdNi5− xAlx
Nazaré Low enrichment dispersion fuels for research and test reactors
CA2345956A1 (en) Reversible hydrogen storage composition
US4161402A (en) Nickel-mischmetal-calcium alloys for hydrogen storage
CN1314488C (en) Catalyst contg. Fe-Ni-B-C used for synthesizing single-crystal of boron-contained diamond and its prepn. method
JPH0536487B2 (en)
CN1177075C (en) Non-crystal rare-earth and Mg base hydrogen bearing alloy and its preparing process
US4913879A (en) Hydrogen absorbing modified ZrMn2 -type alloys
US4576639A (en) Hydrogen storage metal material
JPS55149101A (en) Novel hydrogen absorbent
US4488906A (en) Hydrogen storage metal material
JPH0247535B2 (en)
CA1098887A (en) Nickel-mischmetal-calcium alloys for hydrogen storage
JPS56125201A (en) Mixed hydrogen absorbing agent
JPH0577732B2 (en)
Yartys et al. Hydrogenation behaviour and structure of R5Fe2B6 (R= Ce, Pr, Nd, Sm, Gd and Tb) borides
JPS5839218B2 (en) Rare earth metal quaternary hydrogen storage alloy
JPS6347345A (en) Hydrogen storage material
CN114457260B (en) MgCu 4 Sn type hydrogen storage alloy and preparation method thereof
EP0382475B1 (en) Hydrogen absorbing alloys
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPS5947022B2 (en) Alloy for hydrogen storage
JPS5719348A (en) Mixed alloy type hydrogen absorbent
JP3670506B2 (en) Hydrogen or hydrogen isotope storage material