JPH0536384B2 - - Google Patents

Info

Publication number
JPH0536384B2
JPH0536384B2 JP59050365A JP5036584A JPH0536384B2 JP H0536384 B2 JPH0536384 B2 JP H0536384B2 JP 59050365 A JP59050365 A JP 59050365A JP 5036584 A JP5036584 A JP 5036584A JP H0536384 B2 JPH0536384 B2 JP H0536384B2
Authority
JP
Japan
Prior art keywords
sic
strength
weight
fibers
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59050365A
Other languages
Japanese (ja)
Other versions
JPS60195064A (en
Inventor
Sukehisa Makino
Masamichi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP59050365A priority Critical patent/JPS60195064A/en
Publication of JPS60195064A publication Critical patent/JPS60195064A/en
Publication of JPH0536384B2 publication Critical patent/JPH0536384B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセラミツクをSiC繊維で強化して強度
向上、脆性改善を計つた繊維で強化された複合セ
ラミツクスの製造法に関するものである。 従来、原料のガラス粉末とSiC繊維との混合泥
漿からグリーンシートを成形し、そのシートを積
層接着後、ホツトプレスで焼成し再処理によりマ
トリツクスの結晶化を行つたβ−スポジユメン−
SiC繊維系の公知技術がある。 また、SiC繊維でプリフオーム体を形成し、こ
れにSiC泥漿を含浸させて成形する方法やまた
は、これらの泥漿を鋳込み成形や、これらの混練
物を押出し成形したものをホツトプレスもしくは
反応焼結により焼成したSiC−SiC繊維系の公知
技術がある。 以上のいずれの公知技術ともホツトプレスを用
いる場合は、複数形状品の対応には不適であり、
また前者技術ではホツトプレスで焼成後再処理の
結晶化工程を別に必要とするために製造原価が高
くなる。また後者の反応焼結の場合はその焼結体
の耐熱強度が弱い問題点がある。 本発明は以上の問題点を解決し、ホツトプレス
や結晶化のための熱処理工程を必要としない、生
産性にすぐれた複合セラミツクスの製造法によつ
て、強度向上と脆性改善を計り、利用分野への適
用を拡大したものである。その要旨は、ペタライ
ト、リチウム長石等の結晶質原料粉末にSiC繊維
を10〜50重量%含有した素地を混練し、押出また
は射出成形法にて成形後、樹脂抜きして、更にア
イソスタテイツクプレス後に、1250〜1350℃の非
酸化雰囲気中にて焼結し、マトリツクスの主たる
結晶相がβ−スポジユメンより成ることを特徴と
する繊維で強化された複合セラミツクスの製造法
を提供するものである。 以下、本発明につき詳細に解説する。 SiC繊維を10〜50重量%の含有範囲に限定した
理由は、10重量%以下では抗折強度が所期する
900Kg/cm2以上を確保することが出来ず、強化へ
の効果が少ないためであり、50重量%以上では添
加量のわりには強度が向上せず、またSiC繊維が
高価でコスト高となる。また成形性や焼結後の外
観が悪くなるためである。 また、押出成形法と射出成形法を採用した理由
は、プレス成形では繊維含有のため成形ギレが多
発し、鋳込み成形では寸法精度および生産性に劣
るためであり、グリーンシート積層法では目的形
状への成形が困難である。その点押出成形では単
純形状品の成形性や生産性が良好であり、射出成
形では複雑形状品の成形性や生産性に優れるため
である。 成形体の樹脂抜き後更にアイソスタテイツクプ
レスを採用した理由は、従来技術では焼結後の密
度を上げるためにホツトプレスを採用している
が、これは上記した如く単純形状品だけに適用出
来て複雑形状品には無理である。その点、押出や
射出成形後樹脂抜きして、更にアイソスタテイツ
クプレスによりグリーン密度を向上したのち、非
加圧焼結することにより、焼結後の密度を所望の
レベルに確保し、強度を向上させることができ
る。このアイソスタテイツクプレスは、複雑形状
品において特に好ましく適用出来る。 非酸化雰囲気中での焼成を行なう理由として従
来技術は真空中またはアルゴン等不活性ガス中で
ホツトプレスしている。大気雰囲気中ではSiC繊
維が酸化分解し、ガスを発生し表面層に多量の気
泡が出来、強度が低下する。発泡しない程度の焼
成温度では強度向上が望めない。N2雰囲気中が
最も良好であり、真空中やアルゴンまたはH2
よびこの混合雰囲気中でも可能である。 以上にて焼結したものは、マトリツクスの主た
る結晶相がβ−スポジユメンであるが、使用する
原料としては、Li2O・Al2O3・8SiO2の結晶組成
のペタライトが良好であり、その他にLi2O・
Al2O3・6SiO2の結晶組成のリチウム長石が使用
出来る。本願発明は、これらの結晶質原料粉末に
SiC繊維を含有させた素地を混練して用いるもの
である。 本発明の製造法で得られた複合セラミツクス
は、脆性が改善され抗折強度が910〜1940Kg/cm2
と大きく強化され、SiC繊維の無含有セラミツク
スは790Kg/cm2であつた。 本発明はデイーゼルエンジンのチヤンバーや一
般エンジンのポートライナー等の製造に利用する
ことが出来る。 以下、実施例につき具体的に述べる。 実施例 ペタライト粉末に日本カーボン製で商品名ニカ
ロンの径10〜20μm、長さ6mmのSiC繊維を0、
8、10、20、40、50、55重量%含有させる様調合
し、これら100重量部の各々に対してメチルセル
ローズを6重量%と水36重量%を添加して充分混
練後、押出成形機で径5mmφを押出し乾燥後、長
さ50mmに切断し、500℃中にて樹脂抜き後、ゴム
チユーブに入れ密閉して1500Kg/cm2でアイソスタ
テイツクプレスを行つた。これをN2雰囲気下の
1280℃中1時間加熱して焼結した。 これらの試料を三点曲げ試験機にて抗折強度を
測定し、また相対密度を繊維の密度2.55、マトリ
ツクスの密度2.365としてマトリツクス部のみの
算出を行い下表に示した。 また、粉末X線回折による同定の結果、主結晶
相はβスポジユメンとβ−SiCであつた。
The present invention relates to a method for producing fiber-reinforced composite ceramics in which ceramic is reinforced with SiC fibers to improve strength and brittleness. Conventionally, a green sheet was formed from a mixed slurry of raw material glass powder and SiC fibers, and the sheets were laminated and bonded, then fired in a hot press and reprocessed to crystallize the matrix.
There is a known technology based on SiC fibers. In addition, there is a method of forming a preform body from SiC fibers and impregnating it with SiC slurry and molding it, or casting the slurry, extrusion molding of the kneaded material, and firing it by hot pressing or reaction sintering. There is a known technology of SiC-SiC fiber system. When using a hot press with any of the above-mentioned known techniques, it is unsuitable for producing products with multiple shapes;
In addition, the former technique requires a separate crystallization step of reprocessing after firing in hot pressing, which increases manufacturing costs. In addition, in the case of the latter reaction sintering, there is a problem that the heat resistance strength of the sintered body is low. The present invention solves the above problems and improves strength and brittleness through a highly productive method for manufacturing composite ceramics that does not require hot pressing or heat treatment for crystallization, and is applicable to the field of application. This is an expanded application of . The gist is that a base material containing 10 to 50% by weight of SiC fibers is kneaded with crystalline raw material powder such as petalite or lithium feldspar, molded by extrusion or injection molding, resin removed, and then isostatically pressed. The present invention is then sintered in a non-oxidizing atmosphere at 1250 to 1350 DEG C., and provides a method for producing fiber-reinforced composite ceramics characterized in that the main crystal phase of the matrix is composed of .beta.-spodium. The present invention will be explained in detail below. The reason for limiting the SiC fiber content to 10 to 50% by weight is that below 10% by weight, the bending strength is lower than expected.
This is because it is not possible to secure a content of 900 Kg/cm 2 or more, and the effect on reinforcement is small. If the content is more than 50% by weight, the strength will not improve despite the amount added, and the SiC fiber will be expensive. This is also because moldability and appearance after sintering deteriorate. In addition, the reason why we adopted extrusion molding and injection molding is that press molding often suffers from molding glitches due to the fiber content, and cast molding is inferior in dimensional accuracy and productivity, while green sheet lamination is not suitable for achieving the desired shape. It is difficult to mold. In this respect, extrusion molding has good moldability and productivity for products with simple shapes, while injection molding has excellent moldability and productivity for products with complex shapes. The reason why we adopted isostatic press after resin removal from the molded body is that in conventional technology, hot press is used to increase the density after sintering, but as mentioned above, this can only be applied to products with simple shapes. This is not possible for products with complex shapes. In this regard, by removing the resin after extrusion or injection molding, improving the green density by isostatic pressing, and then performing non-pressure sintering, we can ensure the density after sintering at the desired level and increase the strength. can be improved. This isostatic press can be particularly preferably applied to products with complex shapes. The reason for firing in a non-oxidizing atmosphere is that in the prior art, hot pressing is carried out in vacuum or in an inert gas such as argon. In the air, SiC fibers oxidize and decompose, producing gas and forming a large number of bubbles in the surface layer, reducing its strength. No improvement in strength can be expected at firing temperatures that do not cause foaming. N 2 atmosphere is best, vacuum and argon or H 2 and mixtures thereof are also possible. The main crystalline phase of the matrix of the sintered product above is β-spodumene, but petalite with a crystal composition of Li 2 O, Al 2 O 3 , 8SiO 2 is good as a raw material, and other to Li 2 O・
Lithium feldspar with a crystal composition of Al 2 O 3 6SiO 2 can be used. The present invention applies to these crystalline raw material powders.
It is used by kneading a base material containing SiC fibers. The composite ceramics obtained by the production method of the present invention have improved brittleness and a bending strength of 910 to 1940 Kg/cm 2
The strength of the SiC fiber-free ceramics was 790 kg/cm 2 . The present invention can be used to manufacture chambers for diesel engines, port liners for general engines, and the like. Examples will be described in detail below. Example: Petalite powder was coated with SiC fibers manufactured by Nippon Carbon under the trade name Nicalon with a diameter of 10 to 20 μm and a length of 6 mm.
8, 10, 20, 40, 50, and 55 parts by weight.To each of these 100 parts by weight, 6% by weight of methylcellulose and 36% by weight of water were added, and after thorough kneading, the extrusion molding machine was used. After drying and extruding a piece with a diameter of 5 mmφ, it was cut into pieces of 50 mm in length, and after the resin was removed at 500°C, it was placed in a rubber tube and sealed, followed by isostatic pressing at 1500 kg/cm 2 . This is done under N2 atmosphere.
It was sintered by heating at 1280°C for 1 hour. The bending strength of these samples was measured using a three-point bending tester, and the relative densities were calculated for the matrix portion only, with the fiber density of 2.55 and the matrix density of 2.365, as shown in the table below. Further, as a result of identification by powder X-ray diffraction, the main crystal phases were β-spodumene and β-SiC.

【表】 以上の特性調査の外に、射出成形機を用いて繊
維含有量20、50%のものにつきターボチヤジヤロ
ーターの成形と樹脂抜き後のアイソスタテイツク
プレスおよび焼結テストを行つたところ、外観に
ついては良好な結果を得ることが出来た。 本発明は上記の如く、単純形状品から複雑形状
品の作成に適し、かつ脆性の改善と強度向上によ
り、その適用を拡大したもので今後の利用への期
待は大きい。
[Table] In addition to the above characteristics investigation, turbocharger rotors were molded using an injection molding machine with fiber content of 20% and 50%, and isostatic pressing and sintering tests were conducted after resin removal. Good results were obtained regarding the appearance. As described above, the present invention is suitable for producing products with simple shapes to complex shapes, and its application has been expanded by improving brittleness and increasing strength, and there are high expectations for its future use.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶質原料粉末にSiC繊維を10〜50重量%含
有した素地を混練し、押出または射出成形法にて
成形後、樹脂抜きして、更にアイソスタテイツク
プレス後に、1250〜1350℃の非酸化雰囲気中にて
焼結し、マトリツクスの主たる結晶相がβ−スポ
ジユメンより成ることを特徴とする繊維で強化さ
れた複合セラミツクスの製造法。
1. A base material containing 10 to 50% by weight of SiC fibers is kneaded with crystalline raw material powder, molded by extrusion or injection molding, resin removed, and isostatically pressed to form a non-oxidized material at 1250 to 1350°C. A method for producing composite ceramics reinforced with fibers, characterized in that the main crystalline phase of the matrix is β-spodumene, which is sintered in an atmosphere.
JP59050365A 1984-03-15 1984-03-15 Fiber reinforced composite ceramics and manufacture Granted JPS60195064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59050365A JPS60195064A (en) 1984-03-15 1984-03-15 Fiber reinforced composite ceramics and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59050365A JPS60195064A (en) 1984-03-15 1984-03-15 Fiber reinforced composite ceramics and manufacture

Publications (2)

Publication Number Publication Date
JPS60195064A JPS60195064A (en) 1985-10-03
JPH0536384B2 true JPH0536384B2 (en) 1993-05-28

Family

ID=12856860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59050365A Granted JPS60195064A (en) 1984-03-15 1984-03-15 Fiber reinforced composite ceramics and manufacture

Country Status (1)

Country Link
JP (1) JPS60195064A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769346A (en) * 1986-10-24 1988-09-06 Corning Glass Works Whisker composite ceramics for metal extrusion or the like
JPH11240749A (en) * 1998-02-27 1999-09-07 Taiheiyo Cement Corp Ceramic reinforced with fiber and its production
JP4540239B2 (en) * 2001-01-31 2010-09-08 京セラ株式会社 Aluminosilicate sintered body and stress relieving member using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520259A (en) * 1978-07-28 1980-02-13 Ngk Spark Plug Co Production of high density sintered body
JPS56109186A (en) * 1980-02-04 1981-08-29 Mitsubishi Heavy Ind Ltd Monitoring method for shielding gas for welding
JPS56169186A (en) * 1980-02-13 1981-12-25 United Technologies Corp Silicon carbide fiber reinforced ceramic composite material
JPS57160974A (en) * 1981-03-10 1982-10-04 Asea Ab Manufacture of ceramic products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520259A (en) * 1978-07-28 1980-02-13 Ngk Spark Plug Co Production of high density sintered body
JPS56109186A (en) * 1980-02-04 1981-08-29 Mitsubishi Heavy Ind Ltd Monitoring method for shielding gas for welding
JPS56169186A (en) * 1980-02-13 1981-12-25 United Technologies Corp Silicon carbide fiber reinforced ceramic composite material
JPS57160974A (en) * 1981-03-10 1982-10-04 Asea Ab Manufacture of ceramic products

Also Published As

Publication number Publication date
JPS60195064A (en) 1985-10-03

Similar Documents

Publication Publication Date Title
US4507224A (en) Ceramics containing fibers of silicon carbide
CN108947537B (en) SiC ceramic structural part and preparation method thereof
US5110652A (en) Shaped fiber-reinforced ceramic composite article
US4156051A (en) Composite ceramic articles
US4795673A (en) Composite material of discontinuous silicon carbide particles and continuous silicon matrix and method of producing same
EP0045134B1 (en) A composite material of silicon carbide and silicon and method of producing the material
CN1041178C (en) Method of preparing a durable air-permeable mold
JPS6219396B2 (en)
JP2535768B2 (en) High heat resistant composite material
JPH0536384B2 (en)
EP3476820A1 (en) Ceramic composite and production method for ceramic composite
US4172107A (en) Method of manufacturing composite ceramic articles
JPS59102861A (en) Silicon carbide composite oxide sintered ceramics
JP3094148B2 (en) Manufacturing method of lightweight refractory
EP0331460B1 (en) Fiber-reinforced ceramic green body
EP0513243B1 (en) Improved method of making large cross section injection molded or slip cast ceramic shapes
JPH0157075B2 (en)
JPS61291460A (en) Manufacture of fiber reinforced silicon carbide ceramic
JPH01148768A (en) Method for manufacturing molded fire-proof article of carbon-bonded and molded article manufactured by this method
JPH06340475A (en) Fiber reinforced ceramic composite material and its production
JPH06199578A (en) Ceramic-base composite material, its production and ceramic fiber for composite material
EP0351113A2 (en) Fiber-reinforced and particle-dispersion reinforced mullite composite material and method of producing the same
JPH06287070A (en) Composite reinforced ceramics
US4940843A (en) Method of producing non-oxide ceramic sintered bodies
JPS5851911B2 (en) Method for manufacturing fiber-reinforced silicon nitride sintered body