JPH0536251B2 - - Google Patents

Info

Publication number
JPH0536251B2
JPH0536251B2 JP1745586A JP1745586A JPH0536251B2 JP H0536251 B2 JPH0536251 B2 JP H0536251B2 JP 1745586 A JP1745586 A JP 1745586A JP 1745586 A JP1745586 A JP 1745586A JP H0536251 B2 JPH0536251 B2 JP H0536251B2
Authority
JP
Japan
Prior art keywords
differential
wheels
speed
wheel
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1745586A
Other languages
Japanese (ja)
Other versions
JPS62175222A (en
Inventor
Shuji Torii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1745586A priority Critical patent/JPS62175222A/en
Publication of JPS62175222A publication Critical patent/JPS62175222A/en
Publication of JPH0536251B2 publication Critical patent/JPH0536251B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車輌の差動制御装置、詳しくは車両旋
回時に内外輪または前後輪に回転差をつける差動
作用やその差動を制限する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a differential control device for a vehicle, specifically a device for differential operation that creates a rotation difference between inner and outer wheels or front and rear wheels when a vehicle turns, and a device that limits the differential. Regarding.

(従来の技術) 一般に、車両にあつては円滑な旋回運動を行わ
せるため、左右あるいは前後の駆動車輪の間にエ
ンジン動力を差動を許容して伝達する差動装置が
設けられる。
(Prior Art) In general, a vehicle is provided with a differential device that transmits engine power between the left and right or front and rear drive wheels while allowing differential movement in order to perform smooth turning motion.

しかし、片側の車輪がぬかるみ等にはまり、空
転したときはその差動作用を制限して他車輪にさ
らに強いトルクを伝達して脱出を容易にするた
め、差動作用を制限することも必要となる。
However, when a wheel on one side gets stuck in the mud and spins, it is necessary to limit the differential operation in order to transmit stronger torque to the other wheels and make it easier to escape. Become.

従来のこの種の車輌の差動制御装置としては、
例えば特開昭58−133920号公報に記載のものや本
出願人が先に提案した特願昭60−162267号(特開
昭62−20724号)記載のものがある。
Conventional differential control devices for this type of vehicle include:
For example, there are those described in JP-A-58-133920 and the one described in Japanese Patent Application No. 60-162267 (JP-A-62-20724), which was previously proposed by the present applicant.

前者の装置では、リヤデイフアレンシヤルにお
けるロツク装置のON−OFFを左右駆動輪の回転
速度差に応じて行つている。
In the former device, the locking device in the rear differential is turned on and off according to the difference in rotational speed between the left and right drive wheels.

一方、後者の装置では、前後輪の回転速度差ま
たは/および前後輪の加速度差に応じてリヤデフ
アレンシヤルにおける差動制限量を制御してい
る。
On the other hand, the latter device controls the differential limiting amount in the rear differential according to the rotational speed difference between the front and rear wheels and/or the acceleration difference between the front and rear wheels.

(発明が解決しようとする問題点) 前者の装置は、駆動輪の左右回転速度差が所定
値よりも大きいときに、駆動輪の差動制限を行つ
て低摩擦係数路(以下、低μ路)における片スリ
ツプ(空転)を回避しようとするものであるが、
高速直進走行時の駆動輪の左右回転速度差は、低
μ路の場合よりもはるかに小さいため、高速直進
走行時における駆動スリツプの状態を検出できな
いものである。したがつて、このものは、低μ
路におけるスタツク防止(駆動輪の片輪スリツプ
防止)に適用できるが、高速直進走行の安定性
向上を意図して行われる差動制限制御には適用で
きない。
(Problem to be Solved by the Invention) The former device restricts the differential of the drive wheels when the difference in left and right rotational speeds of the drive wheels is greater than a predetermined value, thereby creating a low friction coefficient road (hereinafter referred to as a low μ road). ), the aim is to avoid one-sided slips (idling).
Since the difference in rotational speed between the left and right drive wheels during high-speed straight running is much smaller than when driving on a low μ road, it is impossible to detect the state of drive slip during high-speed straight running. Therefore, this one has a low μ
Although it can be applied to prevent stuckness on roads (preventing one-wheel slip of the drive wheels), it cannot be applied to differential limiting control that is performed with the intention of improving the stability of high-speed straight running.

一方、後者の装置は、左右の駆動輪の平均回転
速度と左右の従動輪の平均回転速度の差ΔNを求
め、この差ΔNに基づいて差動制限量を制御する
ものであり、このものは、低μ路における片輪ス
リツプ量と、高速直進走行時における駆動スリツ
プ量とを共に差ΔNに含ませることができ、上記
ととの両立を図ることができるものである
が、差ΔNは、左右駆動輪及び左右従動輪の回転
速度を単純に平均化処理したものであるから、差
ΔNに含まれる片輪スリツプ及び駆動スリツプの
情報量が少なく、したがつて、スリツプ検出の感
度が低く、充分な制御精度と高い応答性を得られ
ないといつた欠点があり、改善すべき余地があつ
た。
On the other hand, the latter device calculates the difference ΔN between the average rotational speed of the left and right driving wheels and the average rotational speed of the left and right driven wheels, and controls the differential limiting amount based on this difference ΔN. The difference ΔN can include both the amount of one-wheel slip on a low μ road and the amount of drive slip when traveling straight at high speed, and it is possible to achieve both of the above, but the difference ΔN is Since the rotational speeds of the left and right driving wheels and the left and right driven wheels are simply averaged, the amount of information about one-wheel slip and drive slip included in the difference ΔN is small, and therefore the sensitivity of slip detection is low. The drawback was that sufficient control accuracy and high responsiveness could not be obtained, and there was room for improvement.

(発明の目的) そこで本発明の目的は、低μ路におけるスタツ
ク防止(駆動輪の片輪スリツプ防止)を意図して
行われる差動制限制御と、高速直進走行の安定性
向上を意図して行われる差動制限制御との両立を
図ること、及び、これら双方の制御精度と応答性
の向上を図ることにある。
(Object of the Invention) Therefore, the object of the present invention is to provide differential limiting control that is performed with the intention of preventing stuckness (preventing one-wheel slippage of the driving wheels) on low μ roads, and with the intention of improving the stability of high-speed straight running. The objective is to achieve compatibility with the differential limiting control that is performed, and to improve the accuracy and responsiveness of both of these controls.

(問題点を解決するための手段) 第1図は、本発明による車輌の差動制御装置の
基本概念図であり、aは機関動力を駆動輪に左右
間の差動を許容して分配するとともに差動の制限
が指令されると目標差動抵抗力を発生して差動量
を制限する動力分配手段、bは駆動輪の回転速度
を検出する第1速度検出手段、cは従動輪の回転
速度を検出する第2速度検出手段、dは従動輪に
おける左右の回転速度の平均値と駆動輪における
左右の回転速度のうち高い方の値とに基づいて駆
動輪と従動輪の回転速度差を演算する速度差演算
手段、eは回転速度差に応じて左右駆動輪間の目
標差動抵抗力を設定する目標値設定手段、fは前
記動力分配手段に目標差動抵抗力を発生させるよ
うに差動の制限を指令する指令手段である。
(Means for Solving the Problems) Fig. 1 is a basic conceptual diagram of a vehicle differential control device according to the present invention, in which a shows a distribution of engine power to the drive wheels by allowing a differential between the left and right wheels. and power distributing means which generates a target differential resistance force and limits the amount of differential when differential restriction is commanded, b is a first speed detection means which detects the rotational speed of the driving wheels, and c is a first speed detection means of the driven wheels. A second speed detection means for detecting the rotational speed, and d is the rotational speed difference between the driving wheel and the driven wheel based on the average value of the left and right rotational speeds of the driven wheel and the higher value of the left and right rotational speeds of the driving wheel. e is a target value setting means for setting a target differential resistance force between the left and right drive wheels according to the rotational speed difference, and f is a means for causing the power distribution means to generate a target differential resistance force. This is a command means for commanding the restriction of the differential.

(作用) 低μ路における片輪スリツプは、左右駆動輪の
回転速度の不揃いとなつて現れ、且つ、そのスリ
ツプの程度は、左右駆動輪の回転速度のうちの高
い方の値で感度よく示される。したがつて、上記
に適用して高応答かつ高精度な差動制限制御を
行うことができる。
(Function) Single-wheel slip on a low-μ road appears as uneven rotation speeds of the left and right drive wheels, and the degree of slip is sensitively indicated by the higher value of the rotation speeds of the left and right drive wheels. It will be done. Therefore, by applying the above, highly responsive and highly accurate differential limiting control can be performed.

また、高速直進走行中の駆動スリツプ量と車速
との間には比例関係が成立し、車速は従動輪の平
均回転速度で正確に表すことができるから、上記
要旨の構成を具備することにより、上記に適用
しても高応答かつ高精度な差動制限制御を行うこ
とができる。
Furthermore, there is a proportional relationship between the amount of drive slip and the vehicle speed during high-speed straight running, and the vehicle speed can be accurately expressed by the average rotational speed of the driven wheels. Even when applied to the above, highly responsive and highly accurate differential limiting control can be performed.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜5図は本発明の一実施例を示す図であ
る。まず、構成を説明する。第2図において、1
は図示しない変速機と駆動輪である左右の後輪と
の間の動力伝達系に介装された終減速装置(動力
分配手段)であり、終減速装置1は変速機を介し
伝達されるエンジンの動力を左右の後輪へ差動を
許容して分配する差動機構2と、差動機構2にお
ける差動を制限する差動制限手段3と、を包含す
る。
2 to 5 are diagrams showing an embodiment of the present invention. First, the configuration will be explained. In Figure 2, 1
1 is a final reduction gear (power distribution means) installed in the power transmission system between a transmission (not shown) and the left and right rear wheels that are drive wheels, and the final reduction gear 1 is an engine that is transmitted through the transmission. The differential mechanism 2 includes a differential mechanism 2 that distributes power to the left and right rear wheels while allowing differential movement, and a differential limiting means 3 that limits the differential movement in the differential mechanism 2.

差動機構2は変速機からの動力をギアハウジン
グ4に回転自在に支持された入力軸5で受け、こ
れをドリブンギア6を介してデイフアレンシヤル
ケース7に伝達するとともに、デイファレンシヤ
ルケース7の回転中心軸と略直交する方向に設け
られたピニオンメートシヤフト8を回転させサイ
ドギア9を介してそれぞれ駆動軸10L,10R
を駆動する。駆動軸10L,10Rは左右の後輪
の連結され、エンジン動力を受けて後輪を回転さ
せる。
The differential mechanism 2 receives power from the transmission with an input shaft 5 rotatably supported by a gear housing 4, and transmits the power to a differential case 7 via a driven gear 6. Drive shafts 10L and 10R are rotated through side gears 9 by rotating pinion mate shafts 8 provided in a direction substantially perpendicular to the rotational center axis of 7.
to drive. The drive shafts 10L and 10R are connected to the left and right rear wheels, and receive engine power to rotate the rear wheels.

一方、差動制限手段3はピニオンメートシヤフ
ト8の図中左右の配置されたデイフアレンシヤル
ケース7とサイドギア9との間に介装された多板
クラツチ11を有しており、多板クラツチ11は
外部から供給される油圧に応じて移動する油圧ピ
ストン12の押圧力により締結してデイフアレン
シヤルケース7にサイドギア9を結合し差動を制
限する。差動制限量は油圧ピストン12に供給さ
れる油圧Paの大きさにより決定され、この油圧
Paは油圧源13からの油圧を電磁比例減圧弁1
4で調圧し、油圧通路15を通じて供給される。
これらの油圧源13、電磁比例減圧弁14および
油圧通路15は指令手段16、を構成する。
On the other hand, the differential limiting means 3 has a multi-plate clutch 11 interposed between a differential case 7 and a side gear 9 arranged on the left and right sides of the pinion mate shaft 8 in the figure. 11 is fastened by the pressing force of a hydraulic piston 12 that moves in response to hydraulic pressure supplied from the outside, and connects the side gear 9 to the differential case 7 to limit differential movement. The differential limit amount is determined by the magnitude of the hydraulic pressure Pa supplied to the hydraulic piston 12, and this hydraulic pressure
Pa is the hydraulic pressure from the hydraulic source 13, which is the electromagnetic proportional pressure reducing valve 1.
4 and is supplied through the hydraulic passage 15.
These hydraulic power source 13, electromagnetic proportional pressure reducing valve 14, and hydraulic passage 15 constitute command means 16.

電磁比例減圧弁14はコントローラ20から出
力される指令電流iの大きさに基づいて油圧ピス
トン12に供給する油圧Paを調圧しており、コ
ントローラ20は前後輪の回転速度差に応じて上
記指令電流iを出力する。
The electromagnetic proportional pressure reducing valve 14 regulates the hydraulic pressure Pa supplied to the hydraulic piston 12 based on the magnitude of the command current i output from the controller 20, and the controller 20 adjusts the command current according to the rotational speed difference between the front and rear wheels. Output i.

本発明では、この回転速度差の算出方法に発明
のポイントがあり、これを第3図のブロツク図を
用いて詳細に説明する。
The key point of the present invention lies in the method of calculating this rotational speed difference, and this will be explained in detail using the block diagram of FIG.

コントローラ20は速度差演算手段および目標
値設定手段としての機能を有し、第3図に示すよ
うにF/Vコンバータ21〜24、平均値演算回
路25、ハイセレクト回路26、差値演算回路2
7、関数発生回路28および電流発生回路29に
より構成される。
The controller 20 has functions as a speed difference calculation means and a target value setting means, and as shown in FIG.
7. Consists of a function generation circuit 28 and a current generation circuit 29.

F/Vコンバータ21,22にはそれぞれ従動
輪である前輪における左右の回転速度を検出して
いる速度センサ31,32からの信号が入力さ
れ、F/Vコンバータ23,24にはそれぞれ駆
動輪である後輪における左右の回転速度を検出し
ている速度センサ33,34からの信号が入力さ
れる。
The F/V converters 21 and 22 receive signals from speed sensors 31 and 32 that detect the left and right rotational speeds of the front wheels, which are driven wheels, respectively, and the F/V converters 23 and 24 receive signals from the left and right rotational speeds of the front wheels, which are driven wheels. Signals from speed sensors 33 and 34 that detect the left and right rotational speeds of a certain rear wheel are input.

1例として前輪における左の回転速度N1を検
出している速度センサ31に着目すると、この速
度センサ31は前輪に取り付けられた速度検出歯
車31aと、速度検出歯車31aに対向して配設
され歯車の回転に伴つて磁気作用で回転速度V1
に応じた周波数f1を有する起電力を発生する電磁
ピツクアツプ31bとにより構成される。
As an example, focusing on the speed sensor 31 that detects the left rotation speed N 1 of the front wheel, this speed sensor 31 is arranged opposite to the speed detection gear 31a attached to the front wheel and the speed detection gear 31a. Rotation speed V 1 due to magnetic action as the gear rotates
and an electromagnetic pickup 31b that generates an electromotive force having a frequency f1 corresponding to the frequency f1.

F/Vコンバータ21〜24は各速度センサ3
1〜34からの周波数信号f1〜f4をそれぞれ電圧
信号V1〜V4に変換し、前輪相当分については平
均値演算回路25に出力し、後輪相当分について
はハイセレクト回路26に出力する。平均値演算
回路25は信号V1、V2の平均値(VfMを演算し
て差値演算回路27に出力し、ハイセレクト回路
26は信号V3,V4のうち高い電圧値を有する信
号をセレクトし(VrHとして差値演算回路27
に出力する。差値演算回路27は差値ΔVを次式
に従つて演算し、関数発生回路28に出力す
る。
F/V converters 21 to 24 are each speed sensor 3
Frequency signals f 1 to f 4 from 1 to 34 are converted to voltage signals V 1 to V 4 , respectively, and those corresponding to the front wheels are outputted to the average value calculation circuit 25, and those corresponding to the rear wheels are outputted to the high select circuit 26. Output. The average value calculation circuit 25 calculates the average value (V f ) M of the signals V 1 and V 2 and outputs it to the difference value calculation circuit 27, and the high select circuit 26 selects the higher voltage value of the signals V 3 and V 4 . The difference value calculation circuit 27 selects the signal with (V r ) H .
Output to. The difference value calculation circuit 27 calculates the difference value ΔV according to the following equation and outputs it to the function generation circuit 28.

ΔV=(VrH−(VfM …… 関数発生回路28は差値ΔVに対して第4図に
示すような特性を有する電流指令値i*を電流発
生回路29に出力し、電流発生回路29は電流指
令値i*に基づいて実電流としての指令電流iを
電磁比例減圧弁14に出力する。電磁比例減圧弁
14は指令電流iが入力されると、ソレノイド1
4aを励磁し第5図に示すような特性を有する油
圧Paを発生させて終減速装置1の油圧ピストン
12に供給する。なお、35はリザーバタンクで
ある。
ΔV=(V r ) H − (V f ) M ...The function generating circuit 28 outputs a current command value i* having characteristics as shown in FIG. 4 for the difference value ΔV to the current generating circuit 29, The current generating circuit 29 outputs a command current i as an actual current to the electromagnetic proportional pressure reducing valve 14 based on the current command value i*. When the command current i is input to the electromagnetic proportional pressure reducing valve 14, the solenoid 1
4a is excited to generate a hydraulic pressure Pa having characteristics as shown in FIG. Note that 35 is a reservoir tank.

次に作用を説明する。 Next, the action will be explained.

いま、車両が高μ路を高速走行しているとき、
駆動輪である後輪の一方が微かな駆動スリツプを
発生した場合、速度センサ33,34により後輪
の回転速度が検出されるとともに、ハイセレクト
回路26によりこれらのうち高い方の値がセレクト
され差値演算回路27により前輪平均値との差値
ΔVが演算される。
Now, when a vehicle is traveling at high speed on a high μ road,
When one of the rear wheels, which is the driving wheel, generates a slight drive slip, the speed sensors 33 and 34 detect the rotational speed of the rear wheel, and the high select circuit 26 selects the higher value of these. A difference value calculation circuit 27 calculates a difference value ΔV from the front wheel average value.

すなわち、スリツプした一方の後輪の方が高い
回転速度になるという状況のもと、これを入力情
報とすることで、従来に比して精度よく後輪の片
側スリツプが検出される。このとき、差値ΔVの
大きさに応じて、換言すればスリツプの程度に対
応して指令電流iの大きさが設定され油圧Paが
終減速装置1に供給される。したがつて、スリツ
プの状況に応じて終減速装置1の差動が制限され
ることとなり、後輪の空転が防止され安定した走
行を行うことができる。
That is, in a situation where one of the rear wheels that has slipped has a higher rotational speed, by using this as input information, unilateral slip of the rear wheel can be detected with higher accuracy than in the past. At this time, the magnitude of the command current i is set according to the magnitude of the difference value ΔV, in other words, the magnitude of the slip, and the hydraulic pressure Pa is supplied to the final reduction gear device 1. Therefore, the differential of the final reduction gear 1 is limited depending on the slip situation, and the rear wheels are prevented from spinning, allowing stable running.

一方、上述のような片輪スリツプという状態は
高μ路においても精度よく検出され、これにより
差動制限作用を応答性良く行うことができる。ま
た、このような効果は従来の問題点として指摘し
た他のセンサ情報で補完するという方法を採る必
要のないことを意味する。
On the other hand, the above-mentioned one-wheel slip condition can be detected accurately even on a high μ road, so that the differential limiting action can be performed with good responsiveness. Moreover, such an effect means that there is no need to supplement the information with other sensor information, which has been pointed out as a problem in the conventional method.

なお、終減速装置1の差動制御量は差値ΔVが
正のときはその値に応じて、また負のときはゼロ
となる(第4図参照)。負のときゼロとするので
はなく、適度な最小値とするようにしてもよい。
It should be noted that the differential control amount of the final reduction gear 1 depends on the difference value ΔV when it is positive, and becomes zero when it is negative (see FIG. 4). Instead of setting it to zero when it is negative, it may be set to an appropriate minimum value.

また、本発明は第2図に示す機構の動力分配手
段への適用に限定されることはなく、差動とその
制限を行うものにあつては他の構造のものについ
てもすべてに適用が可能である。例えば、差動制
御を油圧でなく、電磁的にあるいは機械的に行う
ものであつてもよい。
Furthermore, the present invention is not limited to the application of the mechanism shown in Fig. 2 to the power distribution means, but can be applied to all other structures as far as differentials and their limitations are concerned. It is. For example, the differential control may be performed electromagnetically or mechanically instead of hydraulically.

さらに、4輪駆動を行うもの(例えば、4WD
のセンターデフロツククラツチ等)にあつても適
用できるのは勿論である。
Furthermore, those with four-wheel drive (e.g. 4WD
Of course, it can also be applied to center differential clutches, etc.).

この場合には、前後輪すべてが駆動輪となる
為、車輪のスリツプ状態を検出する為の車輪速度
差演算手段では、後輪の片輪スリツプを検出する
為の演算と、前輪の片輪スリツプを検出する為の
演算とが同時に行われる。
In this case, since both the front and rear wheels become driving wheels, the wheel speed difference calculation means for detecting the slip state of the wheels has two functions: one to detect one-wheel slip in the rear wheel, one to detect one-wheel slip in the front wheel. Calculation for detecting is performed at the same time.

つまり、前輪における左右の回転速度の平均値
と後輪における左右の回転速度のうち高い方の値
を比較する事により後輪のスリツプ状態を検出可
能とすると共に、後輪における左右の回転速度の
平均値と前輪における左右の回転速度の回転速度
のうち高い方の値を比較する事により前輪のスリ
ツプ状態を検出可能とする。以上の演算により前
後輪の内、いずれかの車輪がスリツプしている事
を検出した場合には、差動制限装置であるセンタ
ーデフをロツクすれば良い。
In other words, by comparing the average value of the left and right rotational speeds of the front wheels with the higher value of the left and right rotational speeds of the rear wheels, it is possible to detect the slip condition of the rear wheels, and also to detect the left and right rotational speeds of the rear wheels. The slip state of the front wheels can be detected by comparing the average value with the higher value of the left and right rotational speeds of the front wheels. If it is detected through the above calculation that one of the front and rear wheels is slipping, the center differential, which is a differential limiting device, may be locked.

なお、本発明は上記実施例のようなワイヤード
ロジツク回路に限らず、例えば特定のソフトウエ
アで実現することも可能である。
Note that the present invention is not limited to the wire logic circuit as in the above embodiment, but can also be implemented using, for example, specific software.

(効果) 本発明によれば、従動輪における左右の回転速
度の平均値と、駆動輪における左右の回転速度の
うち高い方の値とに基づいて、駆動輪と従動輪の
回転速度差を演算し、この回転速度差に応じて差
動量を制御するようにしたので、低μ路における
スタツク防止(駆動輪の片輪スリツプ防止)を意
図して行われる差動制限制御と、高速直進走行の
安定性向上を意図して行われる差動制限制御との
両立を図ることができるとともに、これら双方の
制御精度と応答性の向上を図ることができ、車輌
の走行性能を向上させることができる。
(Effect) According to the present invention, the rotational speed difference between the driving wheel and the driven wheel is calculated based on the average value of the left and right rotational speeds of the driven wheel and the higher value of the left and right rotational speeds of the driving wheel. However, since the differential amount is controlled according to this rotational speed difference, differential limiting control is performed with the intention of preventing stuckness on low μ roads (preventing one-wheel slippage of the drive wheel) and high-speed straight-ahead driving. It is possible to achieve compatibility with differential limiting control, which is performed with the intention of improving stability, and improve the control accuracy and responsiveness of both, thereby improving the vehicle's driving performance. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念図、第2〜5図は本
発明の一実施例を示す図であり、第2図はその全
体構成図、第3図はその要部ブロツク構成図、第
4図はその差値と電流指令値との関係を示す図、
第5図はその指令電流と油圧との関係を示す図で
ある。 1……終減速装置(動力分配手段)、16……
指令手段、20……コントローラ(速度差演算手
段、目標値設定手段)、31〜32……速度セン
サ(速度検出手段)。
Fig. 1 is a basic conceptual diagram of the present invention, Figs. 2 to 5 are diagrams showing an embodiment of the present invention, Fig. 2 is an overall configuration diagram thereof, Fig. 3 is a block diagram of its main parts, and Fig. 3 is a diagram showing an embodiment of the present invention. Figure 4 shows the relationship between the difference value and the current command value.
FIG. 5 is a diagram showing the relationship between the command current and oil pressure. 1... Final reduction gear (power distribution means), 16...
Command means, 20...controller (speed difference calculation means, target value setting means), 31-32...speed sensor (speed detection means).

Claims (1)

【特許請求の範囲】[Claims] 1 駆動輪と、従動輪と、機関動力を前記駆動輪
に左右間の差動を許容して分配するとともに差動
の制限が指令されると目標差動抵抗力を発生して
差動量を制限する動力分配手段と、前記駆動輪の
回転速度を検出する第1速度検出手段と、前記従
動輪の回転速度を検出する第2速度検出手段と、
前記従動輪における左右の回転速度の平均値と前
記駆動輪における左右の回転速度のうち高い方の
値とに基づいて駆動輪と従動輪の回転速度差を演
算する速度差演算手段と、前記回転速度差に応じ
て左右駆動輪間の目標差動抵抗力を設定する目標
値設定手段と、前記動力分配手段に目標差動抵抗
力を発生させるように差動の制限を指令する指令
手段と、を備えたことを特徴とする車輌の差動制
御装置。
1 Distributes the engine power to the drive wheels, driven wheels, and the drive wheels while allowing the differential between the left and right wheels, and when a command to limit the differential is issued, generates a target differential resistance force to increase the differential amount. a power distribution means for limiting, a first speed detection means for detecting the rotational speed of the driving wheel, and a second speed detection means for detecting the rotational speed of the driven wheel;
speed difference calculation means for calculating a rotational speed difference between a driving wheel and a driven wheel based on an average value of left and right rotational speeds of the driven wheel and a higher value of the left and right rotational speeds of the driving wheel; a target value setting means for setting a target differential resistance force between the left and right drive wheels according to the speed difference; a command means for instructing the power distribution means to limit the differential so as to generate a target differential resistance force; A vehicle differential control device characterized by comprising:
JP1745586A 1986-01-28 1986-01-28 Differential controller for vehicle Granted JPS62175222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1745586A JPS62175222A (en) 1986-01-28 1986-01-28 Differential controller for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1745586A JPS62175222A (en) 1986-01-28 1986-01-28 Differential controller for vehicle

Publications (2)

Publication Number Publication Date
JPS62175222A JPS62175222A (en) 1987-07-31
JPH0536251B2 true JPH0536251B2 (en) 1993-05-28

Family

ID=11944496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1745586A Granted JPS62175222A (en) 1986-01-28 1986-01-28 Differential controller for vehicle

Country Status (1)

Country Link
JP (1) JPS62175222A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2622865B2 (en) * 1988-09-29 1997-06-25 日野自動車工業株式会社 Limited slip differential
JPH0292737A (en) * 1988-09-29 1990-04-03 Hino Motors Ltd Limited slip differential
DE3837862C2 (en) * 1988-11-08 1993-09-30 Gkn Automotive Ag Device for controlling limited slip differentials
JP3355767B2 (en) * 1994-03-14 2002-12-09 日産自動車株式会社 Differential limit torque control device

Also Published As

Publication number Publication date
JPS62175222A (en) 1987-07-31

Similar Documents

Publication Publication Date Title
US4846298A (en) Driving force distribution control system for 4WD vehicle
JPH0635261B2 (en) Drive force distribution controller for four-wheel drive vehicle
EP1104715B1 (en) Drive-force distribution controller for a four-wheel-drive vehicle
JPH0790715B2 (en) Differential limiting force controller
JP3004283B2 (en) Unequal torque distribution control device for four-wheel drive vehicle
EP2591932A1 (en) Device for controlling torque distribution to left and right wheels on a vehicle
JPH0133365B2 (en)
JPH0536251B2 (en)
JPH0729554B2 (en) Drive force distribution controller for four-wheel drive vehicle
JP2552327B2 (en) Four-wheel steering control system for vehicles with limited slip differential
JP2894396B2 (en) Vehicles with power steering system linked to driving force distribution
JPH0635259B2 (en) Vehicle drive system clutch control device
JPS62143720A (en) Driving force distribution control device for 4-wheel drive car
JP2534723B2 (en) Drive force distribution controller for four-wheel drive vehicle
JP2682173B2 (en) Differential control device for four-wheel drive vehicle
JPS58178040A (en) Diff lock apparatus
JPH031300Y2 (en)
JP2507621B2 (en) Vehicular differential limiting controller
JP2004351945A (en) Differential control device
JP2679302B2 (en) Vehicle differential limiting control device
JP2507468B2 (en) Drive force distribution controller for four-wheel drive vehicle
JP2679070B2 (en) Vehicle differential limiting control device
JP2534729B2 (en) 4-wheel steering / Differential limiting force integrated control device
JPH0825399B2 (en) Vehicle drive system clutch control device
JPS62279134A (en) Four-wheel drive vehicle