JPH0535713A - Analyzing method for temperature distribution of conductive material due to conduction heating - Google Patents

Analyzing method for temperature distribution of conductive material due to conduction heating

Info

Publication number
JPH0535713A
JPH0535713A JP20863091A JP20863091A JPH0535713A JP H0535713 A JPH0535713 A JP H0535713A JP 20863091 A JP20863091 A JP 20863091A JP 20863091 A JP20863091 A JP 20863091A JP H0535713 A JPH0535713 A JP H0535713A
Authority
JP
Japan
Prior art keywords
temperature
conductive material
field analysis
analysis
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20863091A
Other languages
Japanese (ja)
Other versions
JP2513542B2 (en
Inventor
Kenji Umetsu
健司 梅津
Koji Ueyama
高次 植山
Hiroo Kaneko
博夫 金子
Yoshio Hirano
芳生 平野
Keiji Iwata
圭司 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20863091A priority Critical patent/JP2513542B2/en
Publication of JPH0535713A publication Critical patent/JPH0535713A/en
Application granted granted Critical
Publication of JP2513542B2 publication Critical patent/JP2513542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To attain the accurate and efficient analysis of the temperature distribution of a conductive material due to inductive heating by considering the temperature change of the electromagnetic physical property value of an analyzing subject. CONSTITUTION:The temperature characteristic curve data on the electromagnetic/thermal physical property value of the steel stock are inputted to a computer together with the initial temperature of the steel stock. Then the time interval of the transient temperature field analysis is inputted together with the start conditions of the metastable electromagnetic field analysis and the end time of the transient temperature field analysis. Then the conductivity and the permeability are obtained from the initial temperature of the steel stock, and the metastable electromagnetic field analysis is carried out. Thus the Joule heat is calculated. Then the heat conductivity is obtained together with the heat capacity per unit accumulation and the heat transmittance. The transient temperature field analysis is repeated based on the obtained heat conductivity/transmittance and the Joule heat while the heat capacity and the heat transmittance are updated. Then the new conductivity and permeability of the steel stock are obtained based on the relevant temperature. Based on these coductivity and permeability, the metastable electromagnetic field analysis is carried out again and the Joule heat is calculated again for repetition of the transient temperature field analysis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、計算機を用い、誘導加
熱装置による誘導電磁場の解析を行って、被加熱体であ
る導電材の温度分布を解析する方法に関し、例えば、熱
延プロセス等における電磁誘導加熱による導電材の温度
分布を解析する場合に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing a temperature distribution of a conductive material, which is an object to be heated, by analyzing an induction electromagnetic field by an induction heating device using a computer, for example, in a hot rolling process. It is suitable for application when analyzing the temperature distribution of a conductive material due to electromagnetic induction heating.

【0002】[0002]

【従来の技術】まず、過渡及び準定常な誘導電磁場の数
値解析方法について述べる。
2. Description of the Related Art First, a method of numerically analyzing transient and quasi-stationary induction electromagnetic fields will be described.

【0003】過渡的な誘導電磁場の数値解析方法は、例
えば、中田高義、高橋則雄共著「電気工学における有限
要素法」森北出版、第211頁に、また、準定常な場合
の誘導電磁場の数値解析方法については、"IEEE Transa
ctions on Magnetics" Vol.25, No.5, p.4153 (1989)に
夫々詳述されている。
Numerical analysis method of transient induction electromagnetic field is described, for example, in Takayoshi Nakata and Norio Takahashi "Finite Element Method in Electrical Engineering", Morikita Publishing, p. 211, and numerical analysis of induction electromagnetic field in quasi-stationary case. For information on how to do "IEEE Transa
ctions on Magnetics "Vol.25, No.5, p.4153 (1989), respectively.

【0004】誘導電磁場の基礎方程式として、以下の一
連の式、或いは、これらを別の変数で変換した等価な式
が用いられる。
As the basic equation of the induction electromagnetic field, the following series of equations or equivalent equations obtained by converting these with other variables are used.

【0005】[0005]

【数1】 [Equation 1]

【0006】[0006]

【数2】 [Equation 2]

【0007】[0007]

【数3】 [Equation 3]

【0008】なお、[0008]

【0009】[0009]

【数4】 [Equation 4]

【0010】である。[0010]

【0011】これらの式中、頭に矢印記号の付いた文字
は全てx、y、z成分を有するベクトルである(以下同
様。但し、明細書の文章中ではこの頭の矢印記号は省略
する。)。また、A:ベクトルポテンシャル〔V・s/
m〕、φ:スカラーポテンシャル〔V〕、J0 :強制電
流密度〔A/m2 〕、Je :渦電流密度〔A/m2 〕、
E:電場〔V/m〕、B:磁束密度〔Wb/m2 〕、
σ:導電率〔S/m〕、μ:透磁率〔H/m〕、t:時
間〔s〕である。これらの物理量のうち、ベクトルポテ
ンシャルA、スカラーポテンシャルφ、強制電流密度J
0 、渦電流密度J e 、電場E及び磁束密度Bは全て座標
(x,y,z)及び時間tの関数である(以下、「物理
変量」と呼ぶ。)。また、電磁的物性値σとμはテンソ
ル量であって、3×3の行列として表現され、夫々温度
に依存する関数である。即ち、
In these formulas, letters with an arrow symbol at the head
Is a vector that has all x, y, and z components (the same applies below.
Mr. However, the arrow symbol at the head is omitted in the text of the specification.
To do. ). In addition, A: vector potential [Vs /
m], φ: Scalar potential [V], J0: Forced power
Flow density [A / m2], Je: Eddy current density [A / m2],
E: electric field [V / m], B: magnetic flux density [Wb / m2],
σ: conductivity [S / m], μ: permeability [H / m], t: hour
The interval [s]. Of these physical quantities, vector potatoes
Initial A, scalar potential φ, forced current density J
0, Eddy current density J e, Electric field E and magnetic flux density B are all coordinates
(X, y, z) and a function of time t (hereinafter, "physics"
We call it "variable". ). Also, the electromagnetic property values σ and μ are tensor
Is expressed as a 3 × 3 matrix, and
Is a function that depends on. That is,

【0012】[0012]

【数5】 [Equation 5]

【0013】と表すことができる。但し、T=T(x,
y,z):絶対温度〔K〕である。
It can be expressed as However, T = T (x,
y, z): Absolute temperature [K].

【0014】上述した〔数1〕はマクスウェルの方程
式、〔数2〕は電流連続の式である。過渡解析では、対
象とする領域に上記物理変量を適用し、時間を更新しな
がら必要な方程式を解いていく。
The above-mentioned [Equation 1] is Maxwell's equation, and [Equation 2] is a current continuity equation. In the transient analysis, the above physical variables are applied to the target area, and the necessary equations are solved while updating the time.

【0015】一方、交流場等、時間変化に準定常性があ
る場合には、時間微分を複素数で置き換えることがで
き、上記物理変量のうち、渦電流密度Je 及び電場Eを
次式で表すことができる。
On the other hand, when the time change has quasi-stationarity such as an AC field, the time derivative can be replaced by a complex number, and the eddy current density J e and the electric field E among the above physical variables are expressed by the following equations. be able to.

【0016】[0016]

【数6】 [Equation 6]

【0017】但し、ω:角周波数〔rad/s〕、j:
虚数単位である。
However, ω: angular frequency [rad / s], j:
It is an imaginary unit.

【0018】また、誘導電流によって発生するジュール
熱の平均値は、
The average value of Joule heat generated by the induced current is

【0019】[0019]

【数7】 [Equation 7]

【0020】で与えられる。単位は〔W/m2 〕であ
る。
Is given by The unit is [W / m 2 ].

【0021】次に、過渡及び定常な温度場の解析方法に
ついて述べる。
Next, a method of analyzing transient and steady temperature fields will be described.

【0022】これらの解析方法は、例えば、「熱と流れ
のコンピュータアナリシス」日本機械学編、コロナ社、
昭和61年版、第55頁に詳述されている。
These analysis methods are described, for example, in "Computer analysis of heat and flow", edited by Nippon Mechanics, Corona Publishing Co., Ltd.,
It is described in detail on page 55, 1986 edition.

【0023】過渡の温度場の基礎方程式は、一般に、次
式で与えられる。
The basic equation of the transient temperature field is generally given by the following equation.

【0024】[0024]

【数8】 [Equation 8]

【0025】但し、κ:熱伝導率〔W/(m・K)〕、
Q:単位時間及び単位体積当りの発熱量〔W/m3 〕、
C:単位体積当りの熱容量〔J/(K・m3 )〕であ
る。
Where κ: thermal conductivity [W / (m · K)],
Q: calorific value per unit time and unit volume [W / m 3 ],
C: Heat capacity per unit volume [J / (K · m 3 )].

【0026】温度場が過渡的な場合は、上述した電磁場
の場合と同様にして計算できる。一方、定常な場合に
は、上記〔数8〕の右辺の時間微分を0と置いて解く。
即ち、
When the temperature field is transient, it can be calculated in the same manner as in the case of the electromagnetic field described above. On the other hand, in the stationary case, the time derivative on the right side of the above [Equation 8] is set to 0 and solved.
That is,

【0027】[0027]

【数9】 [Equation 9]

【0028】である。また、境界上での熱のやりとり
は、次式により考慮される。
[0028] The heat exchange on the boundary is considered by the following equation.

【0029】[0029]

【数10】 [Equation 10]

【0030】但し、Tb :境界面の温度〔K〕、n:境
界面の法線方向ベクトル、q:境界面を通過する熱流密
度〔W/m2 〕、α:熱伝達率〔W/(m2 ・K)〕、
η:ステファン−ボルツマン定数 5.67×10
-8〔W/(m2 ・K4 )〕、Te :外部温度〔K〕であ
る。
However, T b : temperature of the boundary surface [K], n: vector of normal direction of the boundary surface, q: heat flow density [W / m 2 ] passing through the boundary surface, α: heat transfer coefficient [W / (M 2 · K)],
η: Stefan-Boltzmann constant 5.67 × 10
-8 [W / (m 2 · K 4 )], T e : external temperature [K].

【0031】上述した熱的物性値κ、α及びCも夫々温
度に依存し、
The above-mentioned thermal property values κ, α and C also depend on temperature,

【0032】[0032]

【数11】 [Equation 11]

【0033】と表される。It is expressed as follows.

【0034】以上に述べた誘導電磁場の解析方法と温度
場の解析方法を組み合わせることによって、誘導加熱の
様子を調べることができる。従来の組み合わせ方法とし
て、以下の3つが挙げられる。
The state of induction heating can be investigated by combining the method of analyzing the induction electromagnetic field and the method of analyzing the temperature field described above. There are the following three conventional combination methods.

【0035】 時々刻々、〔数1〕、〔数2〕、〔数
3〕又はこれらと等価の方程式を解き、平均のジュール
熱を、例えば次式、
[Mathematical formula-see original document] By solving the equations [Equation 1], [Equation 2], [Equation 3] or their equivalents, the average Joule heat can be calculated, for example, by the following equation:

【0036】[0036]

【数12】 [Equation 12]

【0037】で算出し、これを発熱源として、〔数1
1〕から得られる熱的物性値を用い、〔数8〕及び〔数
10〕から温度を求め、その温度から〔数5〕に基づい
て〔数1〕、〔数2〕、〔数3〕の導電率σ及び透磁率
μを更新する一連のプロセスを繰り返して解いていく。
[Equation 1]
1], the temperature is calculated from [Equation 8] and [Equation 10], and from that temperature [Equation 1], [Equation 2], [Equation 3] A series of processes for updating the electric conductivity σ and the magnetic permeability μ are repeatedly solved.

【0038】 〔数1〕、〔数2〕、〔数6〕又はこ
れらと等価の方程式を解き、〔数7〕のジュール熱の計
算を一回だけ行い、これを不変の発熱源として〔数
8〕、〔数10〕及び〔数11〕を用い、温度だけを時
々刻々計算する。電磁的物性値の更新は行わない。この
の例は、文献 "IEEE Transactions on Magnetics" Vo
l.MAG-23, No.5, p.3296 (1987) に記載されている。
[Equation 1], [Equation 2], [Equation 6] or equations equivalent thereto are solved, the Joule heat of [Equation 7] is calculated only once, and this is used as an invariant heat source. 8], [Equation 10] and [Equation 11] are used to calculate only the temperature momentarily. The electromagnetic property values are not updated. An example of this is the document "IEEE Transactions on Magnetics" Vo
l.MAG-23, No.5, p.3296 (1987).

【0039】 〔数1〕、〔数2〕、〔数6〕又はこ
れらと等価の方程式を解き、〔数7〕のジュール熱の計
算を一回だけ行い、これを不変の発熱源として〔数9〕
を用い、定常状態の温度分布だけを計算する。電磁的物
性値及び熱的物性値の更新はできない。このの例は、
文献 "Proceedings ofthe 5th Eddy Current Seminar"
28-30 Mar.(1988) at Rutherford Appleton Laborator
y, Oxford, UK, RAL-88-099 に記載されている。
By solving [Equation 1], [Equation 2], [Equation 6] or an equation equivalent thereto, the Joule heat of [Equation 7] is calculated only once, and this is used as an invariant heat source. 9]
Is used to calculate only the steady state temperature distribution. The electromagnetic and thermal properties cannot be updated. An example of this is
Reference "Proceedings of the 5th Eddy Current Seminar"
28-30 Mar. (1988) at Rutherford Appleton Laborator
y, Oxford, UK, RAL-88-099.

【0040】[0040]

【発明が解決しようとする課題】しかしながら、上述し
た従来の方法には各々以下のような問題点があった。
However, each of the above-mentioned conventional methods has the following problems.

【0041】の方法では、精度良く温度分布を求める
ことができるが、各時刻毎に電磁場と温度場の両方を計
算するため、膨大な計算時間が必要であった。即ち、温
度場では変数が温度Tだけなのに対し、電磁場は、ベク
トルポテンシャルAの3つの成分Ax 、Ay 、AZ 及び
スカラーポテンシャルφの4倍の変数を持ち、また、計
算する領域が一般に温度場よりも大きいために、その計
算時間が温度場の場合の十数倍〜千倍程度必要であっ
た。
According to the method (1), the temperature distribution can be obtained with high accuracy, but an enormous calculation time is required because both the electromagnetic field and the temperature field are calculated at each time. That is, in the temperature field, the only variable is the temperature T, whereas the electromagnetic field has three times the variables A x , A y , A Z of the vector potential A and the scalar potential φ, and the calculation area is generally Since it is larger than the temperature field, the calculation time was about ten to several thousand times that of the temperature field.

【0042】の方法では、初期の温度分布はかなり正
確に求めることができるが、被加熱材である導電材の電
磁的物性値、例えば、導電率σ及び透磁率μの温度変化
を考慮していないために、時間の経過とともに誤差が大
きくなっていた。
According to the method (1), the initial temperature distribution can be obtained fairly accurately, but the electromagnetic property values of the conductive material, which is the material to be heated, such as the temperature changes of the conductivity σ and the magnetic permeability μ are taken into consideration. Since there was no such error, the error increased with the passage of time.

【0043】の方法は、これら3つの計算方法の中で
は最少の計算時間で解が得られるが、精度は最も悪く、
実際の現象から大きくずれることが殆どであった。
The method (1) gives a solution in the shortest calculation time among these three calculation methods, but has the worst accuracy,
In most cases, there was a large deviation from the actual phenomenon.

【0044】そこで、本発明の目的は、上述したの方
法の計算時間の膨大化と及びの方法の精度の悪さを
克服し、誘導加熱による導電材の温度分布の解析を正確
且つ効率的に行うことができる方法を提供することであ
る。
Therefore, an object of the present invention is to overcome the enormous calculation time of the above-mentioned method and the inaccuracy of the method, and to analyze the temperature distribution of the conductive material by induction heating accurately and efficiently. Is to provide a method that can.

【0045】[0045]

【課題を解決するための手段】上述した課題を解決する
ために、本発明では、計算機を用い、誘導加熱装置によ
る誘導電磁場の解析を行って、被加熱体である導電材の
ジュール熱を算出し、このジュール熱を基に前記導電材
の温度分布を解析する方法において、(a)前記導電材
の電磁的物性値及び熱的物性値の温度特性曲線データを
夫々入力するステップと;(b)前記導電材の初期温度
を入力するステップと;(c)過渡温度場解析の時間間
隔を入力するステップと;(d)準定常電磁場解析の起
動条件を入力するステップと;(e)過渡温度場解析の
終了時間を入力するステップと;(f)温度に応じて求
められた前記導電材の前記電磁的物性値を用いて準定常
電磁場解析を行い、前記導電材の誘導電流によるジュー
ル熱を算出するステップと;(g)温度に応じて求めら
れた前記導電材の前記熱的物性値及びステップ(f)に
おいて算出されたジュール熱を用いて過渡温度場解析を
行い、前記導電材の温度分布を算出するステップと;
(h)ステップ(d)において入力された準定常電磁場
解析の起動条件を満たしたか否かを判定し、起動条件を
満たした場合には、ステップ(g)において算出された
温度に応じ、ステップ(a)において入力された前記導
電材の前記電磁的物性値の前記温度特性曲線データに基
づいて前記導電材の前記電磁的物性値を更新した後、ス
テップ(f)に戻り、起動条件を満たしていない場合に
は次のステップに進むステップと;(i)ステップ
(e)において入力された過渡温度場解析の終了時間に
なったか否かを判定し、終了時間になっていない場合に
は、ステップ(g)において算出された温度に応じ、ス
テップ(a)において入力された前記導電材の前記熱的
物性値の前記温度特性曲線データに基づいて前記導電材
の前記熱的物性値を更新した後、ステップ(g)に戻
り、終了時間になった場合には次のステップに進むステ
ップと;(j)算出された前記導電材の温度分布データ
を出力するステップとを有する。
In order to solve the above-mentioned problems, in the present invention, a computer is used to analyze an induction electromagnetic field by an induction heating device to calculate Joule heat of a conductive material which is a heated object. Then, in the method of analyzing the temperature distribution of the conductive material based on the Joule heat, (a) inputting temperature characteristic curve data of electromagnetic property value and thermal property value of the conductive material, respectively; ) Inputting an initial temperature of the conductive material; (c) Inputting a time interval of transient temperature field analysis; (d) Inputting start conditions of quasi-stationary electromagnetic field analysis; (e) Transient temperature A step of inputting an end time of the field analysis; (f) a quasi-stationary electromagnetic field analysis is performed using the electromagnetic physical property value of the conductive material obtained according to temperature, and Joule heat due to an induced current of the conductive material is calculated. Calculate And (g) the thermal property value of the conductive material obtained according to the temperature and the Joule heat calculated in step (f) are used to perform a transient temperature field analysis to obtain a temperature distribution of the conductive material. And a step of calculating
(H) It is determined whether or not the starting condition for the quasi-stationary electromagnetic field analysis input in step (d) is satisfied, and if the starting condition is satisfied, the step (g) is used according to the temperature calculated in step (g). After updating the electromagnetic property value of the conductive material based on the temperature characteristic curve data of the electromagnetic property value of the conductive material input in a), the process returns to step (f) to satisfy the starting condition. If there is not, the step to proceed to the next step; (i) It is judged whether or not the end time of the transient temperature field analysis input in step (e) has come, and if not, the step According to the temperature calculated in (g), the thermal property value of the conductive material is updated based on the temperature characteristic curve data of the thermal property value of the conductive material input in step (a). After, the flow returns to step (g), steps and proceed to the next step if it becomes the end time; and a step of outputting (j) the temperature distribution data of said calculated conductive material.

【0046】なお、上述した各種データ及び条件を入力
するステップ(a)、(b)、(c)、(d)及び
(e)の順序は任意であって良い。
The steps (a), (b), (c), (d) and (e) for inputting the various data and conditions described above may be in any order.

【0047】[0047]

【作用】本発明においては、被加熱材である導電材に関
して過渡温度場解析を行い、その温度分布を求めるが、
例えば、誘導加熱装置等の加熱装置を構成する各材料に
関しても同様の過渡温度場解析を行い、その温度変化に
よる電磁場の変化を正確に計算して、導電材の温度分布
をより正確に求めるようにしても良い。
In the present invention, the transient temperature field analysis is performed on the conductive material which is the material to be heated, and the temperature distribution is obtained.
For example, the same transient temperature field analysis is performed for each material that constitutes a heating device such as an induction heating device, and the change in the electromagnetic field due to the temperature change is calculated accurately to obtain the temperature distribution of the conductive material more accurately. You can

【0048】本発明の方法によれば、既述した従来の
の方法とは違って、電磁場の計算を各時刻毎に行うので
はなく、解析対象の少なくとも電磁的物性値の変化を考
慮する必要がある時にのみ電磁場の計算を行ってジュー
ル熱を更新する。従って、従来のの方法と比較して、
電磁場の計算回数を大幅に低減することができ、ひいて
は、全体の計算時間を大幅に短縮することができる。し
かも、既述した従来の及びの方法とは違って、解析
対象の電磁的物性値の温度変化をも考慮した解析を行う
ことができるので、これらの方法と比較して、解析の精
度が大幅に向上する。
According to the method of the present invention, unlike the above-described conventional method, it is necessary to consider at least the change in the electromagnetic property value of the analysis object, instead of calculating the electromagnetic field at each time. Only when there is an electromagnetic field calculation to update the Joule heat. Therefore, compared to the conventional method,
The number of calculations of the electromagnetic field can be significantly reduced, which in turn can significantly reduce the overall calculation time. Moreover, unlike the previously described and methods described above, it is possible to perform an analysis that also considers the temperature change of the electromagnetic properties of the analysis target, so the accuracy of the analysis is significantly higher than those methods. To improve.

【0049】この目的を達成するために、本発明におい
ては、準定常電磁場解析の起動条件を入力し、この起動
条件を満足した時にのみ準定常電磁場解析を行ってジュ
ール熱を更新するようにしている。この起動条件として
は、時間間隔を用いるのが最も簡便である。即ち、過渡
温度場解析の時間間隔の所定倍の時間間隔を準定常電磁
場解析の起動条件として用い、過渡温度場解析を所定回
繰り返した時点で準定常電磁場解析を行い、ジュール熱
を更新するのである。この場合、過渡温度場解析の時間
間隔及び準定常電磁場解析の起動条件として用いる時間
間隔は、決して恣意的に決められるものではなく、解析
対象である導電材や加熱装置の各材料の温度特性を考慮
し、且つ、使用する計算機(コンピュータ)の性能(演
算速度等)や目標とする全体の計算時間、要求される解
析精度等を考慮して決められるべきものである。特に、
準定常電磁場解析の起動条件として用いる時間間隔は、
解析対象における電磁的物性値や熱的物性値の温度によ
る変化の度合いを考慮して、できるだけ精度と計算効率
が良くなる値に設定すべきである。
In order to achieve this object, in the present invention, the starting condition for the quasi-stationary electromagnetic field analysis is input, and only when the starting condition is satisfied, the quasi-stationary electromagnetic field analysis is performed to update the Joule heat. There is. It is the simplest to use the time interval as the starting condition. That is, a time interval that is a predetermined multiple of the time interval of the transient temperature field analysis is used as the starting condition for the quasi-stationary electromagnetic field analysis, and when the transient temperature field analysis is repeated a predetermined number of times, the quasi-stationary electromagnetic field analysis is performed and the Joule heat is updated. is there. In this case, the time interval of the transient temperature field analysis and the time interval used as the starting condition of the quasi-stationary electromagnetic field analysis are not arbitrarily determined, and the temperature characteristics of the conductive material and each material of the heating device to be analyzed are It should be determined in consideration of the performance (calculation speed, etc.) of the computer (computer) to be used, the target total calculation time, the required analysis accuracy, and the like. In particular,
The time interval used as the starting condition for the quasi-stationary electromagnetic field analysis is
Considering the degree of change of electromagnetic property value or thermal property value due to temperature in the analysis target, the value should be set to a value that maximizes accuracy and calculation efficiency.

【0050】この準定常電磁場解析の起動条件として
は、上述した時間間隔以外に、例えば、解析対象の到達
温度や温度変化幅等を用いることもできる。例えば、起
動条件として解析対象の到達温度を用いる場合、複数の
設定温度を起動条件として入力し、温度場の計算によっ
て得られた温度が各設定温度を越えた時に準定常電磁場
解析を行うようにする。この場合、起動条件として入力
する設定温度としては、解析対象の電磁的物性値又は熱
的物性値が比較的大きく変化するところの温度を選定す
ると良い。また、温度変化幅を起動条件として用いる場
合には、温度場の計算によって求められた温度上昇が、
予め入力された変化幅を越えた時に準定常電磁場解析を
行う。
As a starting condition for this quasi-stationary electromagnetic field analysis, in addition to the above-mentioned time interval, for example, the reached temperature of the analysis target, the temperature change width, etc. can be used. For example, if the ultimate temperature to be analyzed is used as the starting condition, enter multiple set temperatures as the starting conditions, and perform quasi-stationary electromagnetic field analysis when the temperature obtained by calculating the temperature field exceeds each set temperature. To do. In this case, as the set temperature input as the starting condition, it is preferable to select a temperature at which the electromagnetic property value or the thermal property value of the analysis target changes relatively greatly. When the temperature change width is used as the starting condition, the temperature rise obtained by the calculation of the temperature field is
The quasi-stationary electromagnetic field analysis is performed when the change width input in advance is exceeded.

【0051】更に、準定常電磁場解析の起動条件は、解
析対象である導電材や加熱装置の各材料毎に設定するこ
とができる。この場合、或る解析対象がその準定常電磁
場解析の起動条件を満足した時には、その解析対象につ
いてのみ準定常電磁場解析を行い、その結果を用いて、
全解析対象の過渡温度場解析を続行する。
Further, the starting condition of the quasi-stationary electromagnetic field analysis can be set for each conductive material or each material of the heating device to be analyzed. In this case, when an analysis target satisfies the conditions for starting the quasi-stationary electromagnetic field analysis, quasi-stationary electromagnetic field analysis is performed only for that analysis target, and the results are used to
Continue the transient temperature field analysis for all analysis targets.

【0052】なお、本発明の方法によっても充分な解析
精度が得られる理由は、一般に、電磁場の時間的変化速
度(交流場では角周波数ω)が温度場の変化速度∂T/
∂t≒Q/Cに対して充分に大きく、且つ、温度変化に
よる電磁場の変化が充分に緩慢であるために、温度場に
対する電磁場の準定常性を仮定して良いことによる。
The reason why sufficient analysis accuracy can be obtained by the method of the present invention is that the rate of change of the electromagnetic field with time (the angular frequency ω in the alternating field) is generally the rate of change of the temperature field ∂T /
This is because quasi-stationaryness of the electromagnetic field with respect to the temperature field may be assumed because it is sufficiently large with respect to ∂t≈Q / C and the change of the electromagnetic field due to temperature change is sufficiently slow.

【0053】図1に、本発明による解析方法の手順を示
す。
FIG. 1 shows the procedure of the analysis method according to the present invention.

【0054】[0054]

【実施例】以下、本発明を実施例につき説明する。EXAMPLES The present invention will be described below with reference to examples.

【0055】図2に、軸対称性を持った簡易な誘導加熱
装置の例を示す。1個の環状誘導コイル1に交流の強制
電流がコイル内を同じ電流密度で円周方向に流れ、被加
熱材である鋼材2を誘導加熱する。図中の他の数字は装
置及び被加熱材の各部の長さを示しており、単位は全て
ミリメートルである。本実施例においては、電流密度の
大きさを3.33×1010〔A/m2 〕、周波数を80
〔kHz〕とした。
FIG. 2 shows an example of a simple induction heating device having axial symmetry. An alternating forced current flows in one annular induction coil 1 in the coil at the same current density in the circumferential direction, and induction heats a steel material 2 as a material to be heated. Other numbers in the figure indicate the lengths of each part of the apparatus and the material to be heated, and the unit is all millimeters. In this embodiment, the current density is 3.33 × 10 10 [A / m 2 ] and the frequency is 80.
[KHz].

【0056】図3に、被加熱材として用いた鋼材の導電
率σの温度特性曲線を示す。導電率σは等方的で、その
温度特性も等方的とした。また、本実施例においては、
被加熱材である鋼材の透磁率μの温度特性曲線を、比透
磁率μs の温度特性曲線として次式〔数13〕で与え
る。なお、μs =μ/μ0 (μ0 :真空の透磁率 1.
2566×10-8〔H/m〕)である。
FIG. 3 shows a temperature characteristic curve of electric conductivity σ of the steel material used as the material to be heated. The electrical conductivity σ is isotropic, and its temperature characteristic is also isotropic. In addition, in this embodiment,
The temperature characteristic curve of the magnetic permeability μ of the steel material to be heated is given by the following formula [Equation 13] as a temperature characteristic curve of the relative magnetic permeability μ s . Note that μ s = μ / μ 00 : permeability of vacuum 1.
2566 × 10 -8 [H / m]).

【0057】[0057]

【数13】 [Equation 13]

【0058】比透磁率μs も等方的で、その温度特性も
等方的とした。
The relative permeability μ s was also isotropic, and its temperature characteristic was also isotropic.

【0059】図4に、鋼材の熱伝導率κの温度特性曲
線、図5に鋼材の単位体積当りの熱容量Cの温度特性曲
線を夫々示す。熱伝達率αの温度特性曲線は次式で与え
る。
FIG. 4 shows a temperature characteristic curve of the thermal conductivity κ of the steel material, and FIG. 5 shows a temperature characteristic curve of the heat capacity C of the steel material per unit volume. The temperature characteristic curve of the heat transfer coefficient α is given by the following equation.

【0060】[0060]

【数14】 [Equation 14]

【0061】以上に述べた温度特性曲線は全て本発明者
らが行った実験によって得たもの又はそれに基づいた式
を使用している。なお、図3、図4及び図5において
は、温度を摂氏〔℃〕で表している。
The temperature characteristic curves described above are all obtained by experiments conducted by the present inventors or equations based thereon. In addition, in FIG. 3, FIG. 4 and FIG. 5, the temperature is expressed in degrees Celsius [° C.].

【0062】まず、図1のフローチャートに示した通
り、上述した鋼材の電磁的物性値(導電率σ及び比透磁
率μs )及び熱的物性値(熱伝導率κ、単位体積当りの
熱容量C及び熱伝達率α)の温度特性曲線データを夫々
コンピュータに入力し、更に、鋼材2の初期温度を入力
した。なお、本実施例においては、加熱装置である誘導
コイル1の温度場解析は行わない。
First, as shown in the flow chart of FIG. 1, the electromagnetic property values (conductivity σ and relative permeability μ s ) and thermal property values (heat conductivity κ, heat capacity C per unit volume) of the above-mentioned steel material. And the temperature characteristic curve data of the heat transfer coefficient α) were input to the computer, respectively, and further the initial temperature of the steel material 2 was input. In this embodiment, the temperature field analysis of the induction coil 1 which is a heating device is not performed.

【0063】次いで、過渡温度場解析の時間間隔、準定
常電磁場解析の起動条件及び過渡温度場解析の終了時間
を夫々入力した。
Then, the time interval of the transient temperature field analysis, the starting condition of the quasi-stationary electromagnetic field analysis, and the end time of the transient temperature field analysis were input.

【0064】本実施例においては、鋼材2の初期温度を
303〔K〕、過渡温度場解析の時間間隔を0.001
〔s〕、準定常電磁場解析の起動条件を時間間隔0.1
〔s〕で単一とし、更に、過渡温度場解析の終了時間を
3.0〔s〕とした。
In this embodiment, the initial temperature of the steel material 2 is 303 [K] and the time interval of transient temperature field analysis is 0.001.
[S], quasi-stationary electromagnetic field analysis starting condition is time interval 0.1
[S] was set to be single, and the end time of the transient temperature field analysis was set to 3.0 [s].

【0065】次に、図3に示したデータ及び〔数13〕
に基づき、入力された鋼材2の初期温度から導電率σと
透磁率μ(=μs ・μ0 )を夫々求め、これらを〔数
1〕、〔数2〕及び〔数6〕に代入して、準定常電磁場
解析を行い、〔数7〕から平均のジュール熱を算出し
た。
Next, the data shown in FIG.
Based on the above, the electric conductivity σ and the magnetic permeability μ (= μ s · μ 0 ) are obtained from the input initial temperature of the steel material 2, and these are substituted into [Equation 1], [Equation 2] and [Equation 6]. Then, a quasi-stationary electromagnetic field analysis was performed, and the average Joule heat was calculated from [Equation 7].

【0066】次に、図4及び図5に示したデータ並びに
〔数14〕に基づき、鋼材2の初期温度から熱伝導率
κ、単位体積当りの熱容量C及び熱伝達率αを夫々求
め、これらと上記ジュール熱を〔数8〕及び〔数10〕
に代入して過渡温度場解析を行い、温度分布を得た。こ
の過渡温度場解析を、各回毎に熱伝導率κ、単位体積当
りの熱容量C及び熱伝達率αを夫々更新しながら、10
0回行った。
Next, based on the data shown in FIGS. 4 and 5 and [Equation 14], the thermal conductivity κ, the heat capacity C per unit volume and the heat transfer coefficient α are obtained from the initial temperature of the steel material 2, respectively, and And the Joule heat described above in [Equation 8] and [Equation 10]
Substituting into, the transient temperature field analysis was performed and the temperature distribution was obtained. This transient temperature field analysis is performed while updating the thermal conductivity κ, the heat capacity C per unit volume and the heat transfer coefficient α for each time.
I went 0 times.

【0067】そして、この過渡温度場解析を100回行
った時の温度に基づいて、鋼材2の導電率σ及び透磁率
μを、図3に示したデータ及び〔数13〕から新たに求
め、これらを用いて準定常電磁場解析を再度行い、発熱
源であるジュール熱を改めて算出した。そして、この新
たなジュール熱を用いて過渡温度場解析を続行した。
Then, based on the temperature when the transient temperature field analysis was performed 100 times, the conductivity σ and the magnetic permeability μ of the steel material 2 were newly obtained from the data shown in FIG. Using these, quasi-stationary electromagnetic field analysis was performed again, and Joule heat, which is a heat source, was calculated again. Then, the transient temperature field analysis was continued using this new Joule heat.

【0068】この一連の繰り返し計算を、終了時間であ
る3.0〔s〕まで行った。
This series of repeated calculations was performed until the end time of 3.0 [s].

【0069】以上に説明した解析方法によって得られた
鋼材2の温度分布を等温線で示した結果を図6に示す。
一方、鋼材2に挿入した熱電対によって測定された実測
温度を、黒丸で示した測定点において示した。なお、図
中の数値は全て摂氏温度である。また、本実施例で用い
た装置は軸対称性を持っているので、結果の表示は、鋼
材2の1/4の部分についてのみ行った。この図6から
明らかなように、本実施例の解析方法により、実測値に
極めて近い温度分布が得られる。
FIG. 6 shows the results of isothermal lines showing the temperature distribution of the steel material 2 obtained by the above-described analysis method.
On the other hand, the actually measured temperature measured by the thermocouple inserted in the steel material 2 is shown at the measurement points indicated by black circles. All numerical values in the figure are degrees Celsius. Further, since the device used in this example has an axial symmetry, the display of the result was performed only on the 1/4 part of the steel material 2. As is apparent from FIG. 6, the analysis method of the present embodiment can obtain a temperature distribution extremely close to the actually measured value.

【0070】比較のため、既述した従来の解析方法で
計算した結果を図7に示す。計算結果は、図6と同様、
等温線で示してあり、黒丸で示した測定点における実測
値を明示した。数値は全て摂氏温度である。この従来法
では、鋼材2の導電率σ及び透磁率μの高温での低減を
考慮しないため、ジュール熱が実際よりも大きく見積も
られて、全体的に鋼材温度が高めに得られており、ま
た、高温の領域の大きさにも差異が現れている。
For comparison, FIG. 7 shows the result calculated by the conventional analysis method described above. The calculation result is the same as in FIG.
It is indicated by an isotherm, and the actual measurement value at the measurement point indicated by a black circle is specified. All numbers are in degrees Celsius. In this conventional method, since the reduction of the electric conductivity σ and the magnetic permeability μ of the steel material 2 at a high temperature is not taken into consideration, the Joule heat is estimated to be larger than it actually is, and the steel material temperature is generally higher. Also, there is a difference in the size of the high temperature region.

【0071】以上に説明した結果から明らかなように、
本実施例の解析方法においては、温度変化に伴う鋼材2
の電磁的物性値の変化の度合いを考慮することで、解析
精度を保ちながら電磁場の計算回数を減らすことがで
き、計算コストの低減を図ることができる。
As is clear from the results described above,
In the analysis method of the present embodiment, the steel material 2 accompanying the temperature change is used.
By considering the degree of change in the electromagnetic property value of, it is possible to reduce the number of calculations of the electromagnetic field while maintaining the analysis accuracy, and it is possible to reduce the calculation cost.

【0072】また、本実施例の方法では、解析結果が思
わしくなく、再解析を行う必要ができた場合でも、最初
の各種データの入力から行う必要はなく、例えば、準定
常電磁場解析の起動条件である時間間隔を変更するだけ
で、簡単に解析精度を上げることが可能である。
Further, according to the method of this embodiment, even if the analysis result is not good and the reanalysis can be performed, it is not necessary to input various data at the beginning. For example, the starting condition of the quasi-stationary electromagnetic field analysis is It is possible to easily improve the analysis accuracy simply by changing the time interval.

【0073】なお、本実施例においては、導電率σ及び
透磁率μを夫々等方的として取り扱ったが、これらが非
等方的な場合についても同様に解析を行うことができ
る。即ち、非等方的な場合には、導電率σ及び透磁率μ
を各座標軸方向毎に求め、それらについて、上述したと
同様の更新手続を行う。例えば、導電率σでは、各座標
軸方向についての導電率σx 、σy 、σz(テンソルσ
の3つの対角成分)の夫々について温度特性曲線を求
め、これらを、温度に対応して更新していけば良い。
In the present embodiment, the conductivity σ and the magnetic permeability μ are treated as isotropic, but the same analysis can be performed when these are anisotropic. That is, in the anisotropic case, the conductivity σ and the magnetic permeability μ
Are calculated for each coordinate axis direction, and the same update procedure as described above is performed for them. For example, for the conductivity σ, the conductivity σ x , σ y , σ z (tensor σ for each coordinate axis direction)
It is sufficient to obtain temperature characteristic curves for each of the three diagonal components of 1) and update them in accordance with the temperature.

【0074】また、上述した実施例においては、鋼材を
加熱する場合について説明したが、本発明は、アルミニ
ウム、チタン、銅等の非鉄金属や種々の合金を誘導加熱
する場合にも適用が可能である。
Further, in the above-mentioned embodiments, the case where the steel material is heated has been described, but the present invention can be applied to the case where the non-ferrous metal such as aluminum, titanium and copper and various alloys are induction-heated. is there.

【0075】[0075]

【発明の効果】本発明の方法によれば、電磁場と温度場
を毎時刻計算する場合と比べて、電磁場の計算回数を少
なくすることができるので、全体の計算時間を大幅に短
縮することができる。また、被解析対象の電磁的物性値
の温度変化を考慮した解析を行うことができるので、実
用上充分な解析精度を得ることができる。そして、本発
明の方法により、鋼材等の導電材が誘導加熱された時の
温度分布をかなり正確に解析することができ、指定され
た加熱条件で所望の温度分布が得られるかどうかを正確
に知ることができるので、本発明は、誘導加熱装置の設
計や操業シミュレーション等に適用して非常に好適なも
のである。
According to the method of the present invention, the number of times the electromagnetic field is calculated can be reduced as compared with the case where the electromagnetic field and the temperature field are calculated every time, so that the total calculation time can be greatly shortened. it can. In addition, since it is possible to perform the analysis in consideration of the temperature change of the electromagnetic property value of the object to be analyzed, it is possible to obtain practically sufficient analysis accuracy. Then, by the method of the present invention, it is possible to analyze the temperature distribution when the conductive material such as steel material is induction-heated fairly accurately, and whether or not the desired temperature distribution can be obtained under the specified heating conditions is accurately determined. As can be seen, the present invention is very suitable for application to the design of an induction heating device, operation simulation, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の手順を示すフローチャートである。FIG. 1 is a flowchart showing a procedure of the present invention.

【図2】本発明の一実施例を説明するための誘導加熱装
置の概略構成図である。
FIG. 2 is a schematic configuration diagram of an induction heating device for explaining an embodiment of the present invention.

【図3】鋼材の導電率の温度特性曲線を示すグラフであ
る。
FIG. 3 is a graph showing a temperature characteristic curve of electric conductivity of steel material.

【図4】鋼材の熱伝導率の温度特性曲線を示すグラフで
ある。
FIG. 4 is a graph showing a temperature characteristic curve of thermal conductivity of steel.

【図5】鋼材の単位体積当りの熱容量の温度特性曲線を
示すグラフである。
FIG. 5 is a graph showing a temperature characteristic curve of heat capacity per unit volume of steel material.

【図6】本発明の一実施例による解析方法によって得ら
れた鋼材の温度分布を示す概略図である。
FIG. 6 is a schematic diagram showing a temperature distribution of a steel material obtained by an analysis method according to an example of the present invention.

【図7】従来の解析方法によって得られた鋼材の温度分
布を示す概略図である。
FIG. 7 is a schematic diagram showing a temperature distribution of a steel material obtained by a conventional analysis method.

【符号の説明】[Explanation of symbols]

1 誘導コイル 2 鋼材 1 induction coil 2 steel

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年6月2日[Submission date] June 2, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】[0009]

【数4】 [Equation 4]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Name of item to be corrected] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】[0019]

【数7】 [Equation 7]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0036】[0036]

【数12】 [Equation 12]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 芳生 川崎市中原区井田1618番地 新日本製鐵株 式会社先端技術研究所内 (72)発明者 岩田 圭司 川崎市中原区井田1618番地 新日本製鐵株 式会社先端技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Hirano 1618 Ida, Nakahara-ku, Kawasaki City, Nippon Steel Corporation Advanced Technology Research Laboratories (72) Inventor Keiji Iwata 1618, Ida, Nakahara-ku, Kawasaki-shi Nippon Steel Incorporated company Advanced Technology Research Institute

Claims (1)

【特許請求の範囲】 【請求項1】 計算機を用い、誘導加熱装置による誘導
電磁場の解析を行って、被加熱体である導電材のジュー
ル熱を算出し、このジュール熱を基に前記導電材の温度
分布を解析する方法において、 (a)前記導電材の電磁的物性値及び熱的物性値の温度
特性曲線データを夫々入力するステップと、 (b)前記導電材の初期温度を入力するステップと、 (c)過渡温度場解析の時間間隔を入力するステップ
と、 (d)準定常電磁場解析の起動条件を入力するステップ
と、 (e)過渡温度場解析の終了時間を入力するステップ
と、 (f)温度に応じて求められた前記導電材の前記電磁的
物性値を用いて準定常電磁場解析を行い、前記導電材の
誘導電流によるジュール熱を算出するステップと、 (g)温度に応じて求められた前記導電材の前記熱的物
性値及びステップ(f)において算出されたジュール熱
を用いて過渡温度場解析を行い、前記導電材の温度分布
を算出するステップと、 (h)ステップ(d)において入力された準定常電磁場
解析の起動条件を満たしたか否かを判定し、起動条件を
満たした場合には、ステップ(g)において算出された
温度に応じ、ステップ(a)において入力された前記導
電材の前記電磁的物性値の前記温度特性曲線データに基
づいて前記導電材の前記電磁的物性値を更新した後、ス
テップ(f)に戻り、起動条件を満たしていない場合に
は次のステップに進むステップと、 (i)ステップ(e)において入力された過渡温度場解
析の終了時間になったか否かを判定し、終了時間になっ
ていない場合には、ステップ(g)において算出された
温度に応じ、ステップ(a)において入力された前記導
電材の前記熱的物性値の前記温度特性曲線データに基づ
いて前記導電材の前記熱的物性値を更新した後、ステッ
プ(g)に戻り、終了時間になった場合には次のステッ
プに進むステップと、 (j)算出された前記導電材の温度分布データを出力す
るステップと、 を有することを特徴とする方法。
Claim: What is claimed is: 1. A computer is used to analyze an induction electromagnetic field by an induction heating device to calculate Joule heat of a conductive material, which is a heated object, and the conductive material is calculated based on the Joule heat. In the method of analyzing the temperature distribution of (a), the steps of: (a) inputting temperature characteristic curve data of electromagnetic property values and thermal property values of the conductive material; and (b) inputting an initial temperature of the conductive material. And (c) a step of inputting a time interval of the transient temperature field analysis, (d) a step of inputting a starting condition of the quasi-stationary electromagnetic field analysis, and (e) a step of inputting an end time of the transient temperature field analysis, (F) performing a quasi-stationary electromagnetic field analysis using the electromagnetic property value of the conductive material obtained according to the temperature, and calculating Joule heat due to the induced current of the conductive material; and (g) depending on the temperature. Asked And a step of calculating a temperature distribution of the conductive material by performing a transient temperature field analysis using the thermal property value of the conductive material and the Joule heat calculated in step (f), and (h) step (d) It is determined whether or not the starting condition of the quasi-stationary electromagnetic field analysis input in step S3 is satisfied, and if the starting condition is satisfied, the temperature input in step (a) is input according to the temperature calculated in step (g). After updating the electromagnetic property value of the conductive material based on the temperature characteristic curve data of the electromagnetic property value of the conductive material, the process returns to step (f), and if the starting condition is not satisfied, the next step Step (i), (i) It is determined whether or not the end time of the transient temperature field analysis input in Step (e) has been reached. If it is not the end time, go to Step (g). The thermal property value of the conductive material is updated based on the temperature characteristic curve data of the thermal property value of the conductive material input in step (a) according to the calculated temperature. Returning to g), when the end time is reached, the method proceeds to the next step, and (j) outputs the calculated temperature distribution data of the conductive material.
JP20863091A 1991-07-25 1991-07-25 Analysis method of temperature distribution of conductive material by induction heating Expired - Fee Related JP2513542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20863091A JP2513542B2 (en) 1991-07-25 1991-07-25 Analysis method of temperature distribution of conductive material by induction heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20863091A JP2513542B2 (en) 1991-07-25 1991-07-25 Analysis method of temperature distribution of conductive material by induction heating

Publications (2)

Publication Number Publication Date
JPH0535713A true JPH0535713A (en) 1993-02-12
JP2513542B2 JP2513542B2 (en) 1996-07-03

Family

ID=16559411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20863091A Expired - Fee Related JP2513542B2 (en) 1991-07-25 1991-07-25 Analysis method of temperature distribution of conductive material by induction heating

Country Status (1)

Country Link
JP (1) JP2513542B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230331A (en) * 2009-03-25 2010-10-14 Neturen Co Ltd Device for simulation of high frequency quenching
JP2014081208A (en) * 2012-10-12 2014-05-08 Neturen Co Ltd Simulation program of heat treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230331A (en) * 2009-03-25 2010-10-14 Neturen Co Ltd Device for simulation of high frequency quenching
JP2014081208A (en) * 2012-10-12 2014-05-08 Neturen Co Ltd Simulation program of heat treatment

Also Published As

Publication number Publication date
JP2513542B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
Lupi Fundamentals of electroheat
Fatoorehchi et al. Theoretical and experimental investigation of thermal dynamics of Steinhart–Hart negative temperature coefficient thermistors
Di Luozzo et al. Modelling of induction heating of carbon steel tubes: Mathematical analysis, numerical simulation and validation
Patidar et al. Analytical, numerical and experimental analysis of induction heating of graphite crucible for melting of non‐magnetic materials
Hadad et al. Inductive heating with a stepped diameter crucible
Skoczkowski et al. The mathematical model of induction heating of ferromagnetic pipes
Schnitzer Fast penetration of megagauss fields into metallic conductors
Narayan Prabhu et al. Inverse modeling of heat transfer with application to solidification and quenching
Tszeng et al. A study of fin effects in the measurement of temperature using surface-mounted thermocouples
JP2513542B2 (en) Analysis method of temperature distribution of conductive material by induction heating
Liu et al. Numerical and experimental study of electromagnetic induction heating process for bolted flange joints
Ocilka et al. Simulation model of induction heating in Comsol multiphysics
Zhu et al. A novel nonlinearity marginalization technique for effective solution of induction heating problems by cell method
Barglik et al. Modelling of continual induction hardening in quasi‐coupled formulation
Gao et al. Dimensionless analysis and mathematical modeling of electromagnetic levitation (EML) of metals
Geza et al. Potential of open source simulation tools for induction heating
Park et al. Multiobjective optimization of the heating process for forging automotive crankshaft
Ertu¨ rk et al. Boundary condition design to heat a moving object at uniform transient temperature using inverse formulation
Doležel et al. Induction heating of thin metal plates in time-varying external magnetic field solved as nonlinear hard-coupled problem
Fisk Validation of induction heating model for alloy 718 components
JP2816507B2 (en) Temperature distribution analysis method for moving heated material
Desisa Numerical Modeling of Induction Heating Process Control
Gilev et al. Mathematical model of the process of volumetric induction heating of cylindrical pieces
Baker Classical heat flow problems applied to induction billet heating
Pleshivtseva et al. Multi-objective optimization of induction surface hardening process

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960116

LAPS Cancellation because of no payment of annual fees