JP2014081208A - Simulation program of heat treatment - Google Patents

Simulation program of heat treatment Download PDF

Info

Publication number
JP2014081208A
JP2014081208A JP2012227215A JP2012227215A JP2014081208A JP 2014081208 A JP2014081208 A JP 2014081208A JP 2012227215 A JP2012227215 A JP 2012227215A JP 2012227215 A JP2012227215 A JP 2012227215A JP 2014081208 A JP2014081208 A JP 2014081208A
Authority
JP
Japan
Prior art keywords
workpiece
heat treatment
analysis
magnetic field
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012227215A
Other languages
Japanese (ja)
Other versions
JP6086344B2 (en
Inventor
Takashi Horino
孝 堀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2012227215A priority Critical patent/JP6086344B2/en
Publication of JP2014081208A publication Critical patent/JP2014081208A/en
Application granted granted Critical
Publication of JP6086344B2 publication Critical patent/JP6086344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simulation program of heat treatment, which has a reduced analysis time.SOLUTION: Simulation of heat treatment in which a workpiece is subjected to induction heating while the workpiece is moved around an axis or along a shape of the workpiece relative to a heating coil or the heating coil is moved around the axis or along the shape of the workpiece relative to the workpiece includes: a magnetic field analysis step (STEP2) of obtaining a distribution of heat generation densities occurring in the workpiece due to induction heating in a state where the workpiece is fixed relative to the heating coil; and a heat treatment analysis step (STEP3) of computing a heat generation density distribution at the time of a trace of movement of the workpiece around the axis or along the shape of the workpiece relative to the heating coil, by rotating the heat generation density distribution obtained in the magnetic field analysis step around the axis or moving it along the shape of the workpiece, and obtaining a temperature distribution of the workpiece each time when computing the heat generation density distribution.

Description

本発明は、加熱コイルに高周波電流を流し、加熱コイルに対してワークを軸回り若しくはワークの形状に沿って移動させながら又はワークに対して加熱コイルを軸回り若しくはワークの形状に沿って移動させながら、ワークを誘導加熱する熱処理のシミュレーションプログラムに関する。   The present invention applies a high-frequency current to the heating coil and moves the workpiece around the axis or along the shape of the workpiece relative to the heating coil, or moves the heating coil around the axis or along the shape of the workpiece relative to the workpiece. However, the present invention relates to a heat treatment simulation program for induction heating of a workpiece.

自動車部品、建機部品などを作製する際、疲労強度や耐摩耗性の向上を目的として熱処理が行われている。高周波焼入れは、短時間加熱やインライン処理が可能であり、焼入品質の再現性に優れるなどの特徴を持つ熱処理の一つである。   When manufacturing automobile parts, construction machine parts, etc., heat treatment is performed for the purpose of improving fatigue strength and wear resistance. Induction hardening is one of the heat treatments that has features such as short-time heating and in-line treatment, and excellent quenching quality reproducibility.

本発明者らは、高周波焼入れにおいて、焼入範囲や硬さ分布、変形量などの熱処理品質に影響を及ぼす因子は多く存在することから、高周波焼入れに必要な加熱コイルや冷却ジャケット形状、焼入れ条件設定について、高精度に予測できるコンピュータシミュレーション技術の研究開発を行っている(例えば特許文献1)。   In the induction hardening, the inventors have many factors that affect the quality of heat treatment such as quenching range, hardness distribution, deformation amount, etc. Research and development of computer simulation technology that can predict the setting with high accuracy is performed (for example, Patent Document 1).

高周波焼入れのシミュレーションでは、磁場解析と熱処理解析を交互に行うことで、熱処理の品質を予測することができる。その予測精度を高めるため、特許文献1では、誘導加熱による金属部品の渦電流・発熱密度量分布を求めるのに適した磁場解析用FEMモデルと、金属部品の温度分布、金属組織分布、応力・ひずみ分布を相互に関連付けて解析するのに適した熱処理解析用FEMモデルと、を用いる。これら複数のFEMモデルを使用するため、解析結果を相互にやりとりを行う連成解析プログラムを使用している(例えば特許文献2)。   In the induction hardening simulation, the quality of heat treatment can be predicted by alternately performing magnetic field analysis and heat treatment analysis. In order to improve the prediction accuracy, Patent Document 1 discloses an FEM model for magnetic field analysis suitable for obtaining an eddy current / heat generation density distribution of a metal part by induction heating, a temperature distribution of a metal part, a metal structure distribution, a stress / An FEM model for heat treatment analysis suitable for analyzing the strain distribution in correlation with each other is used. In order to use the plurality of FEM models, a coupled analysis program that exchanges analysis results with each other is used (for example, Patent Document 2).

特開2010−230331号公報JP 2010-230331 A 特開平11−328157号公報JP 11-328157 A

ワークの加熱領域が軸対称であって加熱コイルが複雑な形状を有している場合には、ワークを軸回りに回転させながら誘導加熱を施している。誘導加熱による昇温をシミュレーションするためには、加熱コイルに対してワークを同軸上で相対回転角θを0から2πまでΔθずつ増加させ、Δθ増加させるたびに磁場解析と熱処理解析とを交互に実行することになる。磁場解析とは、磁場解析により加熱コイルを用いてワークに生じる発熱密度量分布を求めることであり、熱処理解析とは、磁場解析の結果から熱伝導解析によりワークの温度分布、金属組織分布および応力・ひずみ分布を求めることである。   When the heating region of the workpiece is axisymmetric and the heating coil has a complicated shape, induction heating is performed while rotating the workpiece around the axis. In order to simulate the temperature rise by induction heating, the relative rotation angle θ is increased by Δθ from 0 to 2π on the same axis with respect to the heating coil, and magnetic field analysis and heat treatment analysis are alternately performed each time Δθ is increased. Will be executed. Magnetic field analysis is to obtain the distribution of heat generation density generated in the work using a heating coil by magnetic field analysis, and heat treatment analysis is to calculate the temperature distribution, metal structure distribution and stress of work by heat conduction analysis from the result of magnetic field analysis.・ To obtain strain distribution.

すると磁場解析と熱処理解析とをΔθ毎に交互に頻繁に行うことになり、シミュレーション結果を得るまでに要する時間が長くなり、迅速な加熱コイルの設計に支障をきたす。   Then, the magnetic field analysis and the heat treatment analysis are frequently performed alternately for each Δθ, and the time required to obtain the simulation result becomes long, which hinders the rapid heating coil design.

そこで、本発明は、解析時間の大幅な短縮化を図った熱処理のシミュレーションプログラムを提供することを目的の一つとする。   Accordingly, an object of the present invention is to provide a heat treatment simulation program that greatly shortens the analysis time.

上記目的を達成するために、本発明は、加熱コイルに対してワークを軸回り若しくはワークの形状に沿って移動させながら又はワークに対して加熱コイルを軸回り若しくはワークの形状に沿って移動させながらワークを誘導加熱する熱処理のシミュレーションプログラムにおいて、加熱コイルに対してワークを固定した状態で、誘導加熱によってワークに生じる発熱密度量の分布を求める磁場解析ステップと、加熱コイル、ワークの何れかを軸回り又はワークの形状に沿って微小量移動したときの発熱密度量分布について、上記磁場解析ステップで求めた発熱密度量分布を軸回り又はワークの形状に沿って移動させることで計算し、その計算のたびに、ワークの温度分布を求める熱処理解析ステップと、を有することを特徴とする。   In order to achieve the above object, the present invention moves the heating coil around the axis or along the shape of the workpiece relative to the heating coil or moves the heating coil around the axis or along the shape of the workpiece relative to the workpiece. In the heat treatment simulation program for induction heating of the workpiece, the magnetic field analysis step for obtaining the distribution of the heat generation density amount generated in the workpiece by induction heating with the workpiece fixed to the heating coil, and either the heating coil or the workpiece About the calorific density distribution when moving a small amount around the axis or along the shape of the workpiece, the calorific density distribution calculated in the magnetic field analysis step is calculated by moving around the axis or along the shape of the workpiece, And a heat treatment analysis step for obtaining a temperature distribution of the workpiece for each calculation.

好ましくは、磁場解析ステップでは、メッシュ単位で発熱密度量を求め、熱処理解析ステップでは、磁場解析ステップで求めたメッシュ単位での発熱密度量を移動させて、磁場解析の回数を低減したことを特徴とする。   Preferably, in the magnetic field analysis step, the amount of heat generation density is obtained in units of mesh, and in the heat treatment analysis step, the amount of heat generation density in units of mesh obtained in the magnetic field analysis step is moved to reduce the number of times of magnetic field analysis. And

好ましくは、熱処理解析ステップにおいて、ワークの昇温によって加熱コイルによる磁場分布が解析結果に影響を大きく与えるほど変化するか否かを判断し、変化したと判断した場合に前記磁場解析ステップを実行する。   Preferably, in the heat treatment analysis step, it is determined whether or not the magnetic field distribution due to the heating coil changes so as to greatly affect the analysis result due to the temperature rise of the workpiece, and the magnetic field analysis step is executed when it is determined that the change has occurred. .

好ましくは、熱処理解析ステップでは、発熱密度量分布の結果を用いて熱伝導解析を実行させ、ワークの温度分布を求める。   Preferably, in the heat treatment analysis step, the heat conduction analysis is executed using the result of the heat generation density amount distribution, and the temperature distribution of the workpiece is obtained.

好ましくは、熱処理解析ステップでは、熱伝導解析を実行する際に、ワークの金属組織の相変態と応力及びひずみとの連成解析を行ってワークの温度分布を求める。   Preferably, in the heat treatment analysis step, when performing the heat conduction analysis, a coupled analysis of the phase transformation of the metal structure of the workpiece and the stress and strain is performed to obtain the temperature distribution of the workpiece.

本発明によれば、加熱コイルとワークとが或る位置関係にあるときに磁場解析を行い、その後、ワークの温度分布を熱処理解析で求める際、その磁場解析の結果を軸回り又はワークの形状に沿って微小量移動させて発熱密度分布を求める。これにより、加熱コイルに対しワークを微小移動させるたびに、磁場解析を行う必要がない。従来、磁場解析と熱処理解析とを交互に行うと、トータルの解析時間の大半は磁場解析に使用される。本発明により、磁場解析の回数を大幅に低減するため、熱処理シミュレーションに要する時間を大幅に短縮することができる。   According to the present invention, when the heating coil and the workpiece are in a certain positional relationship, the magnetic field analysis is performed, and then, when the temperature distribution of the workpiece is obtained by the heat treatment analysis, the result of the magnetic field analysis is obtained around the axis or the shape of the workpiece The heat generation density distribution is obtained by moving a small amount along the line. Thereby, it is not necessary to perform a magnetic field analysis every time the work is moved minutely with respect to the heating coil. Conventionally, when magnetic field analysis and heat treatment analysis are performed alternately, most of the total analysis time is used for magnetic field analysis. According to the present invention, since the number of times of magnetic field analysis is greatly reduced, the time required for the heat treatment simulation can be greatly shortened.

本発明の実施形態に係る熱処理のシミュレーションプログラムをインストールすることにより実現される熱処理シミュレーション装置のブロック構成図である。It is a block block diagram of the heat processing simulation apparatus implement | achieved by installing the heat processing simulation program which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理のシミュレーションの対象となるワーク及び加熱コイルの一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the workpiece | work and heating coil used as the object of the simulation of the heat processing which concerns on embodiment of this invention. 図2に示す配置において加熱コイルにより生じるワーク表面の発熱密度量の分布を模式的に示す図である。It is a figure which shows typically distribution of the heat-generation density amount of the workpiece | work surface produced by a heating coil in arrangement | positioning shown in FIG. 図1に示す熱処理解析部において行わる連成解析を説明するための概略図である。It is the schematic for demonstrating the coupled analysis performed in the heat processing analysis part shown in FIG. 本発明の実施形態に係る熱処理のシミュレーションプログラムによる処理フローを示す図である。It is a figure which shows the processing flow by the simulation program of the heat processing which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理のシミュレーションプログラムによるタイムチャートを示す図である。It is a figure which shows the time chart by the simulation program of the heat processing which concerns on embodiment of this invention.

以下、本発明の実施形態について添付図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

〔熱処理シミュレーション装置〕
図1は本発明の実施形態に係る熱処理のシミュレーションプログラムをインストールすることにより実現される熱処理シミュレーション装置のブロック構成図である。本発明の実施形態に係る熱処理シミュレーション装置1は、入力手段2と出力手段3と解析手段4とを備える。
入力手段2はキーボードやマウスなどで構成されており、入力手段2はユーザから入力された各種指令や情報についての信号を解析手段4に出力する。出力手段3はディスプレイ装置などで構成されており、出力手段3は解析手段4からの出力信号に基いて表示する。解析手段4は、入力手段2から信号の入力を受けると共に、出力手段3に対して出力信号を出力し、シミュレーション解析を行う。
[Heat treatment simulation equipment]
FIG. 1 is a block configuration diagram of a heat treatment simulation apparatus realized by installing a heat treatment simulation program according to an embodiment of the present invention. A heat treatment simulation apparatus 1 according to an embodiment of the present invention includes an input unit 2, an output unit 3, and an analysis unit 4.
The input unit 2 includes a keyboard, a mouse, and the like, and the input unit 2 outputs signals about various commands and information input from the user to the analysis unit 4. The output means 3 is composed of a display device or the like, and the output means 3 displays based on the output signal from the analysis means 4. The analysis unit 4 receives a signal input from the input unit 2 and outputs an output signal to the output unit 3 to perform a simulation analysis.

解析手段4は、CPU又はMPUと本発明の実施形態に係る熱処理シミュレーションプログラムを格納する記録媒体とで構成される。CPUやMPUにより熱処理シミュレーションプログラムを実行することで解析手段4が機能する。解析手段4は、磁場解析部4A、熱処理解析部4B、解析制御部4C及び解析データベース4Dを備える。   The analysis unit 4 includes a CPU or MPU and a recording medium that stores the heat treatment simulation program according to the embodiment of the present invention. The analysis means 4 functions by executing a heat treatment simulation program by the CPU or MPU. The analysis means 4 includes a magnetic field analysis unit 4A, a heat treatment analysis unit 4B, an analysis control unit 4C, and an analysis database 4D.

解析手段4の各部について詳細に説明する前提として、本発明の実施形態に係る熱処理シミュレーションの対象について説明する。図2は、本発明の実施形態に係る熱処理シミュレーションの対象となるワーク及び加熱コイルの一例を模式的に示す断面図である。   As a premise for explaining each part of the analysis means 4 in detail, the object of the heat treatment simulation according to the embodiment of the present invention will be explained. FIG. 2 is a cross-sectional view schematically showing an example of a workpiece and a heating coil that are targets of a heat treatment simulation according to the embodiment of the present invention.

熱処理シミュレーションの対象となる金属部品は、加熱領域が軸回りまたは部品形状に沿って設定される場合が多い。ここで、「加熱領域が軸回り」とは、例えば加熱領域が軸回りに対称である場合のみならず、加熱領域が軸回りに対称と近似できる場合も当然含まれている。「加熱領域が部品形状に沿って」とは、例えば、所定の断面形状がある特定の方向に沿って延びている場合が挙げられる。図2は、シミュレーションの理解を容易にするために模式的に示しているに過ぎない。磁場解析、熱処理解析をする際にワークには座標軸が設定されるが、加熱領域はその座標軸を回転変換したり平行移動したりすることによって表現出来るようであれば、本発明が適用される。   In many cases, a metal part to be subjected to a heat treatment simulation has a heating region set around an axis or along a part shape. Here, “the heating region is about the axis” includes, for example, not only the case where the heating region is symmetric about the axis, but also the case where the heating region can be approximated about the axis. The phrase “the heating region is along the part shape” includes, for example, a case where the predetermined cross-sectional shape extends along a certain direction. FIG. 2 is only schematically shown to facilitate understanding of the simulation. Coordinate axes are set for the workpiece when performing magnetic field analysis and heat treatment analysis, but the present invention is applied as long as the heating region can be expressed by rotating and translating the coordinate axes.

図2に示すワークw及び加熱コイル10について説明する。図2に示すように、ワークwは、軸回りに対称な形状であって、円錐台形状を有する。加熱コイル10は、ワークwの形状に応じて設計される。図2に示すように、例えばワークwと同軸上に配置されかつワークwに外周側面に対向するように、加熱コイル10が設計される。外周面から所定の厚み部分が加熱領域として選定される。加熱コイル10は、図2に示すように、ワークwの外周側面に対向し、ワークwを挟んで左右で対を成すように左側の加熱コイル10Lと右側の加熱コイル10Rとで構成される。   The workpiece w and the heating coil 10 shown in FIG. 2 will be described. As shown in FIG. 2, the workpiece w has a symmetrical shape around the axis and has a truncated cone shape. The heating coil 10 is designed according to the shape of the workpiece w. As shown in FIG. 2, for example, the heating coil 10 is designed so as to be arranged coaxially with the workpiece w and to face the outer peripheral side surface of the workpiece w. A predetermined thickness portion from the outer peripheral surface is selected as the heating region. As shown in FIG. 2, the heating coil 10 is composed of a left heating coil 10 </ b> L and a right heating coil 10 </ b> R so as to face the outer peripheral side surface of the workpiece w and to form a pair on the left and right sides of the workpiece w.

次に、解析手段4の各部について詳細に説明する。   Next, each part of the analysis means 4 will be described in detail.

磁場解析部4Aは、マクスウェルの電磁方程式に基いて有限要素法により解析を行う。解析手法にはA法又はA−φ法が用いられる。磁場解析部4Aは、ワーク、加熱コイル及びその周りの空間を複数の要素に分割し、加熱コイル及びその周辺に発生する磁束分布の時間的変化に伴ってワーク表面近傍に生じる渦電流を算出し、要素毎又は節点毎に発熱密度量を求める。本発明の実施形態においては、加熱コイルに対しワークが軸回り又はワークの形状に沿って移動させている熱処理状況をシミュレーションするわけであるが、磁場解析部4Aでは加熱コイルに対してワークが或る位置で固定された状態で磁場解析を行い、或る位置から僅かに順に移動させた状態での磁場解析を行わない。   The magnetic field analysis unit 4A performs analysis by the finite element method based on Maxwell's electromagnetic equations. As the analysis method, the A method or the A-φ method is used. The magnetic field analysis unit 4A divides the work, the heating coil, and the surrounding space into a plurality of elements, and calculates the eddy current generated in the vicinity of the work surface in accordance with the temporal change of the magnetic flux distribution generated in the heating coil and its surroundings. The amount of heat generation is determined for each element or node. In the embodiment of the present invention, the heat treatment situation in which the workpiece is moved around the axis or along the shape of the workpiece with respect to the heating coil is simulated. In the magnetic field analysis unit 4A, there is a workpiece with respect to the heating coil. The magnetic field analysis is performed in a fixed state at a certain position, and the magnetic field analysis is not performed in a state where the magnetic field is moved slightly from a certain position in order.

図3は、図2に示す配置において加熱コイルにより生じるワーク表面の発熱密度量の分布を模式的に示す図である。図3に示すように、横軸に加熱領域の軸回りの角度θを、縦軸に発熱密度量をとる。加熱領域の軸回りの角度θの座標軸は、非回転系に設定されているものとする。   FIG. 3 is a diagram schematically showing the distribution of the heat generation density amount on the workpiece surface generated by the heating coil in the arrangement shown in FIG. As shown in FIG. 3, the horizontal axis represents the angle θ around the axis of the heating region, and the vertical axis represents the heat generation density. It is assumed that the coordinate axis of the angle θ around the axis of the heating region is set to a non-rotating system.

磁場解析によって、時間tにおける発熱密度量分布が、例えば図3に実線で示すようにf(θ,t)として求まる。図3では、ワークw、加熱コイル10が軸回りに略対称であるので、発熱密度量分布f(θ,t)も対称となる。
時間t+Δtのときの発熱密度量分布f(θ,t+Δt)は、時間tにおいて加熱コイル10をワークwに対してΔθだけ回転させたときの発熱密度量分布f(θ+Δθ,t)等しいと近似することができる。つまり、f(θ,t+Δt)≒f(θ+Δθ,t)が成り立つ。
なお、時間t+Δtのとき、加熱コイル10とワークwとの位置関係の何れかをΔθだけ回転させるとすると、ΔθとΔtとの関係として、Δθ=Δt×(ワークw又は加熱コイル10の軸回りの角速度)が成立する。
By the magnetic field analysis, the heat generation density distribution at time t is obtained as f (θ, t) as shown by a solid line in FIG. In FIG. 3, since the workpiece w and the heating coil 10 are substantially symmetrical about the axis, the heat generation density distribution f (θ, t) is also symmetric.
The heat generation density amount distribution f (θ, t + Δt) at time t + Δt is approximated to be equal to the heat generation density amount distribution f (θ + Δθ, t) when the heating coil 10 is rotated by Δθ with respect to the workpiece w at time t. be able to. That is, f (θ, t + Δt) ≈f (θ + Δθ, t) holds.
At time t + Δt, if any of the positional relationship between the heating coil 10 and the workpiece w is rotated by Δθ, the relationship between Δθ and Δt is expressed as Δθ = Δt × (around the axis of the workpiece w or the heating coil 10). Angular velocity) is established.

よって、磁場解析を行った状態から加熱コイル10をnΔθだけ回転したときの発熱密度量分布f(θ+nΔθ,t)は、ワークwの温度上昇量が小さいと評価して、f(θ,t+nΔt)と近似することができ、角度θの座標を変換すればよい。ただし、nは自然数である。
従って、ワークwに対して加熱コイル10が僅かに移動しても磁場解析を逐一行う必要がない。
Therefore, the heat generation density distribution f (θ + nΔθ, t) when the heating coil 10 is rotated by nΔθ from the state where the magnetic field analysis has been performed is evaluated as f (θ, t + nΔt) where the temperature rise amount of the work w is small. And the coordinates of the angle θ may be converted. However, n is a natural number.
Therefore, even if the heating coil 10 slightly moves with respect to the workpiece w, it is not necessary to perform the magnetic field analysis step by step.

なお、電磁方程式を有限要素法で解析する手法及び数値解析手法について概略を示すと次のとおりである。ワーク、加熱コイルなどの形状及び寸法やその周りの空間が各節点で複数の要素にFEMモデルによって区分けされている。FEMモデルとして、座標で示す節点情報と、各要素を構成する節点情報の組み合わせ(以下、単に「要素情報」と呼ぶことにする。)が解析データベース4Dに設定されている。ワーク及び加熱コイルの各素材に関する材料物性情報として、組織毎の電気伝導率及び比透磁率データについて温度依存性のデータが、例えば解析データベース4Dに格納される。FEMモデルにおいて各節点での温度データの初期値が設定され、周波数とコイル電流又はコイル電圧とが解析条件として入力されることで、磁場解析部4Aにより磁場に関する解析がなされて節点毎又は要素毎に発熱密度量が求められる。   An outline of a method for analyzing an electromagnetic equation by a finite element method and a numerical analysis method are as follows. The shape and dimensions of the workpiece, the heating coil, etc., and the surrounding space are divided into a plurality of elements at each node by the FEM model. As the FEM model, a combination of node information indicated by coordinates and node information constituting each element (hereinafter simply referred to as “element information”) is set in the analysis database 4D. As material property information regarding each material of the workpiece and the heating coil, temperature-dependent data is stored in, for example, the analysis database 4D for the electrical conductivity and relative permeability data for each tissue. In the FEM model, the initial value of the temperature data at each node is set, and the frequency and the coil current or the coil voltage are input as analysis conditions, so that the magnetic field analysis unit 4A performs an analysis on the magnetic field for each node or each element. The amount of heat generation density is required.

熱処理解析部4Bは、磁場解析部4Aで求めた結果、すなわち発熱密度量の分布を用いてワークを軸回りに又はワークの形状に沿って微小量移動させたとき熱伝導方程式を解く。熱処理解析部4Bにおいて、熱伝導方程式を解く際、連成解析を行うと、熱処理の解析を行うことができる。   The heat treatment analysis unit 4B solves the heat conduction equation when the work is moved by a minute amount around the axis or along the shape of the work using the result obtained by the magnetic field analysis unit 4A, that is, the distribution of the heat generation density. When the heat treatment analysis unit 4B solves the heat conduction equation and performs a coupled analysis, the heat treatment can be analyzed.

図4は、熱処理解析部4Bにおいて行わる連成解析を説明するための概略図である。図4に示すように、ワーク、つまり金属部品における任意領域の温度、組織、応力及びひずみは相互に関連しあっている。「連成解析」とは、複数の物理現象の複雑な相互影響を考慮しながら解析することを意味する。この連成解析により、FEMモデルに設定した各節点の温度やひずみ、要素毎の応力、金属組織などが予測できる。   FIG. 4 is a schematic diagram for explaining the coupled analysis performed in the heat treatment analysis unit 4B. As shown in FIG. 4, the temperature, structure, stress, and strain of an arbitrary region in the workpiece, that is, the metal part are correlated with each other. “Coupled analysis” means that analysis is performed in consideration of complex mutual influences of a plurality of physical phenomena. By this coupled analysis, the temperature and strain of each node set in the FEM model, stress for each element, metal structure, and the like can be predicted.

複数の物理現象の複雑な相互影響について具体的に説明する。ワークの任意の領域において時系列的な温度変化による相変態が生じる一方、逆に任意の領域において相変態が生じると、潜熱の発生・吸収が生じる。ワークの任意の領域において相変態が不均一であると、その局部的な体積変化による応力が生じる一方、逆に応力が生じると相変態の開始時間に影響を与える。また、ワークに変形が生じるとその変形部分が発熱する一方、逆に任意の領域に温度差が生じると応力が生じる。   The complex interaction of multiple physical phenomena will be described in detail. While a phase transformation due to a time-series temperature change occurs in an arbitrary region of the workpiece, conversely, if a phase transformation occurs in an arbitrary region, generation / absorption of latent heat occurs. If the phase transformation is not uniform in any region of the workpiece, stress is generated due to the local volume change. Conversely, if the stress is generated, the start time of the phase transformation is affected. Further, when the workpiece is deformed, the deformed portion generates heat. On the contrary, when a temperature difference is generated in an arbitrary region, stress is generated.

そのため、熱伝達解析、組成解析、応力・ひずみ解析はそれぞれの項目に相関関係があり、温度変化から組織が変化したり、応力やひずみが生じたりする一方、相変態や応力・ひずみが生じるとその領域の温度が変化する。   For this reason, heat transfer analysis, composition analysis, and stress / strain analysis are correlated with each other, and when the structure changes due to temperature change or stress or strain occurs, phase transformation or stress / strain occurs. The temperature in that region changes.

熱処理解析部4Bの処理について、図2に示すワークw及び加熱コイル10を例にとって説明する。   The processing of the heat treatment analysis unit 4B will be described by taking the work w and the heating coil 10 shown in FIG. 2 as an example.

ワークwと加熱コイル10との位置関係を固定した状態において、磁場解析部4Aにより図3に示すように発熱密度量の分布f(θ、t)が求まっているので、要素毎に発熱量が求まっている。そこで、連成解析を行って、節点又は要素毎に熱処理解析を行い、要素毎の組成、節点又は要素毎に温度を求める。   In the state where the positional relationship between the workpiece w and the heating coil 10 is fixed, the magnetic field analysis unit 4A determines the heat generation density distribution f (θ, t) as shown in FIG. Wanted. Therefore, coupled analysis is performed, heat treatment analysis is performed for each node or element, and the composition for each element, temperature for each node or element is obtained.

次に、ワークwが加熱コイル10の軸回りにΔθだけ回転しているとき、発熱密度量分布を求める。加熱領域が軸回りに対称であることから、発熱密度量分布f(θ,t+Δt)は、f(θ+Δθ,t)として近似することができる。これにより、要素毎に発熱量が求まるので、連成解析により熱処理解析を行い、要素毎の組成、節点又は要素毎に温度を求める。   Next, when the workpiece w rotates about the axis of the heating coil 10 by Δθ, a heat generation density amount distribution is obtained. Since the heating region is symmetric about the axis, the heat generation density distribution f (θ, t + Δt) can be approximated as f (θ + Δθ, t). As a result, the calorific value is obtained for each element, so heat treatment analysis is performed by coupled analysis, and the temperature for each composition, node or element is obtained.

このように、ワークwを僅かに回転させながら、Δt毎にワークwの加熱領域に生じる発熱密度量の分布を、磁場解析部4Aで求めた発熱密度量分布f(θ,t)をワークwの軸回りにΔθ回転させることにより、f(θ+nΔθ,t)として求める。   In this way, while the work w is slightly rotated, the heat generation density distribution f (θ, t) obtained by the magnetic field analysis unit 4A is calculated from the heat generation density distribution generated in the heating region of the work w every Δt. Is obtained as f (θ + nΔθ, t).

よって、発熱密度量分布を回転させて求めた結果を基にして熱処理解析をすればよい。   Therefore, the heat treatment analysis may be performed based on the result obtained by rotating the heat generation density amount distribution.

熱処理解析部4Bは、このように、発熱密度量の分布を座標変換して求めることとその求めた分布に基いて熱処理解析を行うことを繰り返すことにより、あたかも磁場解析と熱処理解析を逐一交互に行った場合と同じように、ワークを軸回りに回転させたときの節点又は要素毎に温度分布を求めることができる。   In this way, the heat treatment analysis unit 4B repeatedly obtains the distribution of the heat generation density by coordinate conversion and repeats the heat treatment analysis based on the obtained distribution, so that the magnetic field analysis and the heat treatment analysis are alternately performed one by one. As in the case where the work is performed, the temperature distribution can be obtained for each node or element when the work is rotated around the axis.

解析制御部4Cは、ワークの昇温によって加熱コイルによる磁場分布が解析結果に影響を大きく与えるほど変化するか否かを判断し、変化したと判断した場合に磁場解析ステップを行うよう、解析処理に関する制御を行う。   The analysis control unit 4C determines whether or not the magnetic field distribution due to the heating coil changes due to the temperature rise of the workpiece so as to greatly affect the analysis result. Control related to

具体的には、解析制御部4Cは、熱処理解析部4Bが求めたワークの温度分布から、ワークの温度上昇により加熱コイルによる磁場分布に影響を与えるか否かを判断し、影響を与えると判断した場合に、磁場解析部4Aにより再度磁場解析を行うよう磁場解析部4Aと熱処理解析部4Bとの処理を制御する。この判断は、ワークの昇温範囲を設定してもよいし、又はワークを軸回りに又はワークの形状に沿って微小量移動させた回数によって設定してもよい。   Specifically, the analysis control unit 4C determines whether or not the magnetic field distribution due to the heating coil is affected by the temperature increase of the workpiece from the workpiece temperature distribution obtained by the heat treatment analysis unit 4B, and determines that the influence is exerted. In such a case, the processing of the magnetic field analysis unit 4A and the heat treatment analysis unit 4B is controlled so that the magnetic field analysis unit 4A performs the magnetic field analysis again. This determination may be made by setting the temperature rising range of the workpiece or by the number of times the workpiece is moved by a minute amount around the axis or along the shape of the workpiece.

解析制御部4Cがこのような制御を行う理由は、ワークwと加熱コイルとの位置関係を固定して求めた発熱密度量の分布が、ワークwの昇温によって透磁率が変化してワークwへの渦電流が生じる深さや大きさが変化するからである。   The reason why the analysis control unit 4C performs such control is that the distribution of the heat generation density obtained by fixing the positional relationship between the workpiece w and the heating coil changes the permeability due to the temperature rise of the workpiece w. This is because the depth and magnitude at which the eddy current is generated changes.

解析制御部4Cによる判断は、ワークの昇温が一定の範囲を超えた場合だけでなく、次のような場合であってもよい。例えば図2に示すように、ワークwの外周側面に対して対をなすように左右の加熱コイル10L,10Rが対向して配置されているような形態にあっては、ワークwをπ回転するまで熱処理解析することによってワークが一様に昇温したと擬制される場合であってもよい。つまり、前回行った磁場解析の結果をそのまま使用すると誤差が生じてしまうような場合が含まれる。   The determination by the analysis control unit 4C may be performed not only when the temperature of the workpiece exceeds a certain range but also as follows. For example, as shown in FIG. 2, when the left and right heating coils 10 </ b> L and 10 </ b> R are arranged to face each other so as to make a pair with the outer peripheral side surface of the work w, the work w is rotated by π. It may be assumed that the workpiece is heated up uniformly by performing the heat treatment analysis. That is, there is a case where an error occurs if the result of the previous magnetic field analysis is used as it is.

解析データベース4Dには、磁場解析部4A、熱処理解析部4B及び解析制御部4Cにおいて必要とされる各種データが蓄積される。各種データには、材料物性データ以外にワークwや加熱コイル10の形状など3次元CADなどを用いてモデル化したデータも含まれる。   In the analysis database 4D, various data required in the magnetic field analysis unit 4A, the heat treatment analysis unit 4B, and the analysis control unit 4C are stored. The various data includes data modeled using a three-dimensional CAD such as the shape of the workpiece w and the heating coil 10 in addition to the material property data.

ここで、本発明の実施形態に係る熱処理シミュレーション装置、方法及びプログラムは、図2に示すようなワークとそれに対応した加熱コイルとが同軸上に配置されワークが回転されるものに限らず、場合によっては加熱コイルが回転してもよい。ワークが一方向に並んでいる、特にレールなどの表面部分を熱処理する場合にも適用される。ワークの長手方向に沿って直線状又は曲線状に加熱領域が設定されているものであってもよい。以下ではその双方を前提として、シミュレーション方法及びプログラムについて説明する。   Here, the heat treatment simulation apparatus, method, and program according to the embodiment of the present invention are not limited to the case where the work and the heating coil corresponding to the work as shown in FIG. Depending on the case, the heating coil may rotate. The present invention is also applied to the case where the workpieces are aligned in one direction, and particularly a surface portion such as a rail is heat-treated. The heating area may be set linearly or curved along the longitudinal direction of the workpiece. In the following, a simulation method and a program will be described on the assumption of both.

〔シミュレーション方法、シミュレーションプログラム〕
本発明の実施形態に係る熱処理のシミュレーションプログラムを実行することでなされる熱処理のシミュレーション方法について詳細に説明する。図5は本発明の実施形態に係る熱処理のシミュレーションプログラムによる処理フローを示す図である。
[Simulation method, simulation program]
A heat treatment simulation method performed by executing a heat treatment simulation program according to an embodiment of the present invention will be described in detail. FIG. 5 is a diagram showing a processing flow by a heat treatment simulation program according to the embodiment of the present invention.

STEP1として、入力手段2から各種データの入力を行う。入力されるデータとしては、ワーク、加熱コイルの形状データがある。形状データは、形状、寸法、材料、など各種の情報を含んでいる。これらの形状データは、磁場解析部4Aや熱処理解析部4Bにおいて用いられるFEMモデルとして、ワーク及び加熱コイルのそれぞれの形状に沿って節点を座標として定め、節点の組み合わせ、即ち要素情報に基づいてワーク及び加熱コイルを微細化した領域、つまり各要素を定める。   As STEP 1, various data are input from the input means 2. The input data includes workpiece and heating coil shape data. The shape data includes various types of information such as shape, size, and material. These shape data are obtained as FEM models used in the magnetic field analysis unit 4A and the heat treatment analysis unit 4B, by defining the nodes as coordinates along the shapes of the workpiece and the heating coil, and by combining the nodes, that is, based on the element information And the area | region which refined the heating coil, ie, each element, is defined.

ワークの加熱領域が軸回りに対称である場合には、軸回りに複数に分割し、その分割領域毎に、各要素を定める。ワークの加熱領域が一方向に延びているような場合にはその一方向に沿って複数に分割し、その分割領域毎に、各要素を定める。FEMモデルに関するデータは、解析データベース部4Dに格納される。   When the heating area of the workpiece is symmetrical around the axis, the workpiece is divided into a plurality of parts around the axis, and each element is determined for each divided area. When the heating area of the workpiece extends in one direction, it is divided into a plurality along the one direction, and each element is determined for each divided area. Data related to the FEM model is stored in the analysis database unit 4D.

STEP2では、磁場解析部4Aにより、FEMモデルに基づいて有限要素法を用いて、ワークが加熱コイルに対して固定されていると仮定し、ワーク及び加熱コイル並びにその周辺部全体を複数の要素に区分して各要素に生じる磁束の分布を求め、各要素における磁束密度分布から渦電流分布を求めて各要素の発熱密度量を求める。その際、加熱コイルからの磁束によりワーク表面からどの程度の深さまで渦電流が発生するかは、解析時点でのワークの温度から参照される電気伝導率と比透磁率とから求められる。   In STEP 2, it is assumed that the workpiece is fixed to the heating coil by the magnetic field analysis unit 4A using the finite element method based on the FEM model, and the workpiece, the heating coil, and the entire periphery thereof are converted into a plurality of elements. The distribution of magnetic flux generated in each element is obtained by division, the eddy current distribution is obtained from the magnetic flux density distribution in each element, and the heat generation density amount of each element is obtained. At this time, to what depth the eddy current is generated from the workpiece surface by the magnetic flux from the heating coil is determined from the electrical conductivity and the relative permeability that are referred to from the temperature of the workpiece at the time of analysis.

STEP3として、熱処理解析部4Bによりワークの各要素の熱分布を解析するため、STEP3−1とSTEP3−2を行う。   As STEP3, STEP3-1 and STEP3-2 are performed in order to analyze the heat distribution of each element of the workpiece by the heat treatment analysis unit 4B.

STEP3−1として、熱処理解析部4Bは、STEP2で磁場解析部4Aにより求めた発熱密度量の分布の座標変換を行う。すなわち、磁場解析部4Aで磁場解析を行った際の加熱コイルとワークとの位置関係から、ワーク又は加熱コイルを軸回り又はワークの形状に沿って微小量移動させた状態での発熱密度量分布を座標変換などによって求める。STEP2で求めた磁場解析をそのまま活用できる場合には、座標変換は不要である。   As STEP 3-1, the heat treatment analysis unit 4B performs coordinate conversion of the distribution of the heat generation density obtained by the magnetic field analysis unit 4A at STEP2. That is, the heat generation density distribution in a state where the workpiece or the heating coil is moved by a minute amount around the axis or along the shape of the workpiece from the positional relationship between the heating coil and the workpiece when the magnetic field analysis is performed by the magnetic field analysis unit 4A. Is obtained by coordinate transformation or the like. If the magnetic field analysis obtained in STEP 2 can be used as it is, coordinate conversion is not necessary.

STEP3−2において、熱処理解析部4Bは、STEP3−1で座標変換で求めた発熱密度分布に基づいて、組織解析、応力・ひずみ解析により連成解析を行って各要素の温度を求める。   In STEP 3-2, the heat treatment analysis unit 4B obtains the temperature of each element by performing coupled analysis by structure analysis and stress / strain analysis based on the heat generation density distribution obtained by coordinate transformation in STEP 3-1.

STEP4において、解析制御部4Cは、ワークを昇温することで加熱コイルによる磁場分布が大きく変化するか否かを判断する。大きく変化したと判断すると、解析終了条件を満たさない限り(STEP6でNo)、磁場解析ステップ(STEP2)に戻る。加熱コイルによる磁場分布が大きく変化する場合とは、例えば、磁場解析をしたときのワークの温度からの昇温範囲が閾値を超えた場合や、軸回りにジュール熱損失量分布を回転させてワークの各部が加熱コイルの各部と対向して昇温した場合などがある。   In STEP 4, the analysis control unit 4 </ b> C determines whether or not the magnetic field distribution by the heating coil is greatly changed by raising the temperature of the workpiece. If it is determined that the analysis has changed significantly, the process returns to the magnetic field analysis step (STEP 2) unless the analysis end condition is satisfied (NO in STEP 6). When the magnetic field distribution due to the heating coil changes greatly, for example, when the temperature rise range from the workpiece temperature when the magnetic field analysis exceeds the threshold, or when the Joule heat loss distribution is rotated around the axis There is a case where the temperature of each part of the heating part faces each part of the heating coil.

STEP4において、加熱コイルによる磁場分布が大きく変化しないと判断されると、STEP3に戻る。   If it is determined in STEP4 that the magnetic field distribution by the heating coil does not change significantly, the process returns to STEP3.

よって、発熱密度量分布を座標変換して熱処理解析を行うことを繰り返すことができる。これにより、微小量移動回数が所定回数、すなわち微小区分数に達した場合、又は加熱コイル10の対称性を考慮して求めた所定回数に達した場合、ワークの各要素の温度が変化したと擬制して、加熱コイルにおる磁場分布が変化したと擬制し、STEP2に戻る。   Therefore, it is possible to repeat the heat treatment analysis by converting the calorific density distribution into coordinates. Thereby, when the number of minute movements reaches a predetermined number, that is, the number of minute sections, or when the number of movements reaches a predetermined number determined in consideration of the symmetry of the heating coil 10, the temperature of each element of the workpiece has changed. Simulate that the magnetic field distribution in the heating coil has changed, and return to STEP2.

以上の手順に沿って、ワークの軸回りに又はワーク形状に沿って所定量移動させることで、シミュレーションが行える。   A simulation can be performed by moving a predetermined amount around the workpiece axis or along the workpiece shape along the above procedure.

図6は、本発明の実施形態に係る熱処理のシミュレーションプログラムによるタイムチャートを示す図である。上段が磁場解析部4Aの処理であり、下段が熱処理解析部4Bの処理である。例えば図2に示すような形状のワークwを加熱コイル10により誘導加熱する場合、ワークwと加熱コイル10との位置関係の一つだけ磁場解析部4Aにより計算を行い、熱処理解析部4Bによる計算をワークwをΔθ(例えば3°)ずつ回転させながら行う。つまり、磁場解析ステップでは、メッシュ単位で発熱密度量を求め、熱処理解析ステップでは、磁場解析ステップで求めたメッシュ単位での発熱密度量を回転又は移動をさせる。よって、磁場解析の回数を大幅に低減することができ、解析時間を大幅に短縮することができる。   FIG. 6 is a diagram showing a time chart by the heat treatment simulation program according to the embodiment of the present invention. The upper stage is the process of the magnetic field analysis unit 4A, and the lower stage is the process of the heat treatment analysis unit 4B. For example, when the workpiece w having a shape as shown in FIG. 2 is induction-heated by the heating coil 10, only one positional relationship between the workpiece w and the heating coil 10 is calculated by the magnetic field analysis unit 4A, and the calculation by the heat treatment analysis unit 4B. Is performed while rotating the workpiece w by Δθ (for example, 3 °). That is, in the magnetic field analysis step, the heat generation density amount is obtained in mesh units, and in the heat treatment analysis step, the heat generation density amount in mesh units obtained in the magnetic field analysis step is rotated or moved. Therefore, the number of magnetic field analyzes can be greatly reduced, and the analysis time can be greatly shortened.

本発明は、前述の実施形態に限らず、本発明の範疇において適宜変更してもよい。なお、前述の説明においては、熱処理解析部では、連成解析を行っているが、熱伝達解析だけでもよい。また、FEMモデルとは、解析しやすいように或る領域(前述の説明では「要素」と呼んでいる。)毎をメッシュに区分けしたものであり、メッシュを構成する複数の節点の組み合せ(前述の説明では「要素情報」と呼んでいる。)を、特許文献2ではメッシュ情報と呼んでいる。なお、磁場解析部4Aと熱処理解析部4BとでFEMモデルを別々にしてそれらの結果を相互に利用し合うように、特許文献1、2に倣って座標変換してもよい。   The present invention is not limited to the above-described embodiment, and may be appropriately changed within the scope of the present invention. In the above description, the heat treatment analysis unit performs the coupled analysis, but only the heat transfer analysis may be performed. Further, the FEM model is obtained by dividing each region (called “element” in the above description) into a mesh for easy analysis, and a combination of a plurality of nodes constituting the mesh (described above). Is called “element information” in Japanese Patent Application Laid-Open No. 2004-26883. Note that coordinate conversion may be performed in accordance with Patent Documents 1 and 2 so that the FEM model is separately used by the magnetic field analysis unit 4A and the heat treatment analysis unit 4B, and the results are mutually used.

1:熱処理シミュレーション装置
2:入力手段
3:出力手段
4:解析手段
4A:磁場解析部
4B:熱処理解析部
4C:解析制御部
4D:解析データベース
10:加熱コイル
10L:左側の加熱コイル
10R:右側の加熱コイル
W:金属部材(ワーク)
1: heat treatment simulation device 2: input means 3: output means 4: analysis means 4A: magnetic field analysis unit 4B: heat treatment analysis unit 4C: analysis control unit 4D: analysis database 10: heating coil 10L: left heating coil 10R: right side Heating coil W: Metal member (work)

Claims (5)

加熱コイルに対してワークを軸回り若しくはワークの形状に沿って移動させながら又はワークに対して加熱コイルを軸回り若しくはワークの形状に沿って移動させながらワークを誘導加熱する熱処理のシミュレーションプログラムにおいて、
加熱コイルに対してワークを固定した状態で、誘導加熱によってワークに生じる発熱密度量の分布を求める磁場解析ステップと、
加熱コイル、ワークの何れかを軸回り又はワークの形状に沿って微小量移動したときの発熱密度量分布について、上記磁場解析ステップで求めた発熱密度量分布を軸回り又はワークの形状に沿って移動させることで計算し、その計算のたびに、ワークの温度分布を求める熱処理解析ステップと、
を有することを特徴とする、熱処理のシミュレーションプログラム。
In a simulation program of heat treatment for inductively heating a workpiece while moving the workpiece around the axis or along the shape of the workpiece relative to the heating coil or moving the heating coil around the axis or along the shape of the workpiece relative to the workpiece,
A magnetic field analysis step for obtaining a distribution of a heat generation density amount generated in the workpiece by induction heating in a state where the workpiece is fixed to the heating coil;
Regarding the heat generation density amount distribution when the heating coil or the workpiece is moved by a minute amount around the axis or along the shape of the workpiece, the heat generation density amount distribution obtained in the magnetic field analysis step is about the axis or along the shape of the workpiece. A heat treatment analysis step to calculate the temperature distribution of the workpiece for each calculation,
A heat treatment simulation program characterized by comprising:
前記磁場解析ステップでは、メッシュ単位で発熱密度量を求め、
前記熱処理解析ステップでは、前記磁場解析ステップで求めたメッシュ単位での発熱密度量を移動させて、磁場解析の回数を低減したことを特徴とする、請求項1に記載の熱処理のシミュレーションプログラム。
In the magnetic field analysis step, the amount of heat generation density is determined in mesh units,
2. The heat treatment simulation program according to claim 1, wherein in the heat treatment analysis step, the heat generation density amount in mesh units obtained in the magnetic field analysis step is moved to reduce the number of times of magnetic field analysis.
前記熱処理解析ステップにおいて、ワークの昇温によって加熱コイルによる磁場分布が解析結果に影響を大きく与えるほど変化するか否か判断し、変化したと判断した場合に前記磁場解析ステップを実行する、請求項1に記載の熱処理のシミュレーションプログラム。   In the heat treatment analysis step, it is determined whether or not the magnetic field distribution due to the heating coil changes so as to greatly affect the analysis result due to the temperature rise of the workpiece, and the magnetic field analysis step is executed when it is determined that the change has occurred. 2. A heat treatment simulation program according to 1. 前記熱処理解析ステップでは、発熱密度量分布の結果を用いて熱伝導解析を実行させワークの温度分布を求める、請求項1又は2に記載の熱処理のシミュレーションプログラム。   The heat treatment simulation program according to claim 1, wherein in the heat treatment analysis step, a heat conduction analysis is executed using a result of the heat generation density amount distribution to obtain a temperature distribution of the workpiece. 前記熱処理解析ステップでは、熱伝導解析を実行する際に、ワークの金属組織の相変態と応力及びひずみとの連成解析を行ってワークの温度分布を求める、請求項4に記載の熱処理のシミュレーションプログラム。   5. The heat treatment simulation according to claim 4, wherein in the heat treatment analysis step, when the heat conduction analysis is performed, the temperature distribution of the workpiece is obtained by performing a coupled analysis of the phase transformation of the metal structure of the workpiece and the stress and strain. program.
JP2012227215A 2012-10-12 2012-10-12 Heat treatment simulation program Active JP6086344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012227215A JP6086344B2 (en) 2012-10-12 2012-10-12 Heat treatment simulation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012227215A JP6086344B2 (en) 2012-10-12 2012-10-12 Heat treatment simulation program

Publications (2)

Publication Number Publication Date
JP2014081208A true JP2014081208A (en) 2014-05-08
JP6086344B2 JP6086344B2 (en) 2017-03-01

Family

ID=50785536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012227215A Active JP6086344B2 (en) 2012-10-12 2012-10-12 Heat treatment simulation program

Country Status (1)

Country Link
JP (1) JP6086344B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009515A1 (en) * 2014-07-16 2016-01-21 株式会社Nippo Device for spreading and leveling paving material and method for spreading and leveling paving material
CN113325032A (en) * 2021-06-08 2021-08-31 山东华宁电伴热科技有限公司 Electric tracing detection device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535713A (en) * 1991-07-25 1993-02-12 Nippon Steel Corp Analyzing method for temperature distribution of conductive material due to conduction heating
JP2010055427A (en) * 2008-08-28 2010-03-11 Neturen Co Ltd Simulation method for induction heating coil design support
JP2010230331A (en) * 2009-03-25 2010-10-14 Neturen Co Ltd Device for simulation of high frequency quenching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535713A (en) * 1991-07-25 1993-02-12 Nippon Steel Corp Analyzing method for temperature distribution of conductive material due to conduction heating
JP2010055427A (en) * 2008-08-28 2010-03-11 Neturen Co Ltd Simulation method for induction heating coil design support
JP2010230331A (en) * 2009-03-25 2010-10-14 Neturen Co Ltd Device for simulation of high frequency quenching

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016029475; 井上宏樹,他3名: '高周波移動焼入れシミュレーションによる変形・応力発生メカニズムの検討' 第71回日本熱処理技術協会講演大会講演概要集 , 201105, p.21-22 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009515A1 (en) * 2014-07-16 2016-01-21 株式会社Nippo Device for spreading and leveling paving material and method for spreading and leveling paving material
JPWO2016009515A1 (en) * 2014-07-16 2017-05-25 株式会社Nippo Paving material leveling apparatus and paving material leveling method
CN113325032A (en) * 2021-06-08 2021-08-31 山东华宁电伴热科技有限公司 Electric tracing detection device and method
CN113325032B (en) * 2021-06-08 2022-04-29 山东华宁电伴热科技有限公司 Electric tracing detection device and method

Also Published As

Publication number Publication date
JP6086344B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
Hömberg et al. Simulation of multi-frequency-induction-hardening including phase transitions and mechanical effects
JP5286623B2 (en) Induction hardening simulation equipment
CN105740536B (en) The analogy method of dynamic simulation is carried out to straight seam welded pipe intermediate frequency heat treatment process
Fu et al. Study on induction heating of workpiece before gear rolling process with different coil structures
Yang et al. FEM simulation of quenching process in A357 aluminum alloy cylindrical bars and reduction of quench residual stress through cold stretching process
Li et al. Numerical verification of an Octree mesh coarsening strategy for simulating additive manufacturing processes
Heinze et al. Effect of heat source configuration on the result quality of numerical calculation of welding-induced distortion
Wen et al. Study on mobile induction heating process of internal gear rings for wind power generation
Bae et al. Derivation of simplified formulas to predict deformations of plate in steel forming process with induction heating
Zhao et al. An asynchronous dual-frequency induction heating process for bevel gears
JP6086344B2 (en) Heat treatment simulation program
Khosravifard et al. A meshfree method with dynamic node reconfiguration for analysis of thermo-elastic problems with moving concentrated heat sources
Du et al. Numerical and experimental verification of an iterative coupling method for analyzing the Lorentz-force-driven sheet metal stamping process
Lee et al. Temperature distribution and bending behaviour of thick metal plate by high frequency induction heating
Zhu et al. A simplified heat source model for thick plate bending via high-frequency induction line heating
Zohoor et al. Experimental and numerical analysis of bending angle variation and longitudinal distortion in laser forming process
Choi et al. Predicting the hardening depth of a sprocket by finite element analysis and its experimental validation for an induction hardening process
Cha et al. Experimental validation of topology design optimization
Yona et al. Experimental investigation and process parameter optimization of sheet metal bending by line heating method
Xiao et al. Temperature gradient control of frequency conversion heating for a thick-walled pipe based on energy transfer
Kotlan et al. Combined heat treatment of metal materials
Shi et al. An analytical model based on the similarity in temperature distributions in laser forming
Hammi et al. Effects of induction heating process parameters on hardness profile of 4340 steel bearing shoulder using 2D axisymmetric model
Park et al. Multiobjective optimization of the heating process for forging automotive crankshaft
Nguyen et al. Analysis of bending deformation in triangle heating of steel plates with induction heating process using laminated plate theory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170120

R150 Certificate of patent or registration of utility model

Ref document number: 6086344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250