JPH0535639B2 - - Google Patents

Info

Publication number
JPH0535639B2
JPH0535639B2 JP24401984A JP24401984A JPH0535639B2 JP H0535639 B2 JPH0535639 B2 JP H0535639B2 JP 24401984 A JP24401984 A JP 24401984A JP 24401984 A JP24401984 A JP 24401984A JP H0535639 B2 JPH0535639 B2 JP H0535639B2
Authority
JP
Japan
Prior art keywords
optical fiber
hydrophone
sound pressure
cylinder
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24401984A
Other languages
Japanese (ja)
Other versions
JPS61120981A (en
Inventor
Toshihiko Kitano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP24401984A priority Critical patent/JPS61120981A/en
Publication of JPS61120981A publication Critical patent/JPS61120981A/en
Publication of JPH0535639B2 publication Critical patent/JPH0535639B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光フアイバを用いたバツシブ・ソナ
ー・ハイドロホン、即ち光フアイバ・ハイドロホ
ンに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a bassive sonar hydrophone using optical fibers, that is, an optical fiber hydrophone.

(従来の技術) バツシブ・ソナー・ハイドロホンは、水中にお
ける音波発生源の位置を音波を受波することのみ
により特定する装置であり、発生源へ向けて音波
を発射しその反射波を受波するアクテイブ・ソナ
ー・ハイドロホンにくらべ、探索者の存在の秘匿
性を極めて高めることの出来る特徴を有してい
る。
(Prior art) A bathsive sonar hydrophone is a device that identifies the location of a sound wave source in water by simply receiving sound waves.It emits sound waves toward the source and receives the reflected waves. Compared to active sonar hydrophones, it has the feature of greatly increasing the secrecy of the explorer's presence.

光フアイバ・ハイドロホンは、光フアイバを用
いることにより受波感度、最小検出音圧等の諸性
能を向上せしめようとするものであり、現在種々
の形態についての研究開発がなされている。なか
でも、マイクロベンド型ハイドロホンは、他方式
例えばヘテロダイン方式、格子方式、カツプラー
方式などにくらべ、音圧を光信号に変換するため
のセンサ部の構造が極めて簡単であり、かつ最小
検出音波受波感度等のハイドロホン性能もすぐれ
ているから、実現性の極めて高い方式である。
Optical fiber hydrophones are intended to improve various performances such as reception sensitivity and minimum detectable sound pressure by using optical fibers, and research and development are currently being carried out on various forms. Among these, the microbend hydrophone has an extremely simple structure of the sensor section for converting sound pressure into an optical signal, and has a minimum detectable sound wave receiver compared to other methods such as the heterodyne method, grating method, coupler method, etc. This is an extremely practical method because the hydrophone has excellent wave sensitivity and other performance.

マイクロベンド型のハイドロホンは、山部と谷
部とを互いに対面させた2つの波形面で光フアイ
バを挾んでなり、その一例がすでにジヤーナル・
オブ・アコーステイツク・ソサエテイ・オブ・ア
メリカ(J.Acoust.Soc.Am.)67巻3号、1980年、
816〜819ページに報告されている。このマイクロ
ベンド型ハイドロホンは第2図a,bに示す様
に、光フアイバを一定のピツチの波状突起のつい
た板で両側から挾み、板にかかる音圧を、圧力が
かかることにより生じる光フアイバ内透過光の減
衰量を計ることにより求める方式である。第2図
aはマイクロベンド型ハイドロホンのセンサ部の
正面図である。このセンサ部において、1は光フ
アイバで通常は破断防止のためにプラスチツクコ
ートがなされている。また、2,3は、片面に液
状突起のついた平板で、互いの凸部(山部)を半
ピツチずらせて光フアイバ1を挾み込むことによ
り、光フアイバを波形に変形させる。これにより
光源4により光フアイバ1に入射された光は検出
器5へ到達するまでに曲げによる損失を受ける。
平板にかかる音圧の変化が微小な場合、透過光の
損失はほぼ音圧に比例して変化するから、この透
過光の減衰量の変化を測定することにより微小音
圧の測定が出来る。第2図bは、第2図aのセン
サ部のうち平板2を取り除いた後の斜視図で、光
フアイバ1は波状歯形のついた片面に沿うように
配置されている。
A micro-bend hydrophone consists of an optical fiber sandwiched between two waveform surfaces with peaks and valleys facing each other.
J.Acoust.Soc.Am., Volume 67, No. 3, 1980.
Reported on pages 816-819. As shown in Figure 2 a and b, this micro-bend type hydrophone is made by sandwiching an optical fiber between plates with wavy protrusions of a certain pitch on both sides, and the sound pressure applied to the plates is generated by applying pressure. This method is determined by measuring the amount of attenuation of light transmitted through the optical fiber. FIG. 2a is a front view of the sensor section of the microbend type hydrophone. In this sensor section, reference numeral 1 denotes an optical fiber, which is usually coated with plastic to prevent breakage. Further, 2 and 3 are flat plates having liquid protrusions on one side, and the optical fiber 1 is sandwiched therebetween by shifting the convex portions (peak portions) by half a pitch, thereby deforming the optical fiber into a wave shape. As a result, the light incident on the optical fiber 1 from the light source 4 suffers loss due to bending before reaching the detector 5.
When the change in the sound pressure applied to the flat plate is minute, the loss of transmitted light changes approximately in proportion to the sound pressure, so the minute sound pressure can be measured by measuring the change in the amount of attenuation of this transmitted light. FIG. 2b is a perspective view of the sensor section of FIG. 2a with the flat plate 2 removed, in which the optical fiber 1 is arranged along one side with a wavy tooth shape.

(発明が解決しようとする問題点) 一般にハイドロホンは、水中の音源の探査を行
なう装置であるから、受波感度の指向性が出来る
限りない、即ち無指向性であるのが望ましい。し
かし、第2図a,bに示すようの従来のマイクロ
ベンド型光フアイバ・ハイドロホンでは、音圧が
平板2,3に垂直な場合に最も感度が高くなり、
平板の法線に対し角度θで入射する音圧に対して
は感度はcosθだけ減少してしまう欠点があつた。
したがつて、マイクロベンド型ハイドロホンで無
指向性のものが実現できれば極めて有用である。
(Problems to be Solved by the Invention) Hydrophones are generally devices that search for underwater sound sources, so it is desirable that the receiving sensitivity has as little directivity as possible, that is, it is omnidirectional. However, in the conventional micro-bend type optical fiber hydrophone as shown in Fig. 2a and b, the sensitivity is highest when the sound pressure is perpendicular to the flat plates 2 and 3.
The drawback is that the sensitivity decreases by cos θ for sound pressure incident at an angle θ to the normal to the flat plate.
Therefore, it would be extremely useful if a micro-bend hydrophone could be made omnidirectional.

そこで、本発明の目的は、音圧の到来方向によ
つて受波感度が変わらないマイクロベンド型の光
フアイバ・ハイドロホンの提供にある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a micro-bend type optical fiber hydrophone whose receiving sensitivity does not change depending on the direction of arrival of sound pressure.

(問題点を解決するための手段) 本発明によれば、山部と谷部とを互いに対面さ
せた2つの波形面で光フアイバを挾んでなる光フ
アイバ・ハイドロホンにおいて、前記山部の頂上
を連ねた包絡面及び前記谷部の底を連ねた包絡面
がともに円筒面であり、前記光フアイバは前記両
円筒面の間に螺旋状に巻いてあることを特徴とす
る光フアイバ・ハイドロホンが得られる。
(Means for Solving the Problems) According to the present invention, in an optical fiber hydrophone in which an optical fiber is sandwiched between two waveform surfaces in which a peak part and a valley part face each other, the top of the peak part and an envelope surface connecting the bottoms of the valleys are both cylindrical surfaces, and the optical fiber is spirally wound between the two cylindrical surfaces. is obtained.

(作用) このように、本発明になるマイクロベンド型光
フアイバ・ハイドロホンでは従来の平板のかわり
に円筒を用いてある。すなわち、第2図aに示す
波状突起のついた平板3を突起(山部)の部分が
外側になるように円筒形に曲げ、さらに平板2も
突起の部分が内側に入る様に円形に曲げる。この
様な円筒形の構成では円筒の中心軸に垂直に入射
する音波は、必ず外側の円弧状の板に垂直に入射
するから、円筒の円周方向では受波感度は常に一
定となり無指向性が実現できる。次に図面を用い
て詳細に説明する。
(Function) As described above, in the microbend type optical fiber hydrophone according to the present invention, a cylinder is used in place of the conventional flat plate. That is, the flat plate 3 with the wavy protrusions shown in Fig. 2a is bent into a cylindrical shape so that the protrusions (crests) are on the outside, and the flat plate 2 is also bent into a circular shape so that the protrusions are on the inside. . In such a cylindrical configuration, sound waves that are incident perpendicularly to the central axis of the cylinder are always incident perpendicularly to the outer arc-shaped plate, so the receiving sensitivity is always constant in the circumferential direction of the cylinder, resulting in omnidirectionality. can be realized. Next, it will be explained in detail using the drawings.

(実施例) 第1図a,bは、本発明の1実施例を示す図
で、同図aは平面図、同図bは円弧状板7,8を
除いて示す斜視図である。1は、光フアイバで通
常は破断防止のためプラスチツク等により被覆さ
れている。6は外周に波状の突起をもつた円筒、
7,8は内側に波状の突起をもつた円弧状の板で
ある。円弧状板7,8の突起のピツチは、円筒2
の突起のピツチと同じである。円弧状の板7,8
を半ピツチずらせ円筒6の突起にはめこむことに
より、円筒6に巻きつけられている光フアイバ1
は、波状の変形を受けることになる。この状態を
より詳細に示したのが第1図bで、これは円筒6
に光フアイバ1を巻きつけて円弧状の板7,8を
押しつけた時の様子を、円弧状の板7,8を省略
して示したもので、光フアイバ1は波形に変形し
ている。円筒状の板は図では2片7,8に分かれ
ているが、これは円筒6の波状突起に円弧状の板
の波状突起がはまりこめばよいので、2片以上で
あればその分割数はいくらでも良い。このような
構成を持つ光フアイバ・ハイドロホンのセンサ部
に、光源4より光フアイバ1に光を入射せしめ、
さらに波状の光フアイバを透過させ光検出器5で
検出せしめることにより、円弧状の板7,8にか
かる音圧により生じる光フアイバ透過光の減衰量
の変化が観測でき、したがつてこの減衰量の変化
から微小音圧を求めることが出来る。
(Embodiment) FIGS. 1a and 1b are views showing one embodiment of the present invention, in which FIG. 1a is a plan view and FIG. 1b is a perspective view with arc-shaped plates 7 and 8 removed. Reference numeral 1 denotes an optical fiber, which is usually covered with plastic or the like to prevent breakage. 6 is a cylinder with wavy protrusions on the outer periphery;
7 and 8 are arc-shaped plates with wavy protrusions on the inside. The pitch of the protrusions of the arcuate plates 7 and 8 is the same as that of the cylinder 2.
It is the same as the pitch of the protrusion. Arc-shaped plates 7, 8
By shifting the optical fiber 1 by half a pitch and fitting it into the protrusion of the cylinder 6, the optical fiber 1 wrapped around the cylinder 6 is removed.
will undergo a wave-like deformation. This state is shown in more detail in Figure 1b, which shows the cylinder 6
The optical fiber 1 is shown with the arcuate plates 7 and 8 omitted to show the situation when the optical fiber 1 is wound around the wafer and pressed against the arcuate plates 7 and 8, and the optical fiber 1 is deformed into a wave shape. The cylindrical plate is divided into two pieces 7 and 8 in the figure, but this is done by fitting the wavy protrusion of the arc-shaped plate into the wavy protrusion of the cylinder 6, so if it is more than 2 pieces, the number of divisions is Any amount is fine. In the sensor section of the optical fiber hydrophone having such a configuration, light is made to enter the optical fiber 1 from the light source 4,
Furthermore, by transmitting the wave-like optical fiber and detecting it with the photodetector 5, it is possible to observe changes in the amount of attenuation of the light transmitted through the optical fiber caused by the sound pressure applied to the arc-shaped plates 7 and 8. The minute sound pressure can be determined from the change in .

以上の実施例のマイクロベンド型光フアイバ・
ハイドロホンでは円筒6の中心軸0−0′に垂直
に入射する音圧は円弧状の板7,8にも入射する
から円筒6の円周方向の受波感度は一定となる。
The micro-bend type optical fiber of the above example
In the hydrophone, the sound pressure that is incident perpendicularly to the central axis 0-0' of the cylinder 6 is also incident on the arcuate plates 7 and 8, so that the receiving sensitivity in the circumferential direction of the cylinder 6 is constant.

(発明の効果) 本発明によれば、ここまでに詳しく述べたよう
に、音圧の到来方向によつて受波感度が変わらな
い、即ち、無指向性の光フアイバ・ハイドロホン
が実現できる。このように、本発明の光フアイ
バ・ハイドロホン、第2図a,bに示す従来型に
比べて無指向性に優れるから性能が極めて高い。
(Effects of the Invention) According to the present invention, as described in detail so far, it is possible to realize an optical fiber hydrophone whose receiving sensitivity does not change depending on the arrival direction of the sound pressure, that is, an omnidirectional optical fiber hydrophone. As described above, the optical fiber hydrophone of the present invention has extremely high performance because it is superior in omnidirectionality compared to the conventional type shown in FIGS. 2a and 2b.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の一実施例を示す平面図、同
図bは円弧状板を除いて示すその実施例の斜視
図、第2図aは従来のマイクロベンド型光フアイ
バ・ハイドロホンを示す正面図、同図bは平板2
を除いて示す本図aのハイドロホンの斜視図であ
る。 1……光フアイバ、2,3……波状突起付平
板、4……光源、5……光検出器、6……円筒、
7,8……円弧状の板。
FIG. 1a is a plan view showing an embodiment of the present invention, FIG. 1b is a perspective view of the embodiment with the arc-shaped plate removed, and FIG. The front view shown in Figure b is the flat plate 2.
FIG. 3 is a perspective view of the hydrophone of FIG. 1... Optical fiber, 2, 3... Flat plate with wavy projections, 4... Light source, 5... Photodetector, 6... Cylinder,
7, 8... Arc-shaped plate.

Claims (1)

【特許請求の範囲】[Claims] 1 山部と谷部とを互いに対面させた2つの波形
面で光フアイバを挾んでなる光フアイバ・ハイド
ロホンにおいて、前記山部の頂上を連ねた包絡面
及び前記谷部の底を連ねた包絡面がともに円筒面
であり、前記光フアイバは前記両円筒面の間に螺
旋状に巻いてあることを特徴とする光フアイバ・
ハイドロホン。
1. In an optical fiber hydrophone in which an optical fiber is sandwiched between two waveform surfaces with peaks and valleys facing each other, an envelope connecting the tops of the peaks and an envelope connecting the bottoms of the valleys. An optical fiber characterized in that both surfaces are cylindrical surfaces, and the optical fiber is spirally wound between the two cylindrical surfaces.
Hydrophone.
JP24401984A 1984-11-19 1984-11-19 Optical fiber hydrophone Granted JPS61120981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24401984A JPS61120981A (en) 1984-11-19 1984-11-19 Optical fiber hydrophone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24401984A JPS61120981A (en) 1984-11-19 1984-11-19 Optical fiber hydrophone

Publications (2)

Publication Number Publication Date
JPS61120981A JPS61120981A (en) 1986-06-09
JPH0535639B2 true JPH0535639B2 (en) 1993-05-27

Family

ID=17112497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24401984A Granted JPS61120981A (en) 1984-11-19 1984-11-19 Optical fiber hydrophone

Country Status (1)

Country Link
JP (1) JPS61120981A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304492B2 (en) * 2009-07-03 2013-10-02 日本電気株式会社 Acoustic transducer
CN101881633B (en) * 2010-04-06 2012-11-28 西安金和光学科技有限公司 Spring type high-precision optical fiber sensor based on optical fiber bending loss
CN105277130B (en) * 2015-10-26 2017-10-10 南京航空航天大学 Folding and expanding structure plication region axial deformation optical fiber quick calculation method

Also Published As

Publication number Publication date
JPS61120981A (en) 1986-06-09

Similar Documents

Publication Publication Date Title
US5633748A (en) Fiber optic Bragg grating demodulator and sensor incorporating same
EP0102677B1 (en) Optical transducer means
US4381137A (en) Optical fiber mode separation systems
JPH0236195B2 (en)
US3903990A (en) Acoustic lens
US5359445A (en) Fiber optic sensor
JPS62110103A (en) Optical fiber converter
JPS60501330A (en) High efficiency low cost converter equipment
US4833360A (en) Sonar system using acoustically transparent continuous aperture transducers for multiple beam beamformation
JPH0311644B2 (en)
US5574699A (en) Fiber optic lever towed array
EP1139072A1 (en) Small optical microphone/sensor
JPH0535639B2 (en)
US20040021873A1 (en) Sensor for optically sensing air borne acoustic waves
CN111787439B (en) High fault-tolerant fiber microphone based on contrary reflection
US4551826A (en) Multiple beam lens transducer with collimator for sonar systems
JP3367841B2 (en) Ultrasonic sensor
GB1584048A (en) Optical transducers
KR880003971Y1 (en) A detector
RU2047944C1 (en) Optical microphone
CN220136493U (en) Probe structure and underwater acoustic signal detection device
SU813302A1 (en) Ultrasonic surface wave spectrum analyzer
EP0112688B1 (en) Multiple beam lens transducer with collimator for sonar systems
JPH04103211A (en) Ultrasonic wave solid-state delay line
JPS61150599A (en) Sound receiving construction of optical fiber hydrophone