JPH0535338A - Rotational frequency control method for fan in joint duct system - Google Patents

Rotational frequency control method for fan in joint duct system

Info

Publication number
JPH0535338A
JPH0535338A JP21006291A JP21006291A JPH0535338A JP H0535338 A JPH0535338 A JP H0535338A JP 21006291 A JP21006291 A JP 21006291A JP 21006291 A JP21006291 A JP 21006291A JP H0535338 A JPH0535338 A JP H0535338A
Authority
JP
Japan
Prior art keywords
fan
control
fluid
individual
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21006291A
Other languages
Japanese (ja)
Inventor
Hideki Shiozaki
秀喜 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP21006291A priority Critical patent/JPH0535338A/en
Publication of JPH0535338A publication Critical patent/JPH0535338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)
  • Air Supply (AREA)
  • Feedback Control In General (AREA)
  • Flow Control (AREA)
  • Control Of Velocity Or Acceleration (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To prevent control from being disabled based on the disturbance of controlled variables such as the circulating pressure or circulating rate, etc., of fluid and the change of setting at a device to be supplied with the fluid provided at each duct. CONSTITUTION:In a joint duct system equipped with supply side fan devices 5B and 6B provided on the input sides of individual ducts 3 and 4 as the paths of burning air for respective furnaces 1 and 2, control valves 7 and 8 for the feedback control of the circulating pressure or circulating rate of burning air provided on the output sides of furnaces 1 and 2 of the individual ducts 3 and 4, and exhaust side fan device 12 provided at a joint duct 11 joined to the individual ducts 3 and 4 by the control valves 7 and 8 on the back, in the case of fluctuation based on the disturbance of the circulating pressure or circulating rate of the burning air at the furnaces 1 and 2 or the change of setting, the number of revolution of the fan of the fan devices 5B and 6B is controlled so as to set the circulating pressure and the circulating rate in a control range by fuzzy inference respectively integrating the states of the opening degrees of the control valves 7 and 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数の装置に各個別管
路を介してそれぞれに応じた圧力又は流量で燃焼空気,
水等の流体を供給し、各装置の後方の1本の合流管路に
より各個別管路の流体を合流して所定の圧力又は流量で
後方に流すようにした合流管路系に適用され、各個別管
路の流体の圧力又は流量を制御する合流管路系のファン
回転数制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plurality of devices, each of which is provided with combustion air at a pressure or a flow rate corresponding to the individual pipes.
It is applied to a merging pipeline system in which a fluid such as water is supplied and the fluid in each individual pipeline is merged by one merging pipeline in the rear of each device to flow backward at a predetermined pressure or flow rate. The present invention relates to a fan rotation speed control method for a merging conduit system that controls the pressure or flow rate of fluid in each individual conduit.

【0002】[0002]

【従来の技術】従来、ごみ焼却設備は燃焼炉,灰溶融炉
等を複数備え、各炉の燃焼空気は図4に示す合流管路系
により供給される。図4は被供給装置として2個の炉
1,2を備えた場合の構成を示し、3,4は炉1,2毎
の個別管路であり、それぞれ炉1,2の入力管路3a,
4a及び出力管路3b,4bからなる。
2. Description of the Related Art Conventionally, a refuse incineration facility is provided with a plurality of combustion furnaces, ash melting furnaces, etc., and combustion air of each furnace is supplied by a confluent conduit system shown in FIG. FIG. 4 shows a configuration in the case where two furnaces 1 and 2 are provided as supply target devices, and 3 and 4 are individual conduits for the furnaces 1 and 2, respectively, and input conduits 3a of the furnaces 1 and 2, respectively.
4a and output lines 3b, 4b.

【0003】5A,6Aは入力管路3a,4aに設けら
れた供給側ファン装置、7,8は出力管路3b,4bに
設けられた圧力調整用の制御弁、9,10は制御弁7,
8のフィードバック制御用のPID構成の圧力コントロ
ーラ、11は出力管路3b,4bに結合した1本の合流
管路、12は合流管路11に設けられた排出側ファン装
置である。そして、ファン装置5A,6Aはそれぞれ予
め設定されたファン回転数で動作し、回転数で決まる送
風圧力の燃焼空気を入力管路3a,4aを介して炉1,
2に供給する。
5A and 6A are supply side fan devices provided in the input pipe lines 3a and 4a, 7 and 8 are control valves for pressure adjustment provided in the output pipe lines 3b and 4b, and 9 and 10 are control valves 7. ,
8 is a pressure controller having a PID structure for feedback control, 11 is one merging conduit connected to the output conduits 3b and 4b, and 12 is a discharge side fan device provided in the merging conduit 11. Then, the fan devices 5A and 6A operate at preset fan rotation speeds, respectively, and burn the combustion air having a blowing pressure determined by the rotation speeds through the input pipe lines 3a and 4a.
Supply to 2.

【0004】さらに、炉1,2を通った使用済みの燃焼
空気は出力管路3b,4bを介して合流管路11に送ら
れ、この管路11で合流してさらに後方に流れる。この
とき、炉1,2の燃焼空気を設定された圧力に制御する
ため、炉1,2それぞれに設けられた圧力センサ(図示
せず)により、炉1,2の被制御量としての燃焼空気の
圧力が常時検出され、圧力に比例した両圧力センサの圧
力検出信号S1i,S2iがコントローラ9,10それ
ぞれに供給される。
Further, the used combustion air that has passed through the furnaces 1 and 2 is sent to the merging conduit 11 via the output conduits 3b and 4b, merges in this conduit 11 and flows further rearward. At this time, in order to control the combustion air of the furnaces 1 and 2 to a set pressure, the combustion air as the controlled amount of the furnaces 1 and 2 is controlled by a pressure sensor (not shown) provided in each of the furnaces 1 and 2. Is constantly detected, and pressure detection signals S1i and S2i of both pressure sensors proportional to the pressure are supplied to the controllers 9 and 10, respectively.

【0005】このコントローラ9,10は圧力検出信号
S1i,S2iとともに端子13,14の圧力設定信号
S1r,S2rが供給され、信号S1i,S2iが信号
S1r,S2rそれぞれに一致するように、差S1r−
S1i,S2r−S2iそれぞれに応じて変化する弁開
度の制御信号S1x,S2xを形成して制御弁7,8に
供給する。そして、制御信号S1x,S2xに基づき、
制御弁7,8の弁開度は炉1,2の燃焼空気の圧力がそ
れぞれ圧力設定信号S1r,S2rの圧力になるよう
に、フィードバック制御される。また、ファン装置12
は設定されたファン回転数で動作し、この回転数に基づ
く圧力で合流管路11の合流後の燃焼空気が後方に排出
されて送られる。
The controllers 9 and 10 are supplied with the pressure detection signals S1i and S2i as well as the pressure setting signals S1r and S2r at the terminals 13 and 14, respectively, so that the signals S1i and S2i coincide with the signals S1r and S2r, respectively.
The control signals S1x and S2x of the valve opening degrees that change according to S1i and S2r-S2i are formed and supplied to the control valves 7 and 8. Then, based on the control signals S1x and S2x,
The valve openings of the control valves 7 and 8 are feedback-controlled so that the pressures of the combustion air in the furnaces 1 and 2 become the pressures of the pressure setting signals S1r and S2r, respectively. In addition, the fan device 12
Operates at the set fan rotation speed, and the combustion air after the merging of the merging conduits 11 is discharged backward and sent at a pressure based on this rotation speed.

【0006】[0006]

【発明が解決しようとする課題】前記図4の従来の合流
管路系の場合、個別管路3,4への燃焼空気の供給がフ
ァン装置5A,6Aそれぞれのファン回転数に基づく一
定値に固定され、合流管路12からの燃焼空気の排出が
ファン装置12のファン回転数に基づく一定値に固定さ
れるため、炉1又は2の外乱による変動,燃焼条件の変
更等に基づき、一方の個別管路3又は4に制御弁7又は
8の弁開度,ファン装置5A又は6Aのファン回転数の
変化,変更等が生じると、この変化,変更に伴う燃焼空
気の通流圧力,通流量の変化が他方の個別管路4又は3
に出力管路4b又は3bからの背圧の変化として作用
し、一方の個別管路3又は4だけでなく他方の個別管路
4又は3も燃焼空気の通流圧力,通流量が変化する。
In the case of the conventional merging conduit system shown in FIG. 4, the combustion air is supplied to the individual conduits 3 and 4 at a constant value based on the fan speed of each of the fan devices 5A and 6A. Since the discharge of the combustion air from the merging conduit 12 is fixed and fixed to a constant value based on the fan rotation speed of the fan device 12, one of the two is determined based on fluctuations due to disturbance of the furnace 1 or 2 and changes in combustion conditions. When a change or change in the valve opening of the control valve 7 or 8 or the fan speed of the fan device 5A or 6A occurs in the individual pipes 3 or 4, when the change or change occurs, the flow pressure of the combustion air or the flow rate of the combustion air changes. Changes in the other individual pipeline 4 or 3
To act as a change in the back pressure from the output pipeline 4b or 3b, and the flow pressure and flow rate of the combustion air change not only in the one individual pipeline 3 or 4 but also in the other individual pipeline 4 or 3.

【0007】さらに、この変化に伴って他方の個別管路
4又は3の制御弁8又は7の弁開度が変化すると、この
変化に伴う燃焼空気の通流圧力,通流量の変化が一方の
個別管路3又は4に出力管路3b又は4bからの背圧の
変化として作用し、制御弁7又は8の弁開度が変わる。
以降、個別管路3,4の燃焼空気の通流圧力,通流量が
安定状態に収束して炉1,2の燃焼空気の変動が抑制さ
れるまで制御弁7,8の弁開度がくり返し制御される。
Further, when the valve opening of the control valve 8 or 7 of the other individual conduit 4 or 3 changes with this change, the change in the flow pressure or flow rate of the combustion air due to this change changes. It acts on the individual conduits 3 or 4 as a change in back pressure from the output conduits 3b or 4b, and the valve opening of the control valve 7 or 8 changes.
After that, the valve openings of the control valves 7 and 8 are repeated until the flow pressure and flow rate of the combustion air in the individual pipe lines 3 and 4 converge to a stable state and fluctuations in the combustion air in the furnaces 1 and 2 are suppressed. Controlled.

【0008】そして、一方の個別管路3又は4の燃焼空
気の通流圧力,通流量と他方の個別管路4又は3の燃焼
空気の通流圧力,通流量とが相互に関連して変化するた
め、制御弁7,8の弁開度のくり返し変化により、場合
によっては個別管路3,4の燃焼空気の通流圧力,通流
量が発散方向に変化し、最終的にはフィードバック制御
の範囲から外れて制御不能に陥いる問題点がある。そし
て、図4では個別管路が2本の場合について説明した
が、個別管路が3本以上であっても同様の問題点が生じ
る。
Then, the flow pressure and flow rate of the combustion air in one individual pipeline 3 or 4 and the flow pressure and flow rate of the combustion air in the other individual pipeline 4 or 3 are changed in relation to each other. Therefore, due to repeated changes in the valve opening of the control valves 7 and 8, the flow pressure and flow rate of the combustion air in the individual pipe lines 3 and 4 may change in the diverging direction in some cases, and finally the feedback control There is a problem that it falls out of range and falls out of control. Although FIG. 4 illustrates the case where the number of the individual pipelines is two, the same problem occurs even when the number of the individual pipelines is three or more.

【0009】また、燃焼空気以外の種々の気体又は液体
を各被供給装置に供給する際にも前記と同様の問題点が
生じる。本発明は、各個別管路に設けられた被供給装置
の燃焼空気等の流体の通流圧力,通流量等の被制御量の
外乱,設定変更に基づく制御不能を防止することを目的
とする。
The same problems as described above also occur when various gases or liquids other than combustion air are supplied to each supply target device. SUMMARY OF THE INVENTION It is an object of the present invention to prevent disturbance of a controlled amount such as a flow pressure and a flow rate of a fluid such as combustion air of a supply target device provided in each individual pipeline, and uncontrollability due to a setting change. ..

【0010】[0010]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明の合流管路系のファン回転数制御方法にお
いては、各被供給装置内の流体の被制御量の外乱,設定
変更等に基づく変動時に、各個別管路の供給側ファン装
置のファン回転数を、それぞれ前記各個別管路の制御弁
の弁開度の状態を総合したファジー推論により、前記各
個別管路の被制御量が制御範囲内に引込まれるように制
御する。
In order to achieve the above-mentioned object, in the method for controlling the number of rotations of a fan in a merging conduit system according to the present invention, disturbance of a controlled amount of fluid in each supply device and setting change. , Etc., the fan rotation speed of the supply side fan device of each individual pipeline is determined by fuzzy reasoning that integrates the state of the valve opening of the control valve of each individual pipeline. The control amount is controlled so as to be drawn within the control range.

【0011】[0011]

【作用】前記のように構成された本発明の合流管路系の
ファン回転数制御方法の場合、各個別管路の供給側ファ
ン装置それぞれのファン回転数が、ファジー推論により
全ての個別管路の制御弁の弁開度を考慮して可変設定さ
れ、各個別管路の被制御装置への流体の供給がいずれか
の管路の流体の被制御量の外乱,設定変更に伴う変動を
吸収するように自動的に調整され、各制御弁の弁開度が
常に制御範囲内に保持される。
In the fan rotation speed control method of the merged conduit system of the present invention configured as described above, the fan rotation speeds of the supply side fan devices of the individual conduits are all determined by fuzzy inference. Is set variably in consideration of the valve opening of the control valve, and the supply of fluid to the controlled device in each individual line absorbs the disturbance of the controlled amount of the fluid in one of the lines and the fluctuation due to the setting change. The valve opening of each control valve is always maintained within the control range.

【0012】[0012]

【実施例】1実施例について、図1ないし図3を参照し
て説明する。図1において、図4と同一符号は同一もし
くは相当するものを示し、異なる点は、弁開度の制御信
号S1x,S2xが供給されるマイクロコンピュータ構
成のファジー推論制御装置15を付加し、図4のファン
装置5A,5Bの代わりに制御装置15によりファン回
転数が可変制御される供給側ファン装置5B,6Bを設
けた点である。
EXAMPLE One example will be described with reference to FIGS. 1, the same reference numerals as those in FIG. 4 indicate the same or corresponding ones, except that a fuzzy inference control device 15 of a microcomputer configuration to which the control signals S1x and S2x of the valve opening are supplied is added. In place of the fan devices 5A and 5B, the supply side fan devices 5B and 6B whose fan rotation speed is variably controlled by the control device 15 are provided.

【0013】そして、コントローラ9,10から制御弁
7,8に供給される弁開度の制御信号S1x,S2xが
制御装置15にも供給され、この制御装置15により制
御信号S1x,S2xに基づく制御弁7,8の弁開度を
用いてファン装置5B,6Bの適正なファン回転数をフ
ァジー推論する。
Then, the control signals S1x, S2x of the valve opening degrees supplied from the controllers 9, 10 to the control valves 7, 8 are also supplied to the control device 15, and the control device 15 performs control based on the control signals S1x, S2x. The appropriate fan rotation speeds of the fan devices 5B and 6B are fuzzy inferred using the valve openings of the valves 7 and 8.

【0014】つぎに、制御装置15のファジー推論につ
いて説明する。説明を簡単にするため、個別管路3の管
路系をA系,個別管路4の管路系をB系とすると、制御
装置15に制御弁7,8の弁開度をS(小さい),M
(適合),L(大きい)の3集合に分類した図2の
(a),(b)の形状のメンバーシップ関数が設定され
る。
Next, the fuzzy inference of the control device 15 will be described. In order to simplify the explanation, assuming that the pipeline system of the individual pipeline 3 is the A system and the pipeline system of the individual pipeline 4 is the B system, the valve opening degree of the control valves 7 and 8 in the control device 15 is S (small. ), M
Membership functions having the shapes of (a) and (b) of FIG. 2 classified into three sets (adaptation) and L (large) are set.

【0015】そして、制御装置15は制御信号S1x,
S2xから求まる制御弁7,8の実際の弁開度につき、
その所属する集合及び適合値(グレード値)を図2の
(a),(b)の関数から求める。ところで、この実施
例の場合、制御弁7,8はコントローラ9,10により
被供給装置としての炉1,2の燃焼空気の通流圧力が圧
力設定信号S1r,S2rの圧力になるようにフィード
バック制御される。そして、正常動作時は制御弁7,8
の弁開度が共に集合Mの適合範囲内になる。
The control device 15 then controls the control signals S1x,
Regarding the actual valve opening of the control valves 7 and 8 obtained from S2x,
The set to which it belongs and the matching value (grade value) are obtained from the functions of (a) and (b) of FIG. By the way, in the case of this embodiment, the control valves 7 and 8 are feedback-controlled by the controllers 9 and 10 so that the flow pressure of the combustion air in the furnaces 1 and 2 as the supplied devices becomes the pressure of the pressure setting signals S1r and S2r. To be done. Then, during normal operation, the control valves 7, 8
Both of the valve openings are within the set M conforming range.

【0016】しかし、炉1,2を通流する燃焼空気の圧
力が外乱又は設定変動で変動すると、制御弁7,8の弁
開度は前記適合範囲から外れる方向に変化する。そし
て、この変化は制御弁7,8それぞれが属する系の圧力
変動(自系変動)及び属しない他系の圧力変動(他系変
動)により生じる。
However, when the pressure of the combustion air flowing through the furnaces 1 and 2 fluctuates due to disturbance or set fluctuations, the valve opening degrees of the control valves 7 and 8 change in the direction out of the compatible range. This change is caused by pressure fluctuations of the system to which the control valves 7 and 8 belong (fluctuations of the own system) and pressure fluctuations of other systems that do not belong (variation of the other system).

【0017】例えば炉2を通流する燃焼空気の圧力が外
乱で小さくなると、B系の圧力が減少変動すると同時
に、制御弁7の背圧が減少して炉1を通流する燃焼空気
の圧力も小さくなり、A系の圧力も減少変動する。この
とき、制御弁8の弁開度に応じてファン装置5Bのファ
ン回転数を大きくし、炉1の燃焼空気を制御弁7の背圧
の減少に応じて増加すると、炉1を通流する燃焼空気の
圧力の他系変動が補償されて制御弁7の弁開度の変動が
防止される。
For example, when the pressure of the combustion air flowing through the furnace 2 is reduced by disturbance, the pressure of the B system decreases and fluctuates, and at the same time, the back pressure of the control valve 7 decreases and the pressure of the combustion air flowing through the furnace 1 decreases. Becomes smaller, and the pressure in the A system also decreases and fluctuates. At this time, if the fan rotation speed of the fan device 5B is increased in accordance with the valve opening of the control valve 8 and the combustion air in the furnace 1 is increased in accordance with the decrease in the back pressure of the control valve 7, the air flows through the furnace 1. Fluctuations in the valve opening of the control valve 7 are prevented by compensating for other system fluctuations in the combustion air pressure.

【0018】また、制御弁8の弁開度に応じてファン装
置6Bのファン回転数を小さくし、外乱に伴う制御弁8
の弁開度の減少変動にしたがって炉2の燃焼空気量を減
少すると、自系変動が補償されて外乱終了後の無用の変
動が防止される。
Further, the fan rotation speed of the fan device 6B is reduced in accordance with the valve opening of the control valve 8 to control the control valve 8 due to disturbance.
When the amount of combustion air in the furnace 2 is reduced in accordance with the variation in the valve opening degree, the self-system variation is compensated, and unnecessary variation after the end of the disturbance is prevented.

【0019】したがって、制御装置15は制御弁7の弁
開度に基づくA系(自系),B系(他系)のファン回転
数の最適値を決定するための図2の(c),(e)のメ
ンバーシップ関数,制御弁8の弁開度に基づくB系(自
系),A系(他系)のファン回転数の最適値を決定する
ための同図の(d),(f)のメンバーシップ関数が設
定される。なお、図2の(c)〜(f)の下は少し下げ
る,現状はそのまま,上は少し上げるの各集合を示す。
Therefore, the control unit 15 of FIG. 2 (c) for determining the optimum values of the fan rotation speeds of the A system (self system) and the B system (other system) based on the valve opening of the control valve 7. (D) and (d) in the same figure for determining the optimum values of the fan speeds of the B system (self system) and the A system (other system) based on the membership function of (e) and the valve opening of the control valve 8. The membership function of f) is set. 2 (c) to 2 (f), the lower part is shown as a set, the current state is left as it is, and the upper part is shown as a little.

【0020】そして、制御信号S1x,S2xに基づき
制御弁7,8が例えば図2の(a),(b)の弁開度X
a,Xbとして検出される場合、弁開度Xa,Xbが集
合M,Sそれぞれの適合度0.5の開度になるため、A
系については同図の(c),(d)の現状,上の適合度
0.5の点が自系,他系それぞれから求まるファン回転
数Pa,Pbの点となる。さらに、自系,他系から求ま
るファン回転数Pa,Pbに基づき、制御装置15は例
えば重心法でファン装置5B,6Bのファン回転数の最
適値を推論して決定する。
Then, based on the control signals S1x and S2x, the control valves 7 and 8 are opened, for example, in the valve opening X of FIGS. 2 (a) and 2 (b).
When detected as a, Xb, the valve opening degrees Xa, Xb are the opening degrees of the conformity of 0.5 for each of the sets M, S, so that A
Regarding the system, the current conditions (c) and (d) in the same figure, and the point of the degree of conformity of 0.5 above are the points of fan speeds Pa and Pb obtained from the own system and the other system, respectively. Further, based on the fan rotational speeds Pa and Pb obtained from the self system and the other system, the control device 15 infers and determines the optimum value of the fan rotational speeds of the fan devices 5B and 6B by, for example, the center of gravity method.

【0021】すなわち、制御弁7,8が図2の(a),
(b)の弁開度Xa,Xbの場合、制御装置15は同図
の(c),(d)の三角形,の重心を求め、図3に
示す重心の点P1をファン装置5Bのファン回転数とし
て決定する。
That is, the control valves 7 and 8 are shown in FIG.
In the case of the valve openings Xa and Xb of (b), the control device 15 obtains the center of gravity of the triangles (c) and (d) of the same figure, and determines the point P1 of the center of gravity shown in FIG. 3 as the fan rotation of the fan device 5B. Determine as a number.

【0022】そして、決定したファン回転数になるよう
に制御装置15からファン装置5B,6Bに回転数の制
御信号S1y,S2yが供給され、この供給に基づくフ
ァン装置5B,6Bのファン回転数の制御により、炉
1,2に供給される燃焼空気量が自系及び他系の外乱,
設定変更に基づく圧力変動を総合的に考慮して自動的に
可変調整され、制御弁7,8の弁開度が常に集合Mの適
合範囲内に保持され、制御不能に陥ることがない。
Then, control signals S1y and S2y for the rotation speeds are supplied from the control device 15 to the fan devices 5B and 6B so that the determined fan rotation speed is reached, and the fan rotation speeds of the fan devices 5B and 6B based on this supply are supplied. As a result of the control, the amount of combustion air supplied to the furnaces 1 and 2 causes disturbances in its own system and other systems,
It is automatically variably adjusted in consideration of the pressure fluctuation based on the setting change, and the valve openings of the control valves 7 and 8 are always kept within the conforming range of the set M, so that the control cannot be lost.

【0023】そして、前記実施例では2本の個別管路
3,4を備えた集合管路系に適用したが、3本以上の個
別管路を備えた集合管路系についても同様に適用するこ
とができる。また、被供給装置は炉1,2以外であって
もよく、この場合、各被供給装置に供給される流体は気
体,液体のいずれであってもよい。
In the above embodiment, the present invention is applied to the collecting pipeline system having the two individual pipelines 3 and 4, but the same applies to the collecting pipeline system having three or more individual pipelines. be able to. The supplied device may be other than the furnaces 1 and 2, and in this case, the fluid supplied to each supplied device may be either a gas or a liquid.

【0024】さらに、各メンバーシップ関数の形状等の
ファジー推論の手法は、実施例に限定されるものではな
い。また、前記実施例では制御弁7,8により各個別管
路の通流圧力をフィードバック制御する場合に適用した
が、各個別管路の通流量をフィードバック制御する場合
にも適用できるのは勿論である。
Furthermore, the method of fuzzy inference such as the shape of each membership function is not limited to the embodiment. Further, in the above-described embodiment, it is applied when the flow pressure of each individual pipeline is feedback-controlled by the control valves 7 and 8. However, it is of course applicable to the case where the flow rate of each individual pipeline is feedback-controlled. is there.

【0025】[0025]

【発明の効果】本発明は、以上説明したように構成され
ているため、以下に記載する効果を奏する。各個別管路
3,4の供給側ファン装置5B,6Bのファン回転数
を、各制御弁7,8の弁開度の状態を総合したファジー
推論により決定して可変制御し、各個別管路3,4の被
供給装置(炉1,2)への流体の供給がいずれかの管路
3,4の流体の被制御量の外乱,設定変更に伴う変動を
吸収するように、自動的に調整したため、各制御弁7,
8の弁開度が常に制御範囲内に保持されて制御不能に陥
ることがなく、制御性能が著しく向上して各被供給装置
が安定に運転される。
Since the present invention is configured as described above, it has the following effects. The fan speeds of the supply-side fan devices 5B and 6B of the individual pipelines 3 and 4 are determined by fuzzy inference that integrates the states of the valve opening degrees of the control valves 7 and 8 and variably controlled, and the individual pipelines are controlled. The supply of fluid to the supply devices (furnace 1 and 2) of 3 and 4 is automatically performed so as to absorb the disturbance of the controlled amount of the fluid of one of the pipelines 3 and 4 and the fluctuation due to the setting change. Because of the adjustment, each control valve 7,
The valve opening of No. 8 is always kept within the control range and does not fall out of control, the control performance is remarkably improved, and each supplied device is stably operated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の合流管路系のファン回転数制御方法の
1実施例のブロック図である。
FIG. 1 is a block diagram of an embodiment of a method for controlling a fan rotation speed of a merged conduit system of the present invention.

【図2】(a)〜(f)は図1の制御装置に設定される
メンバーシップ関数の説明図である。
2A to 2F are explanatory views of a membership function set in the control device of FIG.

【図3】図1の制御装置のファン回転数の決定説明図で
ある。
FIG. 3 is an explanatory diagram for determining a fan rotation speed of the control device of FIG.

【図4】従来例のブロック図である。FIG. 4 is a block diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1,2 炉 3,4 個別管路 5B,6B 供給側ファン装置 7,8 制御弁 11 合流管路 12 排出側ファン装置 15 制御装置 1, 2 furnaces 3, 4 individual pipe lines 5B, 6B supply side fan device 7, 8 control valve 11 merging pipe line 12 discharge side fan device 15 control device

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G05D 13/62 N 7361−3H 16/20 A 7314−3H Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location G05D 13/62 N 7361-3H 16/20 A 7314-3H

Claims (1)

【特許請求の範囲】 【請求項1】 被供給装置毎の流体の通路としての個別
管路それぞれの入力側に設けられファン回転数に応じて
流体を前記各被供給装置に送込む供給側ファン装置と、 前記各個別管路それぞれの前記各被供給装置の出力側に
設けられ前記各被供給装置内の流体の通流圧力又は通流
量からなる被制御量が所定値になるように弁開度が制御
される制御弁と、 前記各個別管路に前記各制御弁より後方で結合されて前
記各個別管路の流体が合流する合流管路に設けられ設定
されたファン回転数で流体を後方に排出する排出側ファ
ン装置とを備えた合流管路系において、 前記各被供給装置内の流体の前記被制御量の外乱,設定
変更等に基づく変動時に、 前記各供給側ファン装置のファン回転数を、それぞれ前
記各制御弁の弁開度の状態を総合したファジー推論によ
り、前記各被制御量が制御範囲内に引込まれるように制
御することを特徴とする合流管路系のファン回転数制御
方法。
Claim: What is claimed is: 1. A supply-side fan, which is provided on the input side of each individual conduit as a fluid passage for each supply-target device, and which supplies the fluid to each supply-target device in accordance with the fan rotation speed. A valve is opened so that a controlled amount, which is provided by the device and the output side of each of the supplied devices of each of the individual pipelines, which is the flowing pressure or the flow rate of the fluid in each of the supplied devices, has a predetermined value. A control valve whose degree is controlled, and a fluid that is connected to each of the individual pipelines behind each of the control valves and is provided in a merging pipeline in which the fluid of each of the individual pipelines merges, at a set fan rotation speed. In a merging conduit system including a discharge-side fan device that discharges backward, when the fluctuation occurs due to disturbance of the controlled amount of the fluid in each of the supply-target devices, setting change, etc., the fan of each supply-side fan device The number of revolutions of the valve opening of each control valve The fuzzy inference obtained by integrating the state, the fan speed control method of the confluence pipe system and controlling such that each controlled quantity is drawn within the control range.
JP21006291A 1991-07-26 1991-07-26 Rotational frequency control method for fan in joint duct system Pending JPH0535338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21006291A JPH0535338A (en) 1991-07-26 1991-07-26 Rotational frequency control method for fan in joint duct system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21006291A JPH0535338A (en) 1991-07-26 1991-07-26 Rotational frequency control method for fan in joint duct system

Publications (1)

Publication Number Publication Date
JPH0535338A true JPH0535338A (en) 1993-02-12

Family

ID=16583189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21006291A Pending JPH0535338A (en) 1991-07-26 1991-07-26 Rotational frequency control method for fan in joint duct system

Country Status (1)

Country Link
JP (1) JPH0535338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528556A (en) * 2004-03-09 2007-10-11 エム ケー エス インストルメンツ インコーポレーテッド System and method for controlling pressure in remote areas
CN104295516A (en) * 2014-08-08 2015-01-21 大唐三门峡发电有限责任公司 Application of automatic switching mode of frequency converter of power station

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528556A (en) * 2004-03-09 2007-10-11 エム ケー エス インストルメンツ インコーポレーテッド System and method for controlling pressure in remote areas
JP4887283B2 (en) * 2004-03-09 2012-02-29 エム ケー エス インストルメンツ インコーポレーテッド System and method for controlling pressure in remote areas
CN104295516A (en) * 2014-08-08 2015-01-21 大唐三门峡发电有限责任公司 Application of automatic switching mode of frequency converter of power station

Similar Documents

Publication Publication Date Title
KR880001189B1 (en) Steam turbine control
JPH0535338A (en) Rotational frequency control method for fan in joint duct system
EP0562144B1 (en) Furnace pressure control method
JPS63286614A (en) Combustion control of boller
JP2696267B2 (en) Boiler parallel operation controller
JP2006170547A (en) Control method and control device for air conditioning system, and air conditioning system
JPH0573917B2 (en)
JPS6183834A (en) Air conditioning system
JPH0230076Y2 (en)
JP3713099B2 (en) Combustion equipment
JP3697285B2 (en) Water supply pump controller
JPH03199892A (en) Control of amount of supply gas for waste heat boiler
JP3204555B2 (en) Gas pressure control device
JPH0429761A (en) Apparatus for controlling airflow rate of coal pulverizer
JPH10169952A (en) Combustion control method of sludge incinerator and apparatus therefor and medium for fuzzy inference combustion control program
JPH07129253A (en) Hot water supply control unit
JP2777152B2 (en) Combustion control device for water heater
JPS6149519B2 (en)
JPH11350907A (en) Operation control method and unit for that in back pressure turbine system
JPS61180315A (en) Control method of water supply pressure
JPH026968B2 (en)
JP2525562Y2 (en) Constant flow valve
CN114625184A (en) Pressure control system of semiconductor equipment
JPS5929207Y2 (en) fluid flow control device
JPH0244117A (en) Combustion device