JPH0535331Y2 - - Google Patents

Info

Publication number
JPH0535331Y2
JPH0535331Y2 JP1985052754U JP5275485U JPH0535331Y2 JP H0535331 Y2 JPH0535331 Y2 JP H0535331Y2 JP 1985052754 U JP1985052754 U JP 1985052754U JP 5275485 U JP5275485 U JP 5275485U JP H0535331 Y2 JPH0535331 Y2 JP H0535331Y2
Authority
JP
Japan
Prior art keywords
sample
temperature
medium
heat absorption
acoustic lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985052754U
Other languages
Japanese (ja)
Other versions
JPS61170069U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985052754U priority Critical patent/JPH0535331Y2/ja
Publication of JPS61170069U publication Critical patent/JPS61170069U/ja
Application granted granted Critical
Publication of JPH0535331Y2 publication Critical patent/JPH0535331Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 [技術分野] 本考案は、超音波を試料に当ててその反射音波
を電気信号に変換し試料の微細構造を2次元に撮
像する超音波顕微鏡装置に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an ultrasonic microscope device that applies ultrasonic waves to a sample and converts the reflected sound waves into electrical signals to two-dimensionally image the fine structure of the sample.

[従来技術] 従来から使用されている超音波顕微鏡装置は第
1図に示すような構成になつており、すなわち電
気音響変換薄膜(ZnO)10は電極12に挟み込
まれたサンドイツチ構造になつていて、一方の電
極12はサフアイヤ等から成る音響伝搬体14の
平面状に研磨された上面に固着されている。該音
響伝搬体14の下端には口径約0.1mmφ〜1.0mmφ
の凹面状の半球穴が形成され、これにより音響レ
ンズ16が構成されている。
[Prior Art] A conventionally used ultrasonic microscope device has a configuration as shown in FIG. , one electrode 12 is fixed to the planarly polished upper surface of an acoustic propagation member 14 made of sapphire or the like. The lower end of the acoustic propagation body 14 has a diameter of approximately 0.1 mmφ to 1.0 mmφ.
A concave hemispherical hole is formed, thereby forming an acoustic lens 16.

そして、前記音響伝搬体14の下方には試料台
18が配置され、該試料台18の前記音響レンズ
16の真下の所には観察する試料20が載せられ
ていて該音響レンズ16と試料20との間には水
等の媒質22が満たされている。
A sample stand 18 is arranged below the acoustic propagation body 14, and a sample 20 to be observed is placed on the sample stand 18 directly below the acoustic lens 16. A medium 22 such as water is filled in between.

更に、前記電気音響変換薄膜10にパルス10
0を印加して平面超音波102を発生するための
パルス発振器24が設けられている。そして、こ
のパルス発振器24の作動によつて該電気音響変
換薄膜10から発生した平面超音波102は音響
伝搬体14中を伝搬して音響レンズ16に達する
と音響伝搬体14としてのサフアイヤの音速
(1100m/s)と媒質である水の音速(1500m/
s)との音速の差により屈折作用が生じて試料2
0面上に焦点を結ぶように集束される。試料20
面に照射された超音波はそこで反射されて試料2
0の弾性的性質に応じて強弱の反射超音波104
となつて音響レンズ16へ戻る。
Furthermore, a pulse 10 is applied to the electroacoustic transducer thin film 10.
A pulse oscillator 24 is provided for applying 0 to generate the plane ultrasound 102. The planar ultrasonic wave 102 generated from the electroacoustic transducer thin film 10 by the operation of the pulse oscillator 24 propagates through the acoustic propagation body 14 and reaches the acoustic lens 16. 1100m/s) and the sound speed of the water medium (1500m/s).
Sample 2
It is focused on the zero plane. Sample 20
The ultrasonic waves irradiated on the surface are reflected there and are transferred to sample 2.
Reflected ultrasound 104 of strength or weakness depending on the elastic properties of
Then it returns to the acoustic lens 16.

そして、この反射された超音波104は音響伝
搬体14中を前と逆方向に進み電気音響変換薄膜
10に達すると高周波信号106に変換される。
The reflected ultrasonic wave 104 then travels in the opposite direction through the acoustic propagation body 14 and is converted into a high frequency signal 106 when it reaches the electroacoustic conversion thin film 10.

この高周波信号106を受信機26で受信し、
ここでダイオード検波してビデオ信号108に変
換しCRTデイスプレイ28の入力信号として用
いられている。また、このCRTデイスプレイ2
8に試料20の2次元画像を表示するために前記
試料台18を駆動装置30及び連結棒31によつ
てX−Y平面で2次元に走査する。
This high frequency signal 106 is received by the receiver 26,
Here, the signal is detected by a diode and converted into a video signal 108, which is used as an input signal for the CRT display 28. Also, this CRT display 2
In order to display a two-dimensional image of the sample 20 at 8, the sample stage 18 is two-dimensionally scanned in the X-Y plane by the driving device 30 and the connecting rod 31.

このように構成された超音波顕微鏡装置におい
て、試料台18を駆動装置30によりX−Y平面
内で2次元に走査していると試料20の走査に伴
う試料20面の反射超音波104の強弱が2次元
的にCRTデイスプレイ28面に表示される。
In the ultrasonic microscope apparatus configured as described above, when the sample stage 18 is two-dimensionally scanned within the X-Y plane by the drive device 30, the intensity of the reflected ultrasonic waves 104 on the surface of the sample 20 as the sample 20 is scanned changes. is displayed two-dimensionally on 28 CRT displays.

ところで、このような装置で、例えばその弾性
的性質の温度依存性が大きく生体組織、細胞等の
試料を観察する場合には、試料の温度を変化させ
て各温度における試料の物理的性質の変化を観察
する必要が生じるものである。しかし、試料の温
度を変化させると、超音波の通る媒質22も同様
な温度変化をし、それに伴つて媒質22中での超
音波の吸収される割合いが変化してしまう。例え
ば、媒質22として水を使用した場合には、第2
図に示すとおり、水を常温より高くするにつれて
超音波の伝搬速度は多少増加するが、超音波の水
中で吸収される割合は大幅に減少して反射された
超音波104の信号としての強弱の程度が温度に
より変化するのが理解される。また、温度変化に
より試料20で反射した超音波の出力変化をもた
らすものとして装置の測定系、例えば音響レンズ
16あるいは試料台18の膨脹、収縮による試料
20と音響レンズ16との距離の変化などがあ
る。そのため、各温度における超音波104の媒
質22中での吸収率変化に基づく反射信号の誤差
や装置の測定系の温度変化による反射信号の誤差
を補正しなければ試料の各温度における正確な物
理的性質の変化を観察することができないもので
ある。しかし、それを実施することの困難性から
従来の超音波顕微鏡装置では行われておらず、試
料20を任意に温度変化させて各温度における試
料20の物理的性質の変化を観察することができ
なかつた。
By the way, when using such a device to observe a sample such as a living tissue or cell whose elastic properties are highly temperature dependent, the temperature of the sample is changed and the physical properties of the sample change at each temperature. It becomes necessary to observe the However, when the temperature of the sample changes, the temperature of the medium 22 through which the ultrasonic waves pass also changes, and the rate at which the ultrasonic waves are absorbed in the medium 22 changes accordingly. For example, when water is used as the medium 22, the second
As shown in the figure, as the temperature of the water rises above room temperature, the propagation speed of the ultrasonic waves increases somewhat, but the proportion of ultrasonic waves absorbed in the water decreases significantly, and the strength of the signal of the reflected ultrasonic waves 104 decreases. It is understood that the extent varies with temperature. In addition, changes in the measurement system of the apparatus, such as changes in the distance between the sample 20 and the acoustic lens 16 due to expansion or contraction of the acoustic lens 16 or the sample stage 18, cause changes in the output of the ultrasonic waves reflected by the sample 20 due to temperature changes. be. Therefore, it is necessary to correct the error in the reflected signal due to changes in the absorption rate of the ultrasonic wave 104 in the medium 22 at each temperature and the error in the reflected signal due to temperature changes in the measurement system of the device. It is impossible to observe changes in properties. However, due to the difficulty of implementing this, it has not been done using conventional ultrasonic microscope equipment, and it is possible to arbitrarily change the temperature of the sample 20 and observe changes in the physical properties of the sample 20 at each temperature. Nakatsuta.

[考案の目的] 本考案は前記従来技術の欠点に鑑みなされたも
のであり、その目的は、種々の温度における物理
的性質の変化を観察する必要性のある生体組織、
細胞等の試料に有効な超音波顕微鏡装置を提供す
ることにある。
[Purpose of the invention] The present invention was devised in view of the shortcomings of the prior art, and its purpose is to analyze biological tissues for which it is necessary to observe changes in physical properties at various temperatures.
The object of the present invention is to provide an ultrasonic microscope device that is effective for samples such as cells.

[考案の構成] この目的を達成するために、本考案は、従来の
超音波顕微鏡装置において、試料の近傍に該試料
を加温または冷却するための吸発熱部と該試料の
温度を検出するための温度センサとを設けるとと
もに該温度センサからの検出信号を入力して該試
料をある任意の温度に保つために前記吸発熱部の
吸発熱量を制御する温度制御器を設け、更に吸発
熱部からの吸発熱で試料とともに代わる媒質の温
度変化による超音波の媒質中での吸収率変化に基
づく反射信号の誤差及び装置の測定系による反射
信号の誤差を自動的に補正する手段を設けたこと
を特徴とする。
[Configuration of the device] In order to achieve this objective, the present invention includes a conventional ultrasonic microscope device that includes a heat-absorbing and heat-generating portion near the sample for heating or cooling the sample, and detecting the temperature of the sample. A temperature sensor is provided for inputting a detection signal from the temperature sensor to control the amount of heat absorbed by the heat absorption and heat absorption section in order to input a detection signal from the temperature sensor to maintain the sample at a certain arbitrary temperature. A means is provided to automatically correct errors in the reflected signal due to changes in the absorption rate of ultrasound in the medium due to changes in the temperature of the medium due to heat absorption and absorption from the sample along with the sample, as well as errors in the reflected signal due to the measurement system of the device. It is characterized by

[考案の実施例] 以下、図面により本考案の好適な実施例を説明
いる。
[Embodiments of the invention] Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.

第3図中、試料32を載せた試料台34は固定
されて、電気音響変換素子36a、音響レンズ3
6cが形成された音響伝搬体36bから成るトラ
ンスデユーサ36が連結棒38を介して走査部4
0に取り付けられ、該走査部40の作動により該
トランスデユーサ36はX−Y平面内で2次元に
走査される。
In FIG. 3, a sample stage 34 on which a sample 32 is placed is fixed, and an electroacoustic transducer 36a and an acoustic lens 3
A transducer 36 consisting of an acoustic propagating body 36b having a shape 6c is connected to the scanning unit 4 via a connecting rod 38.
0, and the transducer 36 is two-dimensionally scanned within the XY plane by the operation of the scanning section 40.

試料台34の下側には吸発熱部、例えばサーモ
エレメント42が配されていて、該サーモエレメ
ント42は電源44から供給される電流によりそ
の表面42aで吸熱又は発熱を行う。
A heat-absorbing or heat-absorbing section, for example, a thermoelement 42 is disposed below the sample stage 34, and the thermoelement 42 absorbs or generates heat on its surface 42a using a current supplied from a power source 44.

また、試料台34上の試料32の近傍には試料
32の温度を検出するための温度センサ46が配
置され、この温度センサ46から出力される検出
信号は温度制御器48に入力される。
Further, a temperature sensor 46 for detecting the temperature of the sample 32 is arranged near the sample 32 on the sample stage 34, and a detection signal output from this temperature sensor 46 is input to a temperature controller 48.

そして、該温度制御器48はあらかじめ設定さ
れた温度と前記温度センサ46の検出信号による
試料温度とを比較し、この両者の差に比例した信
号を電源44に送り、電源44からその信号に応
じた電流を出力させ、前記サーモエレメント42
の吸熱量又は発熱量を制御して試料32の温度を
温度制御器48に設定した温度に保つ。
The temperature controller 48 compares the preset temperature with the sample temperature detected by the temperature sensor 46, sends a signal proportional to the difference between the two to the power source 44, and the power source 44 responds to the signal. The thermoelement 42
The temperature of the sample 32 is maintained at the temperature set in the temperature controller 48 by controlling the amount of heat absorbed or the amount of heat generated.

このように温度制御器48で試料32を所要の
温度に保ち、パルス発振器50を作動させてパル
ス110をトランスデユーサ36に送ると、該ト
ランスデユーサ36からは超音波が出力する。こ
の出力された超音波が媒質52中を通つて試料3
2に照射して該試料32から反射される超音波1
12は音響伝搬体36bを通りトランスデユーサ
36の電気音響変換素子36aで高周波信号11
4に変換され、この高周波信号114は受信機2
6で受信されダイオード検波されて第1のビデオ
信号116に変換される。
In this way, when the sample 32 is kept at a required temperature by the temperature controller 48 and the pulse oscillator 50 is operated to send pulses 110 to the transducer 36, the transducer 36 outputs ultrasonic waves. This output ultrasonic wave passes through the medium 52 and passes through the sample 3.
2 and reflected from the sample 32
12, the high frequency signal 11 passes through the acoustic propagation body 36b and is transmitted to the electroacoustic transducer 36a of the transducer 36.
4, and this high frequency signal 114 is sent to the receiver 2.
6 is diode-detected and converted into a first video signal 116.

ところで、前記試料32から反射した超音波1
12は媒質52中を通るときに該媒質52の各温
度の超音波吸収率に基づいて媒質52中に一部吸
収されるので超音波112が前記トランスデユー
サ36によつて変換された反射信号すなわち前記
の高周波信号114又は第1のビデオ信号116
は試料32の物理的な性質である弾性的性質を忠
実に反映した信号となつていない。また、装置の
測定系として音響レンズ36c又は温度変化によ
つて試料台34が厚み方向に膨脹収縮して試料3
2と音響レンズ36c間の距離が変化することに
よる反射信号の誤差がある。
By the way, the ultrasonic wave 1 reflected from the sample 32
12 is a reflected signal obtained by converting the ultrasonic wave 112 by the transducer 36 because it is partially absorbed into the medium 52 when passing through the medium 52 based on the ultrasonic absorption rate at each temperature of the medium 52. That is, the high frequency signal 114 or the first video signal 116
is not a signal that faithfully reflects the elastic properties, which are the physical properties of the sample 32. In addition, as a measurement system of the apparatus, the acoustic lens 36c or the sample stage 34 expands and contracts in the thickness direction due to temperature changes, and the sample 3
There is an error in the reflected signal due to a change in the distance between the acoustic lens 2 and the acoustic lens 36c.

そこで、媒質52の温度変化による超音波媒質
52中での吸収率変化に基づく反射信号の誤差や
装置の測定系による反射信号の誤差を自動的に補
正する手段としてコンピユータ54が使用されて
おり、該コンピユータ54には媒質52の各温度
による超音波112の吸収率変化に基づく反射信
号の誤差及び各温度における音響レンズ36cと
試料32の距離等の装置の測定系の変化による反
射信号の誤差を補正するためのプログラムがあら
かじめ設定されている。このコンピユータ54に
は温度制御器48から試料32の温度をある任意
温度にする設定温度データが入力されるととも
に、受信機26からのその温度での媒質52及び
装置の測定系による誤差分を含んだ反射信号であ
る第1のビデオ信号116が出力されると、該コ
ンピユータ54は第1のビデオ信号116から誤
差を補正して試料32を当該温度における物理的
性質である弾性的性質を忠実に反映した第2のビ
デオ信号118が出力され、該第2のビデオ信号
118によりCRTデイスプレス56に試料32
の2次元画像が表示される。
Therefore, the computer 54 is used as a means for automatically correcting errors in the reflected signal due to changes in absorption in the ultrasonic medium 52 due to temperature changes in the medium 52 and errors in the reflected signal due to the measurement system of the apparatus. The computer 54 calculates errors in the reflected signal due to changes in the absorption rate of the ultrasonic wave 112 due to various temperatures of the medium 52, and errors in the reflected signal due to changes in the measurement system of the apparatus such as the distance between the acoustic lens 36c and the sample 32 at each temperature. A program for correction is preset. The computer 54 receives set temperature data from the temperature controller 48 to set the temperature of the sample 32 to a certain arbitrary temperature, and also inputs data from the receiver 26 at that temperature including errors caused by the medium 52 and the measurement system of the device. When the first video signal 116, which is a reflected signal, is output, the computer 54 corrects the error from the first video signal 116 to accurately display the elastic properties of the sample 32, which are physical properties at the temperature. A reflected second video signal 118 is output, and the sample 32 is displayed on the CRT display 56 by the second video signal 118.
A two-dimensional image is displayed.

以上の実施例では吸発熱部に半導体から成るサ
ーモエレメント42を示したが、これに限らず他
の熱交換器等を使用することも可能である。
Although the thermoelement 42 made of a semiconductor is shown in the heat absorption/heat absorption portion in the above embodiment, the thermoelement 42 is not limited to this, and it is also possible to use other heat exchangers or the like.

このような構成により、弾性的性質の温度依存
性が大きい生体組織、細胞等の試料を観察する場
合であつても、各温度における該試料の物理的性
質を忠実に撮像することができる。
With such a configuration, even when observing a sample such as a biological tissue or a cell whose elastic properties are highly dependent on temperature, it is possible to faithfully image the physical properties of the sample at each temperature.

[考案の効果] 以上説明したとおり、本考案によれば、試料を
任意の温度に保つようにするとともに、媒質の温
度変化による超音波の媒質中での吸収率変化に基
づく反射信号の誤差及び温度変化による反射信号
の誤差を自動的に補正する手段を設けたことで、
試料の各温度による物理的性質の変化を忠実に撮
像することができる効果がある。
[Effects of the invention] As explained above, according to the invention, the sample can be maintained at an arbitrary temperature, and errors in the reflected signal due to changes in the absorption rate of ultrasound in the medium due to changes in the temperature of the medium can be prevented. By providing a means to automatically correct errors in reflected signals due to temperature changes,
This has the effect of allowing faithful imaging of changes in physical properties of the sample due to various temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波顕微鏡装置の説明図、第
2図は媒質(水)の音速及び超音波吸収係数の温
度変化を示すグラフ図、第3図は本考案の好適な
一実施例を示す説明図である。 32……試料、36……トランスデユーサ、3
6a……電気音響変換素子、36b……音響伝搬
体、36c……音響レンズ、42……サーモエレ
メント(吸発熱部)、46……温度センサ、48
……温度制御器、52……媒質、114……高周
波信号、116……第1のビデオ信号、118…
…第2のビデオ信号。
Fig. 1 is an explanatory diagram of a conventional ultrasonic microscope device, Fig. 2 is a graph showing temperature changes in the sound velocity and ultrasonic absorption coefficient of the medium (water), and Fig. 3 is a diagram showing a preferred embodiment of the present invention. FIG. 32...Sample, 36...Transducer, 3
6a...Electroacoustic conversion element, 36b...Acoustic propagation body, 36c...Acoustic lens, 42...Thermo element (heat absorption/heat absorption part), 46...Temperature sensor, 48
... Temperature controller, 52 ... Medium, 114 ... High frequency signal, 116 ... First video signal, 118 ...
...Second video signal.

Claims (1)

【実用新案登録請求の範囲】 音響伝搬体の一端に電気音響変換素子を設け他
端に所定の焦点をもつ音響レンズにより形成され
たトランスデユーサの該音響レンズの焦点近傍に
所定試料を置くとともに該音響レンズと該試料の
間には媒質を介在させて前記音響レンズから前記
媒質中に放出された音波の前記試料での反射音波
により該試料を撮像する超音波顕微鏡装置におい
て、 前記試料の近傍に吸発熱部と温度センサを配置
するとともに、該温度センサからの検出信号を入
力して該試料をある任意温度にするために前記吸
発熱部の吸発熱量を制御する温度制御器を設け、
かつ媒質及び装置の測定系の温度変化による超音
波の反射信号の誤差を自動的に補正する手段を設
けて、前記試料を任意の温度に加温又は冷却して
試料の物理的性質の状態を撮像可能とする超音波
顕微鏡装置。
[Claims for Utility Model Registration] A transducer is formed by an acoustic lens having an electroacoustic conversion element at one end of the acoustic propagation body and a predetermined focus at the other end, and a predetermined sample is placed near the focal point of the acoustic lens. In an ultrasonic microscope apparatus that interposes a medium between the acoustic lens and the sample and images the sample using sound waves reflected by the sample of sound waves emitted from the acoustic lens into the medium, A heat absorption and heat absorption part and a temperature sensor are disposed in the temperature sensor, and a temperature controller is provided to input a detection signal from the temperature sensor and control the heat absorption and heat generation amount of the heat absorption and heat absorption part in order to bring the sample to a certain arbitrary temperature,
In addition, a means for automatically correcting errors in the ultrasonic reflected signal due to temperature changes in the medium and the measurement system of the apparatus is provided, and the state of the physical properties of the sample is determined by heating or cooling the sample to an arbitrary temperature. Ultrasonic microscope device that enables imaging.
JP1985052754U 1985-04-11 1985-04-11 Expired - Lifetime JPH0535331Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985052754U JPH0535331Y2 (en) 1985-04-11 1985-04-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985052754U JPH0535331Y2 (en) 1985-04-11 1985-04-11

Publications (2)

Publication Number Publication Date
JPS61170069U JPS61170069U (en) 1986-10-22
JPH0535331Y2 true JPH0535331Y2 (en) 1993-09-08

Family

ID=30572984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985052754U Expired - Lifetime JPH0535331Y2 (en) 1985-04-11 1985-04-11

Country Status (1)

Country Link
JP (1) JPH0535331Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530863A (en) * 2000-12-28 2004-10-07 ピコリター インコーポレイテッド Focused acoustic ejection cell classification system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147060A (en) * 1980-04-16 1981-11-14 Alps Nootoronikusu Kk Ultrasonic microscope
JPS57182645A (en) * 1981-05-07 1982-11-10 Olympus Optical Co Ltd Ultrasonic microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147060A (en) * 1980-04-16 1981-11-14 Alps Nootoronikusu Kk Ultrasonic microscope
JPS57182645A (en) * 1981-05-07 1982-11-10 Olympus Optical Co Ltd Ultrasonic microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530863A (en) * 2000-12-28 2004-10-07 ピコリター インコーポレイテッド Focused acoustic ejection cell classification system and method

Also Published As

Publication number Publication date
JPS61170069U (en) 1986-10-22

Similar Documents

Publication Publication Date Title
US4819649A (en) Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated
KR20130123761A (en) The laser-induced ultrasonic wave apparatus and the method of generating a image using the same
US4577504A (en) Acoustic microscope
JPS589063A (en) Ultrasonic microscope
Pulkkinen et al. Ultrasound field characterization using synthetic schlieren tomography
JP2860843B2 (en) Ultrasonic sound velocity measuring device based on V (z) characteristic and ultrasonic microscope using the same
JPH0535331Y2 (en)
US20020017141A1 (en) Ultrasonic detection method and apparatus and ultrasonic diagnostic apparatus
JPH10127632A (en) Ultrasonic diagnostic system
JPH01156661A (en) Joint part survey instrument
JPH0810256A (en) Ultrasonic diagnostic system
JP2535050B2 (en) Ultrasonic therapy equipment
Jaksukam et al. Development of ultrasonic power measurement standards in Thailand
JP4672879B2 (en) Vibration measuring method and ultrasonic microscope system
Umchid et al. Ultrasound power meter with a three axis positioning system for therapeutic applications
JP5326132B2 (en) Acoustic impedance measuring apparatus and acoustic impedance measuring method
JP2023140926A (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
Ide et al. Measurement of diagnostic electronic linear arrays by miniature hydrophone scanning
Jaksukam et al. A primary level ultrasonic power measurement system developed at national institute of metrology, thailand
KR20050019518A (en) Phased array ultrasonic inspection apparatus having controlling means for focusing parameters
貝瀬不二丸 et al. Effect of front plate shapes of tough hydrophones on behavior of acoustic cavitation bubbles
JPH0327863B2 (en)
JPH10229984A (en) Ultrasonic transducer and osteoporosis diagnostic system therewith
Lewin Devices for ultrasound field parameter measurements
JPH03188842A (en) Ultrasonic living body tester