JPH0535137B2 - - Google Patents

Info

Publication number
JPH0535137B2
JPH0535137B2 JP61132777A JP13277786A JPH0535137B2 JP H0535137 B2 JPH0535137 B2 JP H0535137B2 JP 61132777 A JP61132777 A JP 61132777A JP 13277786 A JP13277786 A JP 13277786A JP H0535137 B2 JPH0535137 B2 JP H0535137B2
Authority
JP
Japan
Prior art keywords
hydroxy
cyclopentenone
optically active
cyclopentanedione
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61132777A
Other languages
Japanese (ja)
Other versions
JPS62289542A (en
Inventor
Ryoji Noyori
Kenji Manabe
Seiji Kurozumi
Masahito Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP61132777A priority Critical patent/JPS62289542A/en
Publication of JPS62289542A publication Critical patent/JPS62289542A/en
Publication of JPH0535137B2 publication Critical patent/JPH0535137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳现な説明】 産業䞊の利甚分野 本発明は、光孊掻性−ヒドロキシ−−シク
ロペンテノンおよび関連化合物の補法に関する。
曎に詳现には本発明は、−ヒドロキシ−−シ
クロペンテノンを光孊掻性ロゞりム錯䜓ず接觊さ
せるこずにより䞀方の光孊異性䜓を遞択的に異性
化せしめ、−シクロペンタンゞオンずし、
同時にたたは配䜍の光孊掻性が誘起された
−ヒドロキシ−−シクロペンテノンの新芏な補
法に関する。 かかる補造法によれば、皮々の薬理䜜甚を有す
るプロスタグランゞンあるいは制ガン䜜甚を有す
るメむタンシン等の皮々の医薬品の補造䞭間䜓ず
なる光孊掻性な−ヒドロキシ−−シクロペン
テノン類を高収率で効率よく埗るこずができ、曎
にかかる補造法は立䜓化孊䞊極めお意矩ある補造
法である。 埓来技術 埓来、(R)−−ヒドロキシ−−シクロペンテ
ノン、(S)−−ヒドロキシ−−シクロペンテノ
ン等の光孊掻性な−ヒドロキシ−−シクロペ
ンテノン類の補造法ずしおは、䟋えば次のような
補造法が知られおいる。 すなわち、 (1) シクロペンタゞ゚ンから埗られるゞアセトキ
シシクロペント−−゚ンを酵玠により加氎分
解しお、(R)−アセトキシ−(R)−ヒドロキシ
シクロペント−−゚ンを埗、次いでこれを二
酞化マンガンで酞化しお、(R)−アセトキシシ
クロペント−−゚ン−−オンを埗、これを
必芁に応じお加氎分解酵玠で脱保護しお補造す
る方法テトラヘドロン、32、1713−1718
1977、テトラヘドロン、32、18931977、テ
トラヘドロン、レタヌズ、27、12551986、
26、4071985、58751984、ザ・ゞダヌナ
ル・アメリカン・ケミカル・゜サむ゚テむヌ、
106、36951984参照 (2) 出発化合物ずしお又は−酒石酞を甚い、
これを工皋の操䜜により又は−−
ゞペヌド−−む゜プロピリデンゞオキシ
ブタンずし、これずリチオ化合物ずを反応させ
お次いで加氎分解し、(R)又は(S)−−ヒドロキ
シ−−シクロペンテノンを補造する方法テ
トラヘドロン・レタヌズ、10、759〜7621976
参照、 (3) 出発物質ずしお、埮生物の代謝産物であるテ
ラむンずいう化合物より、工皋を経お(R)−
アセトキシ−−シクロペンテノンを補造する
方法テトラヘドロンレタヌズ、29、2553〜
25561978参照、 (4) −トリクロロプノヌルを、塩玠
で反応せしめお、−トリクロロ−
−ゞヒドロキシシクロペント−−゚ン
−−カルボン酞を埗、これをブルシンにお光
孊分割し、次いで工皋の操䜜を経お、(R)−
−−ブチルゞメチルシロキシシクロペント−
−゚ノンを補造する方法テトラヘドロン・
レタヌズ、1539〜421979(17)参照、 (5) −シクロペンテン−−ゞオンをキラ
ルなビナフトヌル化合物ずアルコヌルず氎玠化
リチりムアルミニりムずから埗られる化合物で
䞍斉還元しお(R)たたは(S)の−ヒドロキシ−
−シクロペンテノンを埗る方法野䟝ら、特開
昭56−123932参照、 (6) dl−−ヒドロキシ−−シクロペンテノン
ず光孊分割剀を結合させ、生成物を぀のゞア
ステレオマヌずしお分離した埌分割剀を反応で
脱保護しお光孊掻性䜓を埗、この氎酞基を必芁
に応じお保護しお補造する方法矜里ら、特開
昭57−159777および野䟝ら、テトラヘドロン・
レタヌズ、23、40571982参照、 (7) dl−−ヒドロキシ−−シクロペンテノン
をオルト−フタル酞のハヌプステル䜓ずし、
これを光孊掻性アミンずの塩ずしお、再結晶に
より䞀方の異性䜓を分離し、脱保護しお光孊掻
性䜓を埗、氎酞基を必芁に応じお保護しお補造
する方法枡蟺ら、特開昭57−14560参照、 (8) −グルコヌズを出発原料ずしお化孊倉換に
よ぀お埗る方法鳥居ら、ザ・ゞダヌナル・オ
ブ・オルガニツク・ケミストリヌ、51、254
1986参照 (9) シクロペント−−゚ン−−オヌルの
−゚ポキシドの䞍斉塩基觊媒によるアリルア
ルコヌルぞの異性化及び酞化による方法浅芋
ら、テトラヘドロン・レタヌズ、26、5803
1985参照 等が知られおいる。 これらの方法においおは、(1)、(2)の方法は埗ら
れる−ヒドロキシ−−シクロペンテノン類の
光孊収率が充分に満足し埗るものではなく、たた
そのトヌタル収率も䜎いものであり、(3)、(4)の方
法にあ぀おは光孊収率は高いが、(3)の方法によれ
ば入手が困難なテラむンずいう化合物を出発物質
ずしお甚いおおり、たた(4)の方法にあ぀おは補造
工皋においお光孊分割を行うものであり、たた
(3)、(4)のいずれの方法のトヌタル収率も充分に満
足し埗るものではない。(5)の方法は原料である
−シクロペンテン−−ゞオンが出発原料ず
しお高䟡で入手が比范的困難であるものを甚いる
ずいう難点がある。さらに(6)、(7)の光孊分割によ
る方法では䞀方の光孊掻性䜓ずしお利甚出来るも
のは理論的にも高々50であり、トヌタル収率も
充分ではない。(8)の−グルコヌズからの誘導は
光孊収率は良いが、目的物に至るたでの工皋数が
長いずいう欠点がある。(9)の方法では出発原料の
入手が容易でなく、光孊収率も90e.e.ず満足で
はない。 たた、シクロペンタン−−ゞオンの埓来
からの補取の方法ずしおは、β−ケトアゞピン酞
゚チル゚ステルのデむツクマンDieckmann
瞮合反応による方法アヌル・リヒタヌ、ヘルベ
チカ・キミカ・アクタ、32、11231949及びゞ
゚ヌ・゚ツチ・ブロヌズら、ゞダヌナル・オブ・
アメリカン・ケミカル・゜サむ゚テむ、75、1731
1953参照あるいはレブリン酞゚チル゚ステ
ルの環化反応により方法ゞ゚ヌ・スラガら、シ
ンセシス、2821977参照が知られおいる。し
かしながら、これらの方法は収率、操䜜の耇雑さ
から芋お必ずしも工業生産䞊満足すべき方法では
ない。たた、シクロペンタゞ゚ンを甚いお−シ
クロペンテンゞオヌルを経由しお埗る方法が知ら
れおいる゚ル・゚ヌ・オヌンら、ゞダヌナル・
オブ・ザ・ケミカル・゜サむ゚テむヌ、4035
1952ゞヌ・゚ム・コラシナら、オルガニツ
ク・シンセシス、42、501962ゞヌ・゚ツチ・
ラスムツセンら、オルガニツク・シンセシス、
VolV、2341973ゞダヌナル・オブ・ザ・オ
ルガニツク・ケミストリヌ、37、29051972及
びこれらの匕甚文献参照。しかし、これらの方
法も収率、工皋の耇雑さの点においお欠点を有し
おいる。 たた、最近ノルボルネンを甚いる−シク
ロペンタンゞオンの有利な補法が提案されたシ
ヌ・リツクら、ケミシ゚・ベリヒテ、111、2461
1978参照。この方法はこれたでの補法に比し
おその生産性は著しく向䞊した方法である。しか
し、工皋は数段階であり、操䜜の面で必ずしも満
足すべきものでない。 たた、−゚ポキシシクロペンタノンを異
性化しお埗る方法も提案されおいる特開昭55−
069537、ザ・ゞダヌナル・アメリカン・ケミカ
ル・゜サむ゚テむヌ、102、20951980参照〕。 この方法は短段階であるが、収率は満足すべき
ものではない。 発明の目的 このように埓来の、光孊掻性な−ヒドロキシ
−−シクロペンテノンおよび−シクロペ
ンタンゞオンの補造法は、必ずしも工業的に優れ
たものずは蚀えないものである。 そこで本発明者らは、容易に入手し埗る化合物
を甚いお、光孊収率が高く、たたトヌタル収率も
高い、工業的に有利な光孊掻性−ヒドロキシ−
−シクロペンテノンおよび−シクロペン
タンゞオンの補造法を芋出すべく鋭意研究した。
すなわち、埓来から知られおいるアリルコヌルが
䞍斉觊媒により−氎玠移動反応により䞍斉
のカルボニル化合物を䞎えるずいう知芋ガれ
タ・キミア・むタリアヌナ、106、11311976、
ピナアヌ・アンド・アプラむド・ケミストリヌ、
57、18451985参照に着目し、−ヒドロキ
シ−−シクロペンテノンを原料に䞍斉ロゞりム
觊媒を接觊させるこずにより、速床論的分割によ
り光孊掻性な−ヒドロキシ−−シクロペンテ
ノンおよび−シクロペンタンゞオンが効率
良く埗られるこずを芋出し、本発明に到達したも
のである。 発明の構成 すなわち本発明は䞋蚘匏〔〕 〔匏䞭、〜〜〜線はαおよびβ−結合の任意の比
を衚わす。〕 で衚わされる−ヒドロキシ−−シクロペンテ
ノンを光孊掻性ロゞりム錯䜓ず接觊させるこずを
特城ずする䞋蚘匏〔〕 〔匏䞭、印は光孊掻性が誘起された䞍斉炭玠原
子を衚わす。〕 で衚わされる光孊掻性−ヒドロキシ−−シク
ロペンテノン及び−シクロペンタンゞオン
の補法である。 本発明の補造法では、出発原料ずしお前蚘匏
〔〕で衚わされる−ヒドロキシ−−シクロ
ペンテノンを甚いる。〜〜〜線は氎酞基の結合が
αがたたはβ結合の任意の比を衚わし、その比が
、すなわちdl䜓は埓来知られた方法により
容易に埗るこずが出来る野䟝ら、特開昭54−
154735、田䞭ら、特開昭56−086128参照。たた
出発原料がいづれかの光孊異性䜓が過剰にな぀お
いるもの、すなわちαβ比が以䞊たたは以
䞋のものもこの補法の原料ずしお䟛するこずも出
来る。 かかる−ヒドロキシ−−シクロペンテノン
を光孊掻性なロゞりム錯䜓ず凊理するこずによ぀
お、速床論的分割を行ない、生成物ずしお光孊掻
性−ヒドロキシ−−シクロペンテノンず
−シクロペンタンゞオンが同時に埗られる。こ
こで甚いられる光孊掻性ロゞりム錯䜓は䞋蚘匏
〔〕 RhbinapLn    〔〕 〔匏䞭、binapは光孊掻性2′−ビスゞプ
ニルホスフむノ−1′−ビナフチルであり、
は配䜍子を衚わし、はパヌクロレヌトたたは
テトラフルオロボレヌトを衚わし、はたたは
の敎数を衚わす。〕 で衚わされるようなものであり、の配䜍子はシ
クロオクタゞ゚ン、ノルボルナゞ゚ン、メタノヌ
ル、アセトン等があり、特にシクロオクタゞ゚
ン、メタノヌルが良い。 かかる錯䜓は公知の文献䟋えば日本公開公報
53−13605、ザ・ゞダヌナル・オブ・アメリカ
ン・ケミカル・゜サむ゚テむヌ、102、7932
1980参照に蚘茉された方法により容易に調
補される。 かくしお調補された光孊掻性ロゞりム錯䜓は原
料ず接觊させるこずにより、䞀方の光孊異性䜓が
優先しお異性化反応を起こし、−シクロペ
ンタンゞオンずしお生成しながら、光孊掻性の誘
起された−ヒドロキシ−−シクロペンテノン
が生ずる結果ずなる。反応では媒䜓を䜿甚するこ
ずが出来、䟋えばテトラヒドロフラン、゚ヌテ
ル、ゞオサン等の゚ヌテル類、特に奜たしくはテ
トラヒドロフランがあげられ、䟋えばトル゚ン、
キシレン、ベンれン等の芳銙族炭化氎玠類、特に
奜たしくはトル゚ンがあげられる。甚いられる媒
䜓は原料に察しお郚〜100郚、奜たしくは10郚
〜50郚が甚いられる。 反応は通垞は−20℃〜70℃、奜たしくは−℃
〜30℃で進行する。反応の進行はプロトン−
nmr、薄局クロマトグラフむヌ等の手段により远
跡出来き、反応時間は目的の生成物の性状に応じ
お蚭定出来る。 生成物はいづれも非垞に氎に溶けやすいので、
反応混合物を盎接フラツシナカラムクロマトグラ
フむヌなどの手段により分離粟補するのが良い。
たたリン酞緩衝液PH7.4を加えお有機溶媒で
抜出される。氎局郚は再床枛圧濃瞮した埌、有機
溶媒で抜出しお生成物をさらに埗る。抜出溶媒ず
しおは酢酞゚チルたたはメチルむ゜ブチルケトン
が奜たしく甚いられる。 たた生成物のひず぀のシクロペンタン−
−ゞオンは媒䜓䞭で結晶する堎合があり、ロ過に
より容易に分離するこずも出来る。 かくしお前蚘匏〔〕で瀺される光孊掻性−
ヒドロキシ−−シクロペンテノンおよび
−シクロペンタンゞオンが埗られる。 光孊掻性−ヒドロキシ−−シクロペンテノ
ンは必芁に応じお曎にその氎酞基を保護せしめお
もよい。 かかる化合物の氎酞基を保護するには、公知の
反応を採甚するこずができる。 すなわち、保護基が䟋えばアセチル基、プロパ
ノむル基、クロロアセチル基、ベンゟむル基、
−ブロモベンゟむル基、−ニトロベンゟむル
基、モツシダ詊薬等のアシル基の堎合には、酞ハ
ロゲン化物もしくは酞無氎物ずピリゞンずを反応
せしめるこずにより容易に保護基を導入するこず
ができる。たた保護基がトリメチルシリル基、ゞ
メチル−−ブチルシリル基等のトリアルキルシ
リル基の堎合には、トリアルキルシリルハロゲン
化物ずむミダゟヌルずヘキサメチルホスホリツク
トリアミドを反応せしめるこずによ぀お保護基を
導入するこずができる。たた保護基が−テトラ
ヒドロピラニル基−テトラヒドロフラニル
基、α−゚トキシ゚チル基、α−゚トキシ−α−
メチル゚チル基等の堎合は察応するビニル゚ヌテ
ル化合物であるゞヒドロピラン、ゞヒドロフラ
ン、゚チルビニル゚ヌテル、゚チルむ゜プロペニ
ル゚ヌテルをパラトル゚ンスルホン酞などの酞性
觊媒存圚䞋に接觊せしめるこずにより保護基を導
入するこずができる。 この保護された氎酞基を有する生成物はその光
孊玔床をさらに䞊げるために再結晶等の手段で凊
理しおも良い。特に保護基がブチルゞメチルシリ
ル基の堎合は䜎枩で䟋えばペンタン、ヘキサン等
の酞化氎玠類を甚いお再結晶され、光孊玔床を䞊
げるこずも出来る。 以䞊の劂くしお、皮々のプロスタグランゞン類
の合成䞭間䜓ずなり埗る光孊掻性な−ヒドロキ
シ−−シクロペンテノンを、容易に入手し埗る
−ヒドロキシ−−シクロペンテノンより高い
光孊収率で効率よく補造するこずが出来、しかも
同時に−シクロペンタンゞオンも埗るこず
が出来る。この補法は原料ずしお甚いた−ヒド
ロキシ−−シクロペンテノンの骚栌構造をほが
定量的に利甚出来る点にあり、比范的高い光孊掻
性を簡単にしかも枩和な条件で誘起出来る点であ
り、埓来の方法に比べお非垞に工皋数が短かく、
目的の光孊掻性䜓を埗るこずが出来る、新芏で有
利な方法ず蚀える。 実斜䟋 以䞋、本発明を実斜䟋により曎に詳现に説明す
る。 実斜䟋  あらかじめ也燥、アルゎン眮換したmm管
NMR管に玄mgのRh〔(R)−binap〕
CH3OH2〕+ClO4 -を蚈り取り、ナトリりム−カ
リりムより蒞留しナトリりムミテヌ䞭に保存した
重氎玠化テトラヒドロフランTHF−d3を0.5
ml蒞留によ぀お導入する。脱気、也燥枈みの
±−−ヒドロキシ−−シクロペンテノン
25Όをマむクロシリンゞで、アルゎン気流
䞋、−78℃で先に甚意したTHF−d3の觊媒溶液
䞀郚䞍溶に導入する。回の脱気操䜜埌℃
に昇枩し、13日間攟眮した。この間に完党に溶液
ずなり、黄橙々色から濃い緑色の溶液ぞず倉化す
る。 反応混合液を盎接、フラツシナカラムクロマト
に䟛しシリカゲル、゚ヌテル−ヘキサン
1.5→゚ヌテル→ゞクロロメタン−メタノヌ
ル觊媒、目的物の8.5mgの−ヒドロキ
シ−−シクロペンテノン(A)および17.9mgの
−シクロペンタンゞオン(B)を分離した。分離し
た−ヒドロキシ−−シクロペンテノンはただ
ちにメチレンクロリト0.5mlに溶かし、モツシ
ダヌ詊薬−MTPACl20Όずピリゞ
ン50Όを加え、宀枩〜時間攟眮する。 反応混合液を酞性条件䞋、゚ヌテル党量玄15
mlで抜出し、有機局を飜和食塩氎で掗浄埌、無
氎硫酞ナトリりムで也燥し、濃瞮しお黄色油状物
質を埗る。この混合物をフラツシナクロマトシ
リカゲル、゚ヌテル−ヘキサン→
で分離し24mgのMTPAC゚ステル䜓を
埗た。HPLC分析により87eeず決定した。 実斜䟋 〜 実斜䟋ず同様な動力孊的分割を実斜し、䞋衚
に瀺したように、觊媒、溶媒、枩床、時間等の
皮々の条件䞋での結果を埗た。 【衚】 【衚】 参考䟋  (R)−−ブチルゞメチルシロキシ−−シク
ロペンテン−−オンの合成 (R)−ヒドロキシ−−シクロペンテン−−
オン1.84mg1.88molをヘキサメチルホスホ
リツクトリアミドNMPAmlにずかし、
℃にお−ブチルゞメチルシリルクロラむド369
mg2.45molを加え、そのたた終倜撹拌す
る。反応埌゚ヌテルを加えた埌氎掗を行うず油状
物320mgが埗られる。これをカラムクロマトグラ
フむヌに付し、−ヘキサン−酢酞゚チル
により粟補するこずにより(R)−−ブチル
ゞメチルシロキシ−−シクロペンテン−−オ
ン294mg74が埗られる。 〔α23 D55.7° 0.42 MeOH 参考䟋  再結晶− 埗られた光孊玔床87eeの(R)−−ブチル−
ゞメチルシロキシ−−シクロペンテノン2.360
宀枩で結晶䜓2.207、䜓0.153
を200mlナスフラスコに採りペンタン110mlに
溶解する。これをN2䞋でむ゜プロピルアルコヌ
ルの冷华バスに぀け冷华バスにドラむアむス片を
少しづ぀入れ埐々に冷华する。玄−45℃で癜色針
状の結晶が生成する。枩床を玄−50℃に保ち時
間静眮埌、−50℃に冷华した3G−グラスフむルタ
ヌに移し瞬時に䜎枩枛圧過した。 分離した結晶郚を枛圧也燥しお0.75532
の結晶−を埗た。又母液を枛圧濃瞮・枛圧也燥
しお1.60568の母液−宀枩で結晶
を埗た。 これらのm.p.光孊玔床、収量は䞋衚の通りであ
る。 【衚】 再結晶− 再結晶−での母液−1.605をペンタン70
mlに溶解し、再結晶−ず同様に−50℃での䜎枩
再結晶操䜜を行い1.042収量44の結晶−
ず0.56324の母液−を埗た。 これらの光孊玔床、収量は䞋衚の通りである。 【衚】
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a method for producing optically active 4-hydroxy-2-cyclopentenone and related compounds.
More specifically, the present invention involves contacting 4-hydroxy-2-cyclopentenone with an optically active rhodium complex to selectively isomerize one optical isomer to form 1,3-cyclopentanedione;
At the same time, optical activity of R or S coordination was induced 4
-Regarding a new method for producing hydroxy-2-cyclopentenone. According to this production method, optically active 4-hydroxy-2-cyclopentenones, which are intermediates for the production of various pharmaceuticals such as prostaglandins with various pharmacological effects and maytansine with anticancer effects, can be produced in high yield. Furthermore, this production method is extremely significant from the viewpoint of stereochemistry. <Prior art> Conventionally, optically active 4-hydroxy-2-cyclopentenones such as (R)-4-hydroxy-2-cyclopentenone and (S)-4-hydroxy-2-cyclopentenone have been produced. For example, the following manufacturing method is known. That is, (1) diacetoxycyclopent-1-ene obtained from cyclopentadiene is hydrolyzed with an enzyme to obtain 3(R)-acetoxy-5(R)-hydroxycyclopent-1-ene; is oxidized with manganese dioxide to obtain 4(R)-acetoxycyclopent-2-en-1-one, which is optionally deprotected with a hydrolase (tetrahedron, 32 , 1713−1718
(1977), Tetrahedron, 32 , 1893 (1977), Tetrahedron, Letters, 27 , 1255 (1986),
26, 407 (1985), 5875 (1984), The Journal American Chemical Society,
106, 3695 (1984)) (2) Using D or L-tartaric acid as a starting compound,
D or L-1,4-
A method for producing (R) or (S)-4-hydroxy-2-cyclopentenone by reacting diiodo-2,3-isopropylidene dioxybutane with a lithio compound and then hydrolyzing it (tetra Hedron Letters, 10 , 759–762 (1976)
(3) As a starting material, 4(R)-
Method for producing acetoxy-2-cyclopentenone (Tetrahedron Letters, ( 29 ), 2553~
2556 (1978)), (4) 2,4,6-trichlorophenol is reacted with chlorine to form 3,5,5-trichloro-
1,4-dihydroxycyclopent-2-ene-1-carboxylic acid was obtained, which was optically resolved with brucine, and then subjected to four steps to obtain (R)-4.
-t-butyldimethylsiloxycyclopent-
Method for producing 2-enone (tetrahedron)
Letters, 1539-42 (1979) (17)), (5) Asymmetric reduction of 1-cyclopentene-3,5-dione with a compound obtained from a chiral binaphthol compound, an alcohol, and lithium aluminum hydride ( 4-hydroxy-2 of R) or (S)
- A method for obtaining cyclopentenone (see Noyori et al., JP-A-123932), (6) combining dl-4-hydroxy-2-cyclopentenone with an optical resolving agent to separate the product into two diastereomers. After separation, the resolving agent is deprotected by reaction to obtain an optically active compound, and the hydroxyl group is protected as necessary to produce the product (Hari et al., JP-A-159777 and Noyori et al., tetrahedron.
Letters, 23, 4057 (1982)), (7) dl-4-hydroxy-2-cyclopentenone as a half ester of ortho-phthalic acid,
This is converted into a salt with an optically active amine, one isomer is separated by recrystallization, the optically active form is obtained by deprotection, and the hydroxyl group is protected as necessary. 57-14560), (8) A method for obtaining D-glucose by chemical conversion using it as a starting material (Torii et al., The Journal of Organ Chemistry, 51, 254
(1986)) (9) 3 of cyclopent-3-en-1-ol,
Isomerization and oxidation of 4-epoxide to allyl alcohol using an asymmetric base catalyst (Asami et al., Tetrahedron Letters, 26, 5803)
(1985)) are known. In these methods, the optical yield of the 4-hydroxy-2-cyclopentenones obtained by methods (1) and (2) is not fully satisfactory, and the total yield is also low. Although methods (3) and (4) have high optical yields, method (3) uses a compound called terrain, which is difficult to obtain, as a starting material; In the method described above, optical resolution is performed during the manufacturing process, and
The total yield of either method (3) or (4) is not fully satisfactory. Method (5) is raw material 1
The disadvantage is that -cyclopentene-3,5-dione is used as a starting material which is expensive and relatively difficult to obtain. Furthermore, in the optical resolution methods (6) and (7), only 50% of one optically active substance can be used theoretically, and the total yield is not sufficient. Although the induction of (8) from D-glucose has a good optical yield, it has the disadvantage of requiring a long number of steps to reach the target product. In method (9), the starting materials are not easily available and the optical yield is unsatisfactory at 90% ee. In addition, as a conventional method for producing cyclopentane-1,3-dione, Dieckmann (β-ketoadipate ethyl ester)
Condensation reaction method (Earl Richter, Helvetica Chimica Acta, 32 , 1123 (1949) and J.E.T. Brose et al., Journal of
American Chemical Society, 75 , 1731
(1953)) or the cyclization reaction of levulinic acid ethyl ester (see J. Slaga et al., Synthesis, 282 (1977)). However, these methods are not necessarily satisfactory for industrial production in terms of yield and operational complexity. In addition, a method of obtaining 4-cyclopentenediol using cyclopentadiene is known (L.N.O.N et al., Journal.
of the Chemical Society, 4035
(1952): G.M. Colaciu et al., Organic Synthesis, 42 , 50 (1962): G.H.
Rasmutsen et al., Organic Synthesis;
VolV, 234 (1973): Journal of the Organ Chemistry, 37 , 2905 (1972) and references cited therein). However, these methods also have drawbacks in terms of yield and process complexity. In addition, an advantageous process for the preparation of 1,3-cyclopentanedione using norbornene has recently been proposed (see Rick et al., Chemisier Berichte, 111 , 2461).
(1978)). This method has significantly improved productivity compared to conventional manufacturing methods. However, the process involves several steps and is not necessarily satisfactory in terms of operation. Additionally, a method has been proposed to obtain 2,3-epoxycyclopentanone by isomerizing it (Japanese Patent Application Laid-open No. 1983-1979-
069537, The Journal American Chemical Society, 102 , 2095 (1980)]. Although this method is short-step, the yield is unsatisfactory. <Object of the invention> As described above, conventional methods for producing optically active 4-hydroxy-2-cyclopentenone and 1,3-cyclopentanedione cannot necessarily be said to be industrially superior. . Therefore, the present inventors have developed an industrially advantageous optically active 4-hydroxy-4-hydroxy compound that has a high optical yield and a high total yield, using easily available compounds.
We conducted extensive research to find a method for producing 2-cyclopentenone and 1,3-cyclopentanedione.
That is, the knowledge that the conventionally known allylcol gives an asymmetric carbonyl compound through a 1,3-hydrogen transfer reaction using an asymmetric catalyst (Gazeta Chimia Italiana, 106 , 1131 (1976),
pure and applied chemistry,
57, 1845 (1985)), optically active 4-hydroxy-2-cyclopene was produced by kinetic resolution by contacting 4-hydroxy-2-cyclopentenone with an asymmetric rhodium catalyst. The present invention was achieved by discovering that tenone and 1,3-cyclopentanedione can be obtained efficiently. <Structure of the invention> That is, the present invention has the following formula [] [In the formula, the ~ ~ ~ line represents an arbitrary ratio of α and β-bonds. ] The following formula [] is characterized by contacting 4-hydroxy-2-cyclopentenone represented by with an optically active rhodium complex. [In the formula, * represents an asymmetric carbon atom in which optical activity is induced. ] This is a method for producing optically active 4-hydroxy-2-cyclopentenone and 1,3-cyclopentanedione represented by the following. In the production method of the present invention, 4-hydroxy-2-cyclopentenone represented by the above formula [] is used as a starting material. ~ ~ ~ The line represents an arbitrary ratio of hydroxyl group bonds to α or β bonds, and the ratio is 1/1, that is, the dl form can be easily obtained by a conventionally known method (Noyori et al., JP-A No. Showa 54-
154735, Tanaka et al., JP-A-56-086128). Further, starting materials containing an excess of one of the optical isomers, that is, those having an α/β ratio of 1 or more or 1 or less, can also be used as raw materials for this production method. By treating such 4-hydroxy-2-cyclopentenone with an optically active rhodium complex, kinetic resolution is performed, and the products are optically active 4-hydroxy-2-cyclopentenone and 1,
3-Cyclopentanedione is obtained at the same time. The optically active rhodium complex used here has the following formula [] <Rh(binap)Ln> - binaphthyl;
L represents a ligand, X represents perchlorate or tetrafluoroborate, and n represents an integer of 1 or 2. ] The ligand for L includes cyclooctadiene, norbornadiene, methanol, acetone, etc., and cyclooctadiene and methanol are particularly preferred. Such complexes are described in known literature (e.g. Japanese Publication No.
53−13605, The Journal of American Chemical Society, 102 , 7932
(1980)). When the optically active rhodium complex prepared in this manner is brought into contact with the raw material, one of the optical isomers undergoes an isomerization reaction preferentially, producing 1,3-cyclopentanedione while 4 having induced optical activity. -hydroxy-2-cyclopentenone results. A medium can be used in the reaction, for example ethers such as tetrahydrofuran, ether, diosane, particularly preferably tetrahydrofuran, for example toluene,
Aromatic hydrocarbons such as xylene and benzene, particularly preferably toluene. The medium used is used in an amount of 1 part to 100 parts, preferably 10 parts to 50 parts, based on the raw material. The reaction is usually carried out at -20°C to 70°C, preferably -5°C.
Proceeds at ~30°C. The reaction progresses with proton-
It can be traced by means such as nmr or thin layer chromatography, and the reaction time can be set depending on the properties of the desired product. All products are highly soluble in water, so
It is preferable to directly separate and purify the reaction mixture by means such as flash column chromatography.
It is also extracted with an organic solvent by adding phosphate buffer (PH7.4). The aqueous layer is concentrated again under reduced pressure and then extracted with an organic solvent to further obtain a product. Ethyl acetate or methyl isobutyl ketone is preferably used as the extraction solvent. Also, one of the products, cyclopentane-1,3
-Diones may crystallize in the medium and can be easily separated by filtration. Thus, the optically active 4- represented by the above formula []
Hydroxy-2-cyclopentenone and 1,3
- Cyclopentanedione is obtained. Optically active 4-hydroxy-2-cyclopentenone may further have its hydroxyl group protected as required. In order to protect the hydroxyl group of such a compound, a known reaction can be employed. That is, the protecting group is, for example, an acetyl group, a propanoyl group, a chloroacetyl group, a benzoyl group, a p
In the case of an acyl group such as a -bromobenzoyl group, p-nitrobenzoyl group, or Motsuya's reagent, a protecting group can be easily introduced by reacting an acid halide or acid anhydride with pyridine. When the protecting group is a trialkylsilyl group such as a trimethylsilyl group or a dimethyl-t-butylsilyl group, the protecting group is introduced by reacting a trialkylsilyl halide, imidazole, and hexamethylphosphoric triamide. be able to. In addition, the protecting group is 2-tetrahydropyranyl group; 2-tetrahydrofuranyl group, α-ethoxyethyl group, α-ethoxy-α-
In the case of a methyl ethyl group, etc., a protective group can be introduced by contacting the corresponding vinyl ether compound dihydropyran, dihydrofuran, ethyl vinyl ether, ethyl isopropenyl ether in the presence of an acidic catalyst such as para-toluenesulfonic acid. . This product having a protected hydroxyl group may be treated by means such as recrystallization to further increase its optical purity. In particular, when the protecting group is a butyldimethylsilyl group, it can be recrystallized at low temperature using hydrogen oxides such as pentane or hexane to increase the optical purity. As described above, optically active 4-hydroxy-2-cyclopentenone, which can be used as a synthetic intermediate for various prostaglandins, has an optical yield higher than that of easily available 4-hydroxy-2-cyclopentenone. 1,3-cyclopentanedione can be obtained at the same time. This production method is able to utilize the skeletal structure of 4-hydroxy-2-cyclopentenone used as a raw material almost quantitatively, and can induce relatively high optical activity easily and under mild conditions. The number of steps is very short compared to the method of
It can be said that this is a new and advantageous method that can obtain the desired optically active substance. <Example> Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 5 mm tube that was previously dried and replaced with argon
Approximately 2 mg of Rh [(R)-binap] in the NMR tube
(CH 3 OH) 2 ] + ClO 4 - was weighed out, and 0.5% of deuterated tetrahydrofuran (THF-d 3 ), which had been distilled from sodium-potassium and stored in a sodium mitten, was added.
Introduced by ml distillation. Degassed and dried (±)-4-hydroxy-2-cyclopentenone (25ÎŒ) was added to the previously prepared THF- d3 catalyst solution (some insoluble ). 0℃ after two degassing operations
The temperature was raised to 1 and left for 13 days. During this time, it completely becomes a solution, changing from a yellow-orange color to a dark green solution. The reaction mixture was directly subjected to flash column chromatography (6 g of silica gel, ether-hexane 8:1.5 → ether → dichloromethane-methanol 9:1), and the catalyst and 8.5 mg of the target product 4-hydroxy-2-cyclopentenone ( A) and 17.9 mg of 1,
3-Cyclopentanedione (B) was separated. The separated 4-hydroxy-2-cyclopentenone is immediately dissolved in methylene chloride (0.5 ml), Motscher's reagent ((+)-MTPACl) (20 Ό) and pyridine (50 Ό) are added, and the mixture is left at room temperature for 1 to 5 hours. The reaction mixture was mixed with ether (total amount approx. 15%) under acidic conditions.
ml), and the organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated to obtain a yellow oil. This mixture was subjected to flash chromatography (6 g of silica gel, ether-hexane 1:5 → 1:
Separation was performed in step 3) to obtain 24 mg of (+) MTPAC ester. Determined to be 87% ee by HPLC analysis. Examples 2-9 Kinetic resolution similar to Example 1 was carried out, and results were obtained under various conditions such as catalyst, solvent, temperature, time, etc., as shown in the table below. [Table] [Table] Reference Example 1 Synthesis of 4(R)-t-butyldimethylsiloxy-2-cyclopenten-1-one 4(R)-hydroxy-2-cyclopenten-1-
Dissolve 1.84 mg (1.88 mmol) of
t-Butyldimethylsilyl chloride at ℃369
mg (2.45 mmol) and stirred overnight. After the reaction, add ether and wash with water to obtain 320 mg of an oily substance. This was subjected to column chromatography and n-hexane-ethyl acetate (2:
Purification according to 1) yields 294 mg (74%) of 4(R)-t-butyldimethylsiloxy-2-cyclopenten-1-one. [α 23 D : +55.7° C: 0.42 MeOH Reference Example 2 Recrystallization-1 Obtained 4(R)-t-butyl- with optical purity of 87% ee
Dimethylsiloxy-2-cyclopentenone 2.360
g (crystal at room temperature) (R form = 2.207 g, S form = 0.153
Take g) in a 200ml eggplant flask and dissolve in 110ml of pentane. This is placed in a cooling bath of isopropyl alcohol under N2 , and pieces of dry ice are added little by little into the cooling bath to cool it down gradually. White needle-like crystals form at approximately -45°C. The temperature was kept at about -50°C and the mixture was allowed to stand for 1 hour, then transferred to a 3G glass filter cooled to -50°C and instantly filtered under low temperature under reduced pressure. Dry the separated crystal part under reduced pressure to give 0.755g (32%)
Crystals of were obtained. In addition, the mother liquor was concentrated under reduced pressure and dried under reduced pressure to obtain 1.605 g (68%) of the mother liquor (crystallized at room temperature).
I got it. The optical purity and yield of these mps are shown in the table below. [Table] Recrystallization-2 1.605g of mother liquor in Recrystallization-1 was mixed with 70g of pentane.
ml, and perform low temperature recrystallization at -50℃ in the same manner as in Recrystallization-1 to obtain 1.042g (yield 44%) of crystals.
and 0.563 g (24%) of mother liquor-2 was obtained. Their optical purity and yield are shown in the table below. 【table】

Claims (1)

【特蚱請求の範囲】  䞋蚘匏〔〕 〔匏䞭、〜〜〜線はαおよびβ−結合の任意の比
を衚わす。〕 で衚わされる−ヒドロキシ−−シクロペンテ
ノンを光孊掻性ロゞりム錯䜓ず接觊させるこずを
特城ずする䞋蚘匏〔〕 〔匏䞭、印は光孊掻性が誘起された䞍斉炭玠原
子を衚わす。〕 で衚わされる光孊掻性−ヒドロキシ−−シク
ロペンテノン及び−シクロペンタンゞオン
の補法。  光孊掻性ロゞりム錯䜓が䞋蚘匏〔〕 RhbinapLn    〔〕 〔匏䞭、binapは光孊掻性2′−ビスゞプ
ニルホスフむノ−1′−ビナフチルであり、
は配䜍子を衚わし、はパヌクロレヌトたたは
テトラフルオロボレヌトを衚わし、はたたは
の敎数を衚わす。〕 で衚わされる錯䜓である特蚱請求の範囲第項蚘
茉の光孊掻性−ヒドロキシ−−シクロペンテ
ノン及び−シクロペンタンゞオンの補法。  配䜍子がメタノヌルたたシクロオクタゞ゚ン
である特蚱請求の範囲第項蚘茉の光孊掻性−
ヒドロキシ−−シクロペンテノン及び−
シクロペンタンゞオンの補法。
[Claims] 1. The following formula [] [In the formula, the ~ ~ ~ line represents an arbitrary ratio of α and β-bonds. ] The following formula [] is characterized by contacting 4-hydroxy-2-cyclopentenone represented by with an optically active rhodium complex. [In the formula, * represents an asymmetric carbon atom in which optical activity is induced. ] A method for producing optically active 4-hydroxy-2-cyclopentenone and 1,3-cyclopentanedione. 2 The optically active rhodium complex has the following formula [] <Rh(binap)Ln> can be,
L represents a ligand, X represents perchlorate or tetrafluoroborate, and n represents an integer of 1 or 2. ] A method for producing optically active 4-hydroxy-2-cyclopentenone and 1,3-cyclopentanedione according to claim 1, which are complexes represented by the following. 3. Optically active 4- according to claim 2, wherein the ligand is methanol or cyclooctadiene.
Hydroxy-2-cyclopentenone and 1,3-
Production method of cyclopentanedione.
JP61132777A 1986-06-10 1986-06-10 Production of optically active 4-hydroxy-2-cyclopentenone or such and related compound thereof Granted JPS62289542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61132777A JPS62289542A (en) 1986-06-10 1986-06-10 Production of optically active 4-hydroxy-2-cyclopentenone or such and related compound thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61132777A JPS62289542A (en) 1986-06-10 1986-06-10 Production of optically active 4-hydroxy-2-cyclopentenone or such and related compound thereof

Publications (2)

Publication Number Publication Date
JPS62289542A JPS62289542A (en) 1987-12-16
JPH0535137B2 true JPH0535137B2 (en) 1993-05-25

Family

ID=15089306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61132777A Granted JPS62289542A (en) 1986-06-10 1986-06-10 Production of optically active 4-hydroxy-2-cyclopentenone or such and related compound thereof

Country Status (1)

Country Link
JP (1) JPS62289542A (en)

Also Published As

Publication number Publication date
JPS62289542A (en) 1987-12-16

Similar Documents

Publication Publication Date Title
DE60123579T2 (en) SYNTHESIS OF 3,6-DIALKYL-5,6-DIHYDRO-4-HYDROXY-PYRAN-2-ONE
JP2019503400A (en) Process for producing 3-((2S, 5S) -4-methylene-5- (3-oxopropyl) tetrahydrofuran-2-yl) propanol derivative and intermediate therefor
Yamaguchi et al. Regioselective Preparation of Allylgermanes.
JP3138834B2 (en) Method for producing fucopyranose analog and intermediate compound thereof
JPS6344743B2 (en)
JPH0535137B2 (en)
Piacenza Nucleophilic substitution with inversion of alcohol configuration with the reagent complex triphenylphosphine-diethyl azodicarboxylate-carboxylic acid. A convenient preparation of epicholesterol
JPH023793B2 (en)
JP2782756B2 (en) Tetrabromocyclopenta [b] benzofuran derivative and method for producing the same
JPH062707B2 (en) Process for producing optically active 4-hydroxy-2-cyclopentenones
JPS5944336A (en) Novel preparation of 2-allylcyclopentanones
JP5259045B2 (en) Benzoprostacyclin intermediates and methods for their production
JP3712077B2 (en) Hydroindan-4-ol derivative and method for producing the same
JPS6234025B2 (en)
JPS6042775B2 (en) 1,7-octadien-3-one and its manufacturing method
KR100543172B1 (en) A Process for Preparing Terrein Compounds
JP3632135B2 (en) Isocarbacycline derivative and method for producing the same
JP2737214B2 (en) Method for producing 4-hydroxy-2-cyclopentenone derivative
JPS6236012B2 (en)
JPH0578541B2 (en)
JP2652248B2 (en) Process for producing alkoxynitrile compounds
KR930006954B1 (en) Method for producing 5-hydroxypentyl phosphate
JP2002212149A (en) METHOD FOR PRODUCING TETRAALKYLAMMONIUM FLUORIDE AND METHOD FOR PRODUCING beta-HYDROXYKETONE BY USING THE SAME
JPH0733390B2 (en) Method for isolating optically active 4-substituted-2-cyclopentenones
JPH03109383A (en) Production of 2,3-dideoxyribose derivative

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees