JPH0535135B2 - - Google Patents

Info

Publication number
JPH0535135B2
JPH0535135B2 JP61027874A JP2787486A JPH0535135B2 JP H0535135 B2 JPH0535135 B2 JP H0535135B2 JP 61027874 A JP61027874 A JP 61027874A JP 2787486 A JP2787486 A JP 2787486A JP H0535135 B2 JPH0535135 B2 JP H0535135B2
Authority
JP
Japan
Prior art keywords
catalyst
titanium
reaction
same manner
ketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61027874A
Other languages
Japanese (ja)
Other versions
JPS62187422A (en
Inventor
Yutaka Morikawa
Tsuneo Ikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP61027874A priority Critical patent/JPS62187422A/en
Publication of JPS62187422A publication Critical patent/JPS62187422A/en
Publication of JPH0535135B2 publication Critical patent/JPH0535135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、調製することが極めて容易なチタン
含有触媒の存在下において、α,β−エチレン性
不飽和カルボニル化合物を製造する方法に関す
る。 [従来の技術] 従来、α,β−エチレン性不飽和カルボニル化
合物の1つであるメチルビニルケトン(1−ブテ
ン−3−オン)は、アセトンとホルムアルデヒド
(又はメチラール)との縮合反応で製造されてい
るが、この時触媒として苛性ソーダ等の強アルカ
リを使用するので、使用済アルカリの濃縮コスト
がかかることや廃液の中和を必要とすることなど
の好ましくない問題が生ずる。更には、ホルムア
ルデヒドが不安定である、触媒を調製する方法が
共沈法であるため触媒の調製工程が煩雑になるな
どの問題点がある。また、ビニルアセチレンの水
和反応による製造方法も知られているが、この方
法は、触媒として有害な水銀を使用することや、
ビニルアセチレン自体が重合しやすいので取扱い
難いという点で工業的に有利でない。更に、メタ
ノールとアセトンを原料としてメチルビニルケト
ンを製造する方法も知られている[ケミストリー
レターズ 333(1973)/Chem.Lett.333
(1973)、ジエイ シー エス ケミカル コミユ
ニケーシヨン 39(1984);J.C.S.Chem
Commun.39(1984)、特開昭59−36635号公報をそ
れぞれ参照]。この方法は、安価なメタノールを
原料とするため工業的に有利な方法であるが、一
方、酸素を使用しないため、副生する水素によつ
て生成物のメチルビニルケトンまたは原料である
アセトン水添されてメチルエチルケトン、イソプ
ロパノールが多量に副生するなどの問題点があ
る。 [発明が解決しようとする問題点] 本発明は、上記した従来の問題点を解消し、調
製が極めて容易なチタン含有触媒を用いて、高い
収率でα,β−エチレン性不飽和カルボニル化合
物を製造する方法の提供を目的とする。 [問題を解決するための手段と作用] 本発明のα,β−エチレン性不飽和カルボニル
化合物の製造方法は、チタン化合物を担持したフ
ツ素四ケイ素雲母、セピオライト、テニオライ
ト、ヘクトライトあるいはシリカゲル;チタンで
イオン交換したフツ素四ケイ素雲母、セピオライ
ト、テニオライト、ヘクトライトあるいはシリガ
ゲル;又は酸化チタンの群から選ばれる少なくと
も1種の触媒にメタノール、ケトン類、酸素を反
応させることを特徴とする。まず、本発明で使用
する原料の1つのケトン類としては、アセトン、
メチルエチルケトン、メチル−n−プロピルケト
ン、メチル−iso−プロピルケトン、メチル−n
−ブチルケトン、アセトフエノン、ベンジルメチ
ルケトン、シクロヘキサノン、シクロペンタノン
などをあげることができる。 本発明で用いるチタン含有触媒は、フツ素四ケ
イ素雲母(NaMg25Si4O10F2)、セピオライト
(Mg8H2(Si4O113・3〜8H2O)、テニオライト
(NaMg2LiSi4O10F2)、ヘクトライト(Na1/3
Mg8/3Li1/3Si4O10F2)等の層状物質やシリカゲル
を担体とし、これらにチタン化合物を担持させた
もの、上記担体の層間カチオンの一部をチタンで
イオン交換したもの、さらには酸化チタンそのも
のである。 その際、チタンでイオン交換された担体の場合
チタンは、Ti3+、Ti4+としてイオン交換されて
担持されている。また、他にZn2+、Cr3+、Mn2+
Fe3+、Ni2+、Co2+等の金属イオン担持されてい
ても不都合はない。 担体へのチタン化合物の担持量又はチタンのイ
オン交換の割合は、製造すべきα,β−エチレン
性不飽和カルボニル化合物の種類およびその量に
よつて様々に変化させることが必要となるので一
義的には決められないが、通常、担持の場合には
担体に対して0.01〜60重量%、イオン交換の場合
交換すべき層間カチオンの量に対し、0.1〜100重
量%となるように調整することが好ましい。特に
好ましくは、担持の場合1〜30重量%、イオン交
換の場合5〜100重量%である。この範囲を外れ
ている場合には、得られた触媒のα,β−エチレ
ン性不飽和カルボニル化合物の生成能が充分に発
揮されず好ましくない。 本発明にかかる触媒は、例えば次のようにして
製造される。 すなわちまず、精製したフツ素四ケイ素雲母、
セピオライト、テニオライト、ヘクトライト等の
層状物質若しくは、シリカゲルの粉末を水に分散
させて担体の懸濁液を調製する。ついで、ここに
所定濃度のチタン化合物の水溶液を所定量添加し
て室温下で撹拌するか又は放置して担体の層間カ
チオンをチタンイオンでイオン交換する。このと
き、使用するチタン化合物には、三塩化チタン、
四塩化チタン、硫酸チタン、チタニウムオキシア
セチルアセトネートなどがある。チタン化合物水
溶液の濃度、撹拌時間又は放置時間の長短によつ
てチタン化合物の担持量又はチタンのイオン交換
の割合が定まるので、上記担持量との関係を勘案
してこれらの条件を適宜に設定する。その後、懸
濁液の過、洗浄を繰り返し、得られた固体ケー
キを乾燥すれば本発明にかかる触媒が得られる。
このようにして調製された触媒は粉末であるが、
使用に際しては、粉末のままで、又は必要に応じ
て錠剤、球状等適宜な形状に成形してもよい。 反応は、触媒を反応管に充填し、ここに窒素/
酸素の混合ガスとメタノール/ケトン類の混合物
をガスとして流せばよい。窒素/酸素の混合ガス
のモル比は0/1〜100/1、好ましくは1/20
〜20/1である。メタノール/ケトン類の混合物
のモル比は、0.01〜100であり、好ましくは0.1〜
10である。 窒素/酸素混合ガスの流量は、触媒の単位重量
当り1〜1000ml/min、メタノール/ケトン類の
混合物のガスの流量は0.1〜500ml/minであるこ
とが好ましい。 反応温度は200〜500℃に設定させる。好ましく
は、250〜450℃である。 圧力は、減圧、常圧、加圧下のいずれでもよい
が、通常、0.1〜50気圧で行なうことが好ましい。 また、窒素/酸素混合ガスとメタノール/ケト
ン類混合ガスの触媒との接触時間は0.01〜100秒、
好ましくは0.1〜50秒である。 このように、製造されるα,β−エチレン性不
飽和カルボニル化合物としては、原料種類によつ
て、多種のものがあるが、例えば、メチルビニル
ケトン、エチルビニルケトン、プロピルビニルケ
トン、ブチルビニルケトン、フエニルビニルケト
ン、ベンジルビニルケトン、2−メチリデンシク
ロヘキサノン、2−メチリデンシクロペンタノン
などがあげられる。 [実施例] 実施例 1 1 触媒の調製 精製したフツ素四ケイ素雲母の粉末2gを水
800gに分散せしめ、室温にて2.5時間撹拌して
担体ゾルを調製した。ここに20%三塩化チタン
水溶液2mlを水200mlで稀釈した溶液を加え、
室温下で更に2時間撹拌しイオ交換を行なつ
た。その後、全体の過、洗浄を繰り返し、得
られた固体ケーキを120℃で1晩乾燥して触媒
粉末を得た。 2 メチルビニルケトンの製造 上記触媒1gをガラス性反応管に充填し、ま
ず窒素気流中350℃で2時間焼成した。その温
度で窒素/酸素=3/1(モル比)の混合ガス
を20ml/minの流速でメタノール/アセトン=
1/1(モル比)の混合物をガスとして3ml/
minの流速で触媒層に供給した。得られた反応
生成物を分析した結果を表に示した。 実施例 2 1 触媒の調製 精製したフツ素四ケイ素雲母2gを水800g
に分散せしめ、室温にて2.5時間撹拌して担体
ゾルを調製した。ここに20%三塩化チタン水溶
液2mlおよび、塩化亜鉛9.78mgを水200mlで稀
釈した溶液を加え、室温で3時間更に撹拌しイ
オン交換を行なつた。その後、全体の過、洗
浄を繰り返し、得られた固体ケーキを120℃で
乾燥して触媒粉末を得た。 2 メチルビニルケトンの製造 上記1の触媒1gを用いた他は、実施例1と
同様にして反応を行なつた。得られた結果を表
に示した。 実施例 3 実施例2の触媒を用い、メタノール/アセトン
のモル比を9/1とした以外は、実施例1と同様
にして反応を行なつた。得られた結果を表に示し
た。 実施例 4 実施例2の塩化亜鉛の代わりに、塩化クロム・
六水和物19.1mgを用いて触媒を調製した。上記触
媒を用いて実施例1と同様に反応を行なつた。得
られた結果を表に示した。 実施例 5 実施例2の塩化亜鉛の代わりに、塩化マンガ
ン・四水和物14.2mgを用いて触媒を調製した。上
記触媒を用いて実施例1と同様に反応を行なつ
た。得られた結果を表に示した。 実施例 6 実施例2の塩化亜鉛の代わりに、塩化第二鉄・
六水和物19.4mgを用いて触媒を調製した。上記触
媒を用いて実施例1と同様にして反応を行なつ
た。得られた結果を表に示した。 実施例 7 実施例2の塩化亜鉛の代わりに、塩化ニツケ
ル・六水和物17.1mgを用いて触媒を調製した。上
記触媒を用いて実施例1と同様の反応を行なつ
た。得られた結果を表に示した。 実施例 8 実施例1の三塩化チタン水溶液の代わりに、硫
酸チタン30%水溶液2.1gを用いた以外は、実施
例1と同様にして触媒を調製した。上記触媒を用
いて実施例1と同様にして反応を行なつた。得ら
れた結果を表に示した。 実施例 9 実施例2の塩化亜鉛を76.1mgに増加させた以外
は、実施例2と同様にして触媒を調製した。上記
触媒を用いて実施例1と同様にして反応を行なつ
た。得られた結果を表に示した。 実施例 10 実施例1のフツ素四ケイ素雲母2gをヘクトラ
イト2gにかえた以外は実施例1と同様にして触
媒を調製した。上記触媒を用いて実施例1と同様
に反応を行なつた。得られた結果を表に示した。 実施例 11 市販の酸化チタン(アナターゼ型)1gを触媒
として用いたことと反応温度を300℃とした以外
は実施例1と同様にして反応を行なつた。得られ
た結果を表に示した。 比較例 1 実施例2の触媒を用い、窒素/酸素混合ガスの
代わりに、窒素ガスを20ml/minで供給した他
は、実施例1と同様にして反応を行なつた。得ら
れた結果を表に示した。
[Industrial Field of Application] The present invention relates to a method for producing α,β-ethylenically unsaturated carbonyl compounds in the presence of a titanium-containing catalyst which is extremely easy to prepare. [Prior art] Methyl vinyl ketone (1-buten-3-one), which is one of α,β-ethylenically unsaturated carbonyl compounds, has conventionally been produced by a condensation reaction of acetone and formaldehyde (or methylal). However, since a strong alkali such as caustic soda is used as a catalyst at this time, undesirable problems arise such as the cost of concentrating the spent alkali and the need to neutralize the waste liquid. Further, there are other problems such as formaldehyde being unstable and the method of preparing the catalyst being a coprecipitation method, which makes the process of preparing the catalyst complicated. In addition, a production method using a hydration reaction of vinyl acetylene is also known, but this method requires the use of harmful mercury as a catalyst,
Vinyl acetylene itself is easily polymerized and is therefore difficult to handle, which is not industrially advantageous. Furthermore, a method for producing methyl vinyl ketone using methanol and acetone as raw materials is also known [Chemistry Letters 333 (1973)/Chem.Lett.333
(1973), JC Chemical Communication 39 (1984); JCSChem
Commun. 39 (1984) and Japanese Unexamined Patent Publication No. 59-36635]. This method is industrially advantageous because it uses cheap methanol as a raw material, but on the other hand, since it does not use oxygen, the by-product hydrogen is used to hydrogenate the product methyl vinyl ketone or the raw material acetone. However, there are problems such as large amounts of methyl ethyl ketone and isopropanol being produced as by-products. [Problems to be Solved by the Invention] The present invention solves the above-mentioned conventional problems and produces α,β-ethylenically unsaturated carbonyl compounds in high yield using a titanium-containing catalyst that is extremely easy to prepare. The purpose is to provide a method for manufacturing. [Means and effects for solving the problem] The method for producing an α,β-ethylenically unsaturated carbonyl compound of the present invention includes a method for producing an α,β-ethylenically unsaturated carbonyl compound using a titanium compound supported on fluorine tetrasilicon mica, sepiolite, taeniolite, hectorite or silica gel; titanium It is characterized by reacting methanol, ketones, and oxygen with at least one catalyst selected from the group of ion-exchanged fluorine tetrasilicon mica, sepiolite, taeniolite, hectorite, or siliga gel; or titanium oxide. First, one of the ketones used as raw materials in the present invention is acetone,
Methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-propyl ketone, methyl-n
-butyl ketone, acetophenone, benzylmethyl ketone, cyclohexanone, cyclopentanone, etc. The titanium-containing catalyst used in the present invention includes fluorine tetrasilicon mica (NaMg 25 Si 4 O 10 F 2 ), sepiolite (Mg 8 H 2 (Si 4 O 11 ) 3-8H 2 O), and taeniolite (NaMg 2 LiSi 4 O 10 F 2 ), hectorite (Na 1/3
A layered material such as Mg 8/3 Li 1/3 Si 4 O 10 F 2 ) or silica gel is used as a carrier, and a titanium compound is supported on these, and a part of the interlayer cations of the above carrier are ion-exchanged with titanium. , and even titanium oxide itself. At this time, in the case of a carrier ion-exchanged with titanium, titanium is ion-exchanged and supported as Ti 3+ and Ti 4+ . In addition, Zn 2+ , Cr 3+ , Mn 2+ ,
There is no problem even if metal ions such as Fe 3+ , Ni 2+ , Co 2+ are supported. The amount of the titanium compound supported on the carrier or the rate of ion exchange of titanium is unique because it is necessary to vary it depending on the type and amount of the α,β-ethylenically unsaturated carbonyl compound to be produced. However, in the case of loading, the amount should be adjusted to 0.01 to 60% by weight based on the carrier, and in the case of ion exchange, it should be adjusted to 0.1 to 100% by weight based on the amount of interlayer cations to be exchanged. is preferred. Particularly preferably, the amount is 1 to 30% by weight in the case of support, and 5 to 100% by weight in the case of ion exchange. If it is outside this range, the ability of the resulting catalyst to produce an α,β-ethylenically unsaturated carbonyl compound will not be fully exhibited, which is not preferable. The catalyst according to the present invention is produced, for example, as follows. That is, first, purified fluorine tetrasilicon mica,
A carrier suspension is prepared by dispersing a layered material such as sepiolite, taeniolite, hectorite, or silica gel powder in water. Next, a predetermined amount of an aqueous solution of a titanium compound having a predetermined concentration is added thereto, and the mixture is stirred at room temperature or left to stand to exchange interlayer cations of the carrier with titanium ions. At this time, the titanium compounds used include titanium trichloride,
Examples include titanium tetrachloride, titanium sulfate, and titanium oxyacetylacetonate. Since the amount of supported titanium compound or the ratio of ion exchange of titanium is determined by the concentration of the aqueous titanium compound solution, the stirring time, or the length of the standing time, these conditions are set appropriately in consideration of the relationship with the amount supported above. . Thereafter, the suspension is filtered and washed repeatedly, and the resulting solid cake is dried to obtain the catalyst of the present invention.
The catalyst prepared in this way is a powder,
When used, it may be used as a powder or, if necessary, may be formed into an appropriate shape such as a tablet or sphere. The reaction is carried out by filling a reaction tube with a catalyst and introducing nitrogen/
A mixture of oxygen gas and methanol/ketones may be flowed as a gas. The molar ratio of nitrogen/oxygen mixed gas is 0/1 to 100/1, preferably 1/20.
~20/1. The molar ratio of the methanol/ketone mixture is from 0.01 to 100, preferably from 0.1 to 100.
It is 10. The flow rate of the nitrogen/oxygen gas mixture is preferably 1 to 1000 ml/min per unit weight of the catalyst, and the flow rate of the methanol/ketone mixture gas is preferably 0.1 to 500 ml/min. The reaction temperature is set at 200-500°C. Preferably it is 250-450°C. The pressure may be reduced pressure, normal pressure, or increased pressure, but it is usually preferably carried out at 0.1 to 50 atmospheres. In addition, the contact time of nitrogen/oxygen mixed gas and methanol/ketones mixed gas with the catalyst is 0.01 to 100 seconds,
Preferably it is 0.1 to 50 seconds. In this way, there are many kinds of α,β-ethylenically unsaturated carbonyl compounds produced depending on the type of raw materials, but examples include methyl vinyl ketone, ethyl vinyl ketone, propyl vinyl ketone, butyl vinyl ketone. , phenyl vinyl ketone, benzyl vinyl ketone, 2-methylidenecyclohexanone, 2-methylidenecyclopentanone, and the like. [Example] Example 1 1 Preparation of catalyst 2 g of purified fluorine tetrasilicon mica powder was added to water.
A carrier sol was prepared by dispersing in 800 g and stirring at room temperature for 2.5 hours. Add a solution of 2ml of 20% titanium trichloride aqueous solution diluted with 200ml of water,
The mixture was further stirred at room temperature for 2 hours to perform ion exchange. Thereafter, the entire cake was filtered and washed repeatedly, and the obtained solid cake was dried at 120° C. overnight to obtain a catalyst powder. 2 Production of Methyl Vinyl Ketone 1 g of the above catalyst was filled into a glass reaction tube and first calcined at 350° C. for 2 hours in a nitrogen stream. At that temperature, a mixed gas of nitrogen/oxygen = 3/1 (molar ratio) is mixed with methanol/acetone at a flow rate of 20 ml/min.
3ml/1/1 (molar ratio) mixture as a gas
It was supplied to the catalyst layer at a flow rate of min. The results of analysis of the obtained reaction products are shown in the table. Example 2 1 Preparation of catalyst 2 g of purified fluorine tetrasilicon mica and 800 g of water
and stirred at room temperature for 2.5 hours to prepare a carrier sol. To this were added 2 ml of a 20% titanium trichloride aqueous solution and a solution of 9.78 mg of zinc chloride diluted with 200 ml of water, and the mixture was further stirred at room temperature for 3 hours to perform ion exchange. Thereafter, the entire cake was filtered and washed repeatedly, and the obtained solid cake was dried at 120°C to obtain a catalyst powder. 2 Production of Methyl Vinyl Ketone The reaction was carried out in the same manner as in Example 1, except that 1 g of the catalyst in 1 above was used. The results obtained are shown in the table. Example 3 A reaction was carried out in the same manner as in Example 1, except that the catalyst of Example 2 was used and the methanol/acetone molar ratio was 9/1. The results obtained are shown in the table. Example 4 Instead of zinc chloride in Example 2, chromium chloride.
A catalyst was prepared using 19.1 mg of hexahydrate. A reaction was carried out in the same manner as in Example 1 using the above catalyst. The results obtained are shown in the table. Example 5 In place of zinc chloride in Example 2, 14.2 mg of manganese chloride tetrahydrate was used to prepare a catalyst. A reaction was carried out in the same manner as in Example 1 using the above catalyst. The results obtained are shown in the table. Example 6 Instead of zinc chloride in Example 2, ferric chloride
A catalyst was prepared using 19.4 mg of hexahydrate. A reaction was carried out in the same manner as in Example 1 using the above catalyst. The results obtained are shown in the table. Example 7 In place of zinc chloride in Example 2, 17.1 mg of nickel chloride hexahydrate was used to prepare a catalyst. A reaction similar to that in Example 1 was carried out using the above catalyst. The results obtained are shown in the table. Example 8 A catalyst was prepared in the same manner as in Example 1, except that 2.1 g of a 30% titanium sulfate aqueous solution was used instead of the titanium trichloride aqueous solution in Example 1. A reaction was carried out in the same manner as in Example 1 using the above catalyst. The results obtained are shown in the table. Example 9 A catalyst was prepared in the same manner as in Example 2, except that the amount of zinc chloride in Example 2 was increased to 76.1 mg. A reaction was carried out in the same manner as in Example 1 using the above catalyst. The results obtained are shown in the table. Example 10 A catalyst was prepared in the same manner as in Example 1, except that 2 g of fluorine tetrasilicon mica in Example 1 was replaced with 2 g of hectorite. A reaction was carried out in the same manner as in Example 1 using the above catalyst. The results obtained are shown in the table. Example 11 A reaction was carried out in the same manner as in Example 1, except that 1 g of commercially available titanium oxide (anatase type) was used as a catalyst and the reaction temperature was 300°C. The results obtained are shown in the table. Comparative Example 1 A reaction was carried out in the same manner as in Example 1, except that the catalyst of Example 2 was used and nitrogen gas was supplied at 20 ml/min instead of the nitrogen/oxygen mixed gas. The results obtained are shown in the table.

【表】 [発明の効果] 以上の説明で明らかなように、本発明方法で用
いる触媒は、その調製が極めて容易である。ま
た、本発明によれば、各種のα,β−エチレン性
不飽和カルボニル化合物を極めて高い収率で製造
することができ、その工業的価値は大である。
[Table] [Effects of the Invention] As is clear from the above explanation, the catalyst used in the method of the present invention is extremely easy to prepare. Further, according to the present invention, various α,β-ethylenically unsaturated carbonyl compounds can be produced in extremely high yields, and the industrial value thereof is great.

Claims (1)

【特許請求の範囲】 1 チタン含有触媒の存在下で、メタノール、ケ
トン類および酸素を反応させることを特徴とする
α,β−エチレン性不飽和カルボニル化合物の製
造方法。 2 チタン含有触媒が、チタン化合物を担持した
フツ素四ケイ素雲母、セピオライト、テニオライ
ト、ヘクトライト、シリカゲル;チタンでイオン
交換したフツ素四ケイ素雲母、セピオライト、テ
ニオライト、ヘクトライト、シリカゲル;又は酸
化チタンの群から選ばれる少なくとも1種の触媒
である特許請求の範囲第1項記載の方法。
[Claims] 1. A method for producing an α,β-ethylenically unsaturated carbonyl compound, which comprises reacting methanol, ketones, and oxygen in the presence of a titanium-containing catalyst. 2 The titanium-containing catalyst is fluorine-tetrasilicon mica, sepiolite, taeniolite, hectorite, silica gel supporting a titanium compound; fluorine-tetrasilicon mica, sepiolite, taeniolite, hectorite, silica gel ion-exchanged with titanium; or titanium oxide. 2. The method according to claim 1, wherein the catalyst is at least one catalyst selected from the group consisting of:
JP61027874A 1986-02-13 1986-02-13 Production of alpha,beta-ethylenic unsaturated carbonyl compound Granted JPS62187422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61027874A JPS62187422A (en) 1986-02-13 1986-02-13 Production of alpha,beta-ethylenic unsaturated carbonyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61027874A JPS62187422A (en) 1986-02-13 1986-02-13 Production of alpha,beta-ethylenic unsaturated carbonyl compound

Publications (2)

Publication Number Publication Date
JPS62187422A JPS62187422A (en) 1987-08-15
JPH0535135B2 true JPH0535135B2 (en) 1993-05-25

Family

ID=12233041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61027874A Granted JPS62187422A (en) 1986-02-13 1986-02-13 Production of alpha,beta-ethylenic unsaturated carbonyl compound

Country Status (1)

Country Link
JP (1) JPS62187422A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980513A (en) * 1990-01-04 1990-12-25 Quantum Chemical Corporation Process for making a hydrocarbyl vinyl ketone
US20210130513A1 (en) * 2019-11-01 2021-05-06 Chevron Phillips Chemical Company Lp System and method for catalyst preparation

Also Published As

Publication number Publication date
JPS62187422A (en) 1987-08-15

Similar Documents

Publication Publication Date Title
US4224236A (en) Process for the manufacture of oxygen-containing carbon compounds from synthesis gas
JPH04277030A (en) Ethylbenzene dehydrogenation catalyst
JP2814711B2 (en) Method for producing cycloolefin
WO2007038371A1 (en) Catalysts selective for the preparation of mixed ketones from a mixture of carboxylic acids
KR20010031245A (en) Method of Heterogeneous Catalyzed Vapor-Phase Oxidation of Propane to Acrolein and/or Acrylic Acid
CA2279493A1 (en) Hydroperoxide decomposition process
SK283854B6 (en) Direct oxidation of cycloalkanes
EP0323192B1 (en) Hydrogenation catalyst
IE52463B1 (en) Oxychlorination process and catalyst therefor
US6673971B2 (en) Preparation of 1,1,4,4-tetramethoxy-2-butene
JP4344057B2 (en) Process for producing N-ethyl-diisopropylamine
JPH0535135B2 (en)
US3987101A (en) Process for preparing cycloalkanones and cycloalkanols
WO2001081283A2 (en) Process for the reduction of ketones and aldehydes
JPH01294646A (en) Production of cyclohexanol and cyclohexanone
JPH01313313A (en) Method for reducing carbon dioxide
US5336822A (en) Process for the production of styrene
JPS5811408B2 (en) Production method of trichlorethylene
JP2613262B2 (en) Method for producing trichlorosilane
JPH05168922A (en) Dehydration catalyst for aldol condensation, production of magnesium aluminum combinative compound and production of aldol condensation dehydration product using the catalyst
SE406461B (en) METHOD OF PREPARING CYCLOHEXANONE OR CYCLOHEXANOL BY CONVERSION OF CYCLOHEXYL HYDROPEROXIDE USING A SOLID HETEROGENIC CHROMOXIDE CATALYST
WO2013022095A1 (en) Production method for methacrylic acid compound, and catalyst
JPH11180701A (en) Production of chlorine
JPS6045611B2 (en) Manufacturing method of ethylene glycol
JPH062230B2 (en) Process for producing N-alkylaniline and catalyst for the process