JPH0535040B2 - - Google Patents
Info
- Publication number
- JPH0535040B2 JPH0535040B2 JP62266596A JP26659687A JPH0535040B2 JP H0535040 B2 JPH0535040 B2 JP H0535040B2 JP 62266596 A JP62266596 A JP 62266596A JP 26659687 A JP26659687 A JP 26659687A JP H0535040 B2 JPH0535040 B2 JP H0535040B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- dewatering
- granulated slag
- auxiliary agent
- phosphorus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002893 slag Substances 0.000 claims description 31
- 239000010802 sludge Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 26
- 239000012752 auxiliary agent Substances 0.000 claims description 12
- 230000018044 dehydration Effects 0.000 claims description 10
- 238000006297 dehydration reaction Methods 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 5
- 229920006317 cationic polymer Polymers 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 16
- 229910052698 phosphorus Inorganic materials 0.000 description 16
- 239000011574 phosphorus Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000000706 filtrate Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 7
- 235000011941 Tilia x europaea Nutrition 0.000 description 7
- 239000004571 lime Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000010801 sewage sludge Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- SHFGJEQAOUMGJM-UHFFFAOYSA-N dialuminum dipotassium disodium dioxosilane iron(3+) oxocalcium oxomagnesium oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Na+].[Na+].[Al+3].[Al+3].[K+].[K+].[Fe+3].[Fe+3].O=[Mg].O=[Ca].O=[Si]=O SHFGJEQAOUMGJM-UHFFFAOYSA-N 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Treatment Of Sludge (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Description
[産業上の利用分野]
本発明は水砕スラグ(以下高炉水砕スラグをい
う)を用いて下水汚泥の脱水及び汚泥中に含まれ
るリンを除去する方法に関するものである。
[従来の技術]
下水等の汚泥の脱水において、その脱水効率を
高め、低含水率の脱水ケーキを得るために高分子
凝集剤の他に無機質の助剤を用いて、汚泥の圧搾
性を改善する方法が従来からよく取られている。
その場合の助剤としては、石灰粉、微粉炭、コ
ークス粉、パーライト、珪藻土、微細な繊維、も
み殻、木屑等が用いられる。
近時湖水の富栄養化上問題となる汚泥中のリン
の除去は脱水の際に、石灰、塩化鉄を用いて脱水
ケーキ中に固定化して取り除く方法がある。この
方法は脱水ケーキ中に固定化して、瀘液中に残留
するリンの量を少くし、水処理側に戻るリンの量
を少くする方法である。
或いは高分子凝集剤等を用いて通常の方法で脱
水した瀘液中に残留するリンを
嫌気状態に置き、固形物中に固定化する生物
学的脱リン方法
硫酸バンドを注入する方法で脱リンする方法
等がある。
[発明が解決すべき問題点]
上記汚泥の脱水において、石灰粉を用いる方法
以外は脱リンは出来ない。石灰は強アルカリ性で
あり、塩化鉄等を併用しなければならず、フイル
タープレスや真空脱水機には使えるが、ベルトプ
レス脱水機や遠心脱水機には使用が難しい。
また石灰と高分子凝集剤を併用する方法もある
が、強アルカリ領域では高分子凝集剤の効力が低
下するため、石灰の添加率は余り高く出来ない。
従つてこの方法だとリンの除去効果が余り高く出
来ない欠点がある。
次に上記汚泥の石灰や塩化鉄を用いる脱水方法
では同様にフイルタープレスや真空脱水機には使
えるが、ベルトプレス脱水機や遠心脱水機には使
用が難しい。
更に高分子凝集剤を用い脱水した瀘液中に残留
するリンを固定化する方法の場合は脱水の他に水
処理側で脱リン設備が必要であり、経済的に不利
である。
以上の如く、従来の下水汚泥の脱水及び汚泥中
に含まれるリンを除去する方法では夫々問題点を
抱えている。
本発明はこれらの問題点を解決するための下水
汚泥の脱水及び汚泥中に含まれるリンを除去する
方法を開発し提供することを目的とするものであ
る。
[問題点を解決するための手段]
以上の問題点を解決する方法として、本発明は
汚泥を重力脱水した後、一対の濾布で挾み加圧脱
水するベルトプレス脱水機による汚泥の脱水方法
において、
汚泥中に助剤として、高炉水砕スラグを50%
(対固形物添加重量%)以上を添加混合し、次い
でカチオン系高分子凝集剤を注入し、撹拌混合し
脱水することを特徴とする水砕スラグを助剤に用
いた脱水・脱リン方法が提供される。
尚前記脱水するに当たつて用いられる濾過機と
しては、ベルトプレス脱水機、遠心脱水機、フイ
ルタプレス等を用いると好ましいものである。
[作用]
本発明は第1図に図示する如く、下水等の汚泥
を汚泥貯留槽1に貯め、一方水砕スラグをフイー
ダー2を介して前記汚泥貯留槽1の下水汚泥に添
加し、これを撹拌機3にて混合撹拌し、これに凝
集剤貯留槽4の凝集剤をポンプ5により混合し混
合槽6に送液しここで混合された液を次いで脱水
機7にかけ瀘液と脱水ケーキとに分けるものであ
る。
本発明に用いられる水砕スラグは、通常の製鉄
所の高炉等において、高炉の溶融スラグを圧力水
で細粒化と冷却とを同時に行なつて産出されるガ
ラス化率が高く、多孔質であると同時に表面が角
張り凹凸が著しい活性の強いスラグをいうもので
ある。
その成分(重量%)は以下に示すようなもので
ある。
[Industrial Application Field] The present invention relates to a method for dewatering sewage sludge and removing phosphorus contained in the sludge using granulated slag (hereinafter referred to as granulated blast furnace slag). [Prior art] In the dewatering of sludge such as sewage, in order to increase the dewatering efficiency and obtain a dehydrated cake with a low water content, in addition to a polymer flocculant, an inorganic auxiliary agent is used to improve the compressibility of the sludge. This method has traditionally been widely used. In this case, as the auxiliary agent, lime powder, pulverized coal, coke powder, perlite, diatomaceous earth, fine fibers, rice husks, wood chips, etc. are used. Phosphorus in sludge, which has recently become a problem with eutrophication of lake water, can be removed by fixing it in a dehydrated cake using lime or iron chloride during dewatering. This method involves fixing phosphorus in a dehydrated cake to reduce the amount of phosphorus remaining in the filtrate and reducing the amount of phosphorus that returns to the water treatment side. Alternatively, a biological dephosphorization method in which the phosphorus remaining in the filtrate that has been dehydrated using a polymer flocculant or the like in an ordinary manner is placed in an anaerobic state and fixed in solid matter.Dephosphorization is performed by injecting sulfuric acid band. There are ways to do this. [Problems to be Solved by the Invention] In dewatering the sludge, dephosphorization cannot be achieved by any method other than the method using lime powder. Lime is strongly alkaline and must be used in conjunction with iron chloride, etc., and although it can be used in filter presses and vacuum dehydrators, it is difficult to use in belt press dehydrators and centrifugal dehydrators. There is also a method of using lime and a polymer flocculant in combination, but since the efficacy of the polymer flocculant decreases in a strongly alkaline region, the addition rate of lime cannot be made very high.
Therefore, this method has the disadvantage that the phosphorus removal effect cannot be very high. Next, the dehydration method using sludge lime or iron chloride can similarly be used in filter presses and vacuum dehydrators, but it is difficult to use in belt press dehydrators and centrifugal dehydrators. Furthermore, in the case of a method in which phosphorus remaining in the dehydrated filtrate is immobilized using a polymer flocculant, dephosphorization equipment is required on the water treatment side in addition to dehydration, which is economically disadvantageous. As described above, the conventional methods of dewatering sewage sludge and removing phosphorus contained in the sludge each have their own problems. The object of the present invention is to develop and provide a method for dewatering sewage sludge and removing phosphorus contained in the sludge in order to solve these problems. [Means for Solving the Problems] As a method for solving the above problems, the present invention provides a method for dewatering sludge using a belt press dewatering machine, which dewaters sludge by gravity and then sandwiches it between a pair of filter cloths and dewaters it under pressure. , 50% of granulated blast furnace slag was used as an auxiliary agent in the sludge.
A dehydration/dephosphorization method using granulated slag as an auxiliary agent is characterized by adding and mixing (% by weight of added solids) or more, then injecting a cationic polymer flocculant, stirring and mixing, and dewatering. provided. It is preferable to use a belt press dehydrator, a centrifugal dehydrator, a filter press, etc. as the filter used for the dehydration. [Function] As shown in FIG. 1, the present invention stores sludge such as sewage in a sludge storage tank 1, and adds granulated slag to the sewage sludge in the sludge storage tank 1 via a feeder 2. The agitator 3 mixes and stirs the flocculant, and the flocculant in the flocculant storage tank 4 is mixed with the pump 5. The liquid is sent to the mixing tank 6, where the mixed liquid is then passed through the dehydrator 7 to form a filtrate and a dehydrated cake. It is divided into The granulated slag used in the present invention has a high vitrification rate, is porous, and is produced by simultaneously using pressurized water to refine and cool molten slag from a blast furnace in a conventional steelworks blast furnace. At the same time, it is a highly active slag with a markedly angular and uneven surface. Its components (% by weight) are as shown below.
【表】
この水砕スラグが脱水.脱リンの作用をなすの
は次の理由によるものと思われる。
先ず脱水作用については、凝集→フロツク→脱
水の過程において、水砕スラグはフロツクの核と
なり汚泥中のフロツクの強度を高め脱水に好影響
を与えるためである。
又脱リンについては、水砕スラグ中のCaOが汚
泥中のPと反応し、CaOとPの化合物を生成しP
が除去されるものである。
更に本発明に用いる水砕スラグの添加率(対固
形物添加率%)は後述する実施例に示す如く、脱
水のためには20〜50%が好ましく、又脱リンのた
めには50%未満では効果が少ないので少なくとも
50%以上が好ましい。
本発明方法の特徴は、製鉄所等から発生する水
砕スラグによる脱水及び脱リンの同時進行にあ
る。それによつて脱水ケーキの低含水率と脱リン
の実を得るものである。
尚脱水するに当たつては、ベルトプレス脱水
機、遠心脱水機、フイルタプレス等が用いられ
る。
水砕スラグは安価であり、製鉄所等から大量に
安定的に供給出来る。
次に本発明の実施例について述べる。
[実施例]
第1図に本発明の実施例における工程系統図を
示す。図いおいて、1は汚泥貯留槽、2はフイー
ダー、3は撹拌機、4は凝集剤貯留槽、5はポン
プ、6は混合層、7はベルトプレス脱水機であ
る。
次に第1図の工程系統図に従つて、先ず下水汚
泥(スラリー濃度2.5%、5m3/h)を汚泥貯留
槽1に貯め、一方水砕スラグ(組成:重量%、
SiO2:33%、Al2O3:13%、CaO:40%、
MgO:4%、MnO:0.6%、S:1%、CaO/
SiO2:1.2)をフイーダー2を介して前記汚泥貯
留槽1の下水汚泥に添加し、これを撹拌機3にて
混合撹拌し、これに凝集剤貯留槽4の凝集剤をポ
ンプ5により混合し混合槽6に送液する。ここで
混合された液を次いでベルトプレス脱水機(有効
濾布幅0.5m)7にかけ瀘液と脱水ケーキとに分
ける。
この様な下水汚泥処理設備を用いて、汚泥原液
に水砕スラグを添加し更に凝集剤として強カチオ
ン系高分子凝集剤(ダイヤフロツクKp201G)を
添加混合しベルトプレス脱水機にかけて脱水試験
を行つた。
なおこの場合の試験条件を第1表に、その脱水
成績を見掛け含水率(%)として第2表に示す。[Table] This granulated slag is dehydrated. The dephosphorizing effect is thought to be due to the following reasons. First, regarding the dewatering effect, in the process of flocculation → flocc → dewatering, granulated slag becomes the core of flocs and increases the strength of flocs in sludge, which has a positive effect on dewatering. Regarding dephosphorization, CaO in the granulated slag reacts with P in the sludge to generate a compound of CaO and P.
is removed. Further, as shown in the examples below, the addition rate of the granulated slag used in the present invention (based on solids addition rate %) is preferably 20 to 50% for dehydration, and less than 50% for dephosphorization. Since the effect is small, at least
50% or more is preferable. The method of the present invention is characterized by the simultaneous progress of dehydration and dephosphorization using granulated slag generated from ironworks and the like. This results in a low moisture content of the dehydrated cake and results in dephosphorization. For dewatering, a belt press dehydrator, centrifugal dehydrator, filter press, etc. are used. Granulated slag is inexpensive and can be stably supplied in large quantities from steel works. Next, embodiments of the present invention will be described. [Example] Fig. 1 shows a process flow diagram in an example of the present invention. In the figure, 1 is a sludge storage tank, 2 is a feeder, 3 is an agitator, 4 is a flocculant storage tank, 5 is a pump, 6 is a mixed layer, and 7 is a belt press dehydrator. Next, according to the process diagram in Figure 1, sewage sludge (slurry concentration: 2.5%, 5 m 3 /h) was first stored in the sludge storage tank 1, while granulated slag (composition: wt%,
SiO2 : 33%, Al2O3 : 13%, CaO: 40%,
MgO: 4%, MnO: 0.6%, S: 1%, CaO/
SiO 2 :1.2) is added to the sewage sludge in the sludge storage tank 1 via the feeder 2, mixed and stirred by the stirrer 3, and the flocculant in the flocculant storage tank 4 is mixed with this by the pump 5. The liquid is sent to the mixing tank 6. The mixed liquid is then passed through a belt press dehydrator (effective filter cloth width 0.5 m) 7 to separate it into a filtrate and a dehydrated cake. Using such sewage sludge treatment equipment, granulated slag was added to the sludge stock solution, and a strong cationic polymer flocculant (Diafloc Kp201G) was added and mixed as a flocculant, and a dewatering test was conducted using a belt press dehydrator. The test conditions in this case are shown in Table 1, and the dehydration results are shown in Table 2 as apparent water content (%).
【表】【table】
【表】
第2表の結果を、脱水ケーキ中の水分絶対量で
図示すると第2図の如くなる。
第2図に示す如く、,の条件では水砕スラ
グを汚泥原液中に添加することによつて脱水ケー
キの水分絶対量は低下しており、水砕スラグを助
剤に用いた効果がはつきり現れている。尚図中の
境界水分とは、脱水ケーキ中の固形分が添加した
水砕スラグの分だけ増加したことにより、計算上
出て来る含水率である。試験結果の含水率が境界
含水率よりも低いと、水砕スラグを添加したこと
によつて水分が低減されたと判断出来る。
次に上述の試験において、水砕スラグを助剤に
用いた場合と微粉炭を用いた場合の脱水瀘液中の
リンの濃度を第3表に示す。
微粉炭を添加した場合は脱水瀘液中のリンの濃
度は変わらないが、水砕スラグを助剤に用いた場
合はリン濃度は低下している。
原液中のP-は321(mg/Kg)であつたが、これ
らの殆どは脱水ケーキ中に持ち去られる。
更に、助剤として水砕スラグを用いると、脱水
瀘液中に残留するP-濃度が低下し、水砕スラグ
を100%添加した場合、残留P-濃度は約1/4とな
つている。P-の絶対量で論じてもほぼ同じこと
が言える。水砕スラグは、脱水瀘液中のP-量を
低下させる効果がある。[Table] The results in Table 2 are illustrated in terms of the absolute amount of water in the dehydrated cake as shown in Figure 2. As shown in Figure 2, by adding granulated slag to the sludge stock solution, the absolute water content of the dehydrated cake decreased under the conditions of , and the effect of using granulated slag as an auxiliary agent was evident. are appearing. The boundary water content in the figure is the calculated water content when the solid content in the dehydrated cake increases by the amount of the added granulated slag. If the moisture content in the test result is lower than the boundary moisture content, it can be determined that the moisture content has been reduced by adding the granulated slag. Next, Table 3 shows the phosphorus concentrations in the dewatered filtrate when granulated slag was used as an auxiliary agent and when pulverized coal was used in the above test. When pulverized coal is added, the phosphorus concentration in the dewatered filtrate does not change, but when granulated slag is used as an auxiliary agent, the phosphorus concentration decreases. P - in the stock solution was 321 (mg/Kg), but most of it was carried away in the dehydrated cake. Furthermore, when granulated slag is used as an auxiliary agent, the P - concentration remaining in the dewatered filtrate is reduced, and when 100% granulated slag is added, the residual P - concentration is about 1/4. Almost the same thing can be said if we discuss in terms of the absolute amount of P - . Granulated slag has the effect of reducing the amount of P in the dehydrated filtrate.
【表】
[発明の効果]
本発明の水砕スラグを助剤に用いた脱水・脱リ
ン方法によると、次のような効果を奏するもので
ある。
(1) 水砕スラグを助剤に添加するので、脱水ケー
キの含水量を低減出来る。
(2) 瀘液中のリン濃度を低減出来る。
(3) 脱水機の機種に拘らず本発明方法を使用出来
る。
(4) 水砕スラグは安価であり、製鉄所から大量に
安定的に供給を受けられる。
(5) 水砕スラグを高分子凝集剤と併用しても高分
子凝集剤の効果力は低下しない。
(6) 脱水瀘液側に脱リン設備が不要である。
(7) 水処理側でリンを汚泥中に固定化して汚泥脱
水設備側に引き抜いて本発明方法で脱水処理す
れば脱リン設備は不要となる。
(8) 湖沼に放流する終末処理場等のようにリンの
総量規制の厳しい場所では本発明方法は有効な
脱水プロセスである。[Table] [Effects of the Invention] According to the dehydration/dephosphorization method using the granulated slag of the present invention as an auxiliary agent, the following effects are achieved. (1) Since granulated slag is added to the auxiliary agent, the water content of the dehydrated cake can be reduced. (2) The phosphorus concentration in the filtrate can be reduced. (3) The method of the present invention can be used regardless of the type of dehydrator. (4) Granulated slag is inexpensive and can be stably supplied in large quantities from steel mills. (5) Even if granulated slag is used in combination with a polymer flocculant, the effectiveness of the polymer flocculant will not decrease. (6) No dephosphorization equipment is required on the dehydration filtrate side. (7) If phosphorus is fixed in sludge on the water treatment side, extracted to the sludge dewatering equipment, and dehydrated using the method of the present invention, no dephosphorizing equipment is required. (8) The method of the present invention is an effective dewatering process in places where the total amount of phosphorus is strictly regulated, such as at final treatment plants where water is discharged into lakes.
第1図は本発明の実施例における工程系統図、
第2図は凝集剤添加率を変えた場合の脱水ケーキ
の絶対水分量の比較図である。
図において、1:汚泥貯留槽、2:フイーダ
ー、3:撹拌機、4:凝集剤貯留槽、5:ポン
プ、6:混合槽、7:ベルトプレス脱水機。
FIG. 1 is a process flow diagram in an embodiment of the present invention,
FIG. 2 is a comparison diagram of the absolute water content of the dehydrated cake when the flocculant addition rate is changed. In the figure, 1: sludge storage tank, 2: feeder, 3: stirrer, 4: flocculant storage tank, 5: pump, 6: mixing tank, 7: belt press dehydrator.
Claims (1)
圧脱水するベルトプレス脱水機による汚泥の脱水
方法において、 汚泥中に助剤として、高炉水砕スラグを50%
(対固形物添加重量%)以上を添加混合し、次い
でカチオン系高分子凝集剤を注入し、撹拌混合し
脱水することを特徴とする水砕スラグを助剤に用
いた脱水・脱リン方法。[Scope of Claims] 1. In a method for dewatering sludge using a belt press dehydrator in which sludge is dehydrated by gravity and then dehydrated under pressure by being sandwiched between a pair of filter cloths, 50% of granulated blast furnace slag is added as an auxiliary agent to the sludge.
A method for dehydration and dephosphorization using granulated slag as an auxiliary agent, characterized by adding and mixing (% by weight of added solids) or more, then injecting a cationic polymer flocculant, stirring and mixing, and dewatering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62266596A JPH01111499A (en) | 1987-10-23 | 1987-10-23 | Dehydration/dephosphorization process using water granulated slug as auxiliary |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62266596A JPH01111499A (en) | 1987-10-23 | 1987-10-23 | Dehydration/dephosphorization process using water granulated slug as auxiliary |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01111499A JPH01111499A (en) | 1989-04-28 |
JPH0535040B2 true JPH0535040B2 (en) | 1993-05-25 |
Family
ID=17433007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62266596A Granted JPH01111499A (en) | 1987-10-23 | 1987-10-23 | Dehydration/dephosphorization process using water granulated slug as auxiliary |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01111499A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05154310A (en) * | 1991-12-10 | 1993-06-22 | Toufuku Kk | Method and apparatus for treating raw material |
JP5042975B2 (en) * | 2008-12-03 | 2012-10-03 | 住友重機械工業株式会社 | Sludge treatment method and sludge treatment apparatus |
CN103285626B (en) * | 2012-02-22 | 2016-03-30 | 宝山钢铁股份有限公司 | A kind of processing method of magnesium oxide suspension |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5559807A (en) * | 1978-10-31 | 1980-05-06 | Nippon Cement Co Ltd | Sewage treating agent |
JPS5628700A (en) * | 1979-08-18 | 1981-03-20 | Nippon Steel Corp | Sludge dehydrating method using converter slag |
JPS5914274A (en) * | 1982-07-14 | 1984-01-25 | Sanyo Electric Co Ltd | Organic electrolyte secondary cell |
JPS6265799A (en) * | 1985-09-18 | 1987-03-25 | Tokyo Giken Kogyo Kk | Flocculating, adsorbing, dehydrating and solidifying agent for sludge in waste water |
-
1987
- 1987-10-23 JP JP62266596A patent/JPH01111499A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5559807A (en) * | 1978-10-31 | 1980-05-06 | Nippon Cement Co Ltd | Sewage treating agent |
JPS5628700A (en) * | 1979-08-18 | 1981-03-20 | Nippon Steel Corp | Sludge dehydrating method using converter slag |
JPS5914274A (en) * | 1982-07-14 | 1984-01-25 | Sanyo Electric Co Ltd | Organic electrolyte secondary cell |
JPS6265799A (en) * | 1985-09-18 | 1987-03-25 | Tokyo Giken Kogyo Kk | Flocculating, adsorbing, dehydrating and solidifying agent for sludge in waste water |
Also Published As
Publication number | Publication date |
---|---|
JPH01111499A (en) | 1989-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4411797A (en) | Dewatering of sewage sludges on chamber filter presses | |
US4941945A (en) | Method for clarifying green liquor | |
JPH04331000A (en) | Dehydrating method of sludge | |
JPH0535040B2 (en) | ||
JPH0390000A (en) | Sludge treatment | |
JPS5638200A (en) | Solid-liquid separating method for anaerobic digestive slurry | |
JPS5949078B2 (en) | Sludge treatment method | |
JPS5881498A (en) | Dehydration of organic sludge | |
JPH0122840B2 (en) | ||
JP2000325968A (en) | Treatment method of sludge from a wastewater treatment system for fluegas desulfurization | |
JPS5919760B2 (en) | Sludge treatment method | |
JPH0535039B2 (en) | ||
CN110267920A (en) | The recovery method of phosphorus in treated water | |
JPH03275200A (en) | Thickening and dehydrating method for organic sludge | |
JPS58143899A (en) | Dehydration of sludge | |
SU1758027A1 (en) | Method of treating sewage water sediments | |
JPS5852000A (en) | Method of dehydrating sewage sludge | |
GB2098194A (en) | Method for dewatering mineral suspensions | |
JPS6254078B2 (en) | ||
JPS5763200A (en) | Dehydrating method of sludge | |
JPH0247279B2 (en) | ||
Timpe et al. | Kraft Pulping Effluent Treatment and Reuse: State of the Art | |
SU983081A1 (en) | Waste water treating method | |
Paulsrud et al. | Experiences with lime stabilisation and composting of sewage sludge | |
JPS59130512A (en) | Dehydrating method of highly concentrated suspension |