JPH0534888B2 - - Google Patents

Info

Publication number
JPH0534888B2
JPH0534888B2 JP60098357A JP9835785A JPH0534888B2 JP H0534888 B2 JPH0534888 B2 JP H0534888B2 JP 60098357 A JP60098357 A JP 60098357A JP 9835785 A JP9835785 A JP 9835785A JP H0534888 B2 JPH0534888 B2 JP H0534888B2
Authority
JP
Japan
Prior art keywords
charging
circuit
capacitor
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60098357A
Other languages
Japanese (ja)
Other versions
JPS61258634A (en
Inventor
Sadatoshi Tabuchi
Naoto Fujikawa
Yasuhiko Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60098357A priority Critical patent/JPS61258634A/en
Publication of JPS61258634A publication Critical patent/JPS61258634A/en
Publication of JPH0534888B2 publication Critical patent/JPH0534888B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子回路等の停電時のバツクアツプ
用コンデンサを充電するコンデンサ充電回路に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a capacitor charging circuit for charging a backup capacitor of an electronic circuit or the like during a power outage.

従来の技術 従来のこの種のコンデンサ充電回路は、例えば
第3図のように商用電源1を整流回路2、平滑回
路3および定電圧回路4により定電圧化し、かつ
この定電圧回路4からは抵抗5を介してバツクア
ツプ用のコンデンサ6に充電電流を供給する。そ
して充電完了後は、コンデンサ6に蓄積された電
荷が、停電時において、抵抗5を介して電子回路
7に供給され、電子回路7はバツクアツプされ
る。
BACKGROUND ART In a conventional capacitor charging circuit of this type, for example, as shown in FIG. A charging current is supplied to the backup capacitor 6 through the capacitor 5. After charging is completed, the electric charge accumulated in the capacitor 6 is supplied to the electronic circuit 7 via the resistor 5 in the event of a power outage, and the electronic circuit 7 is backed up.

発明が解決しようとする問題点 しかしながら、このような従来のコンデンサ充
電回路では、コンデンサ6に充電が開始された直
後の停電においては、コンデンサ6にはまだ電荷
が蓄積されていないため、電子回路7の消費電流
プラスコンデンサ6への充電電流により、平滑回
路3に蓄積された電荷が瞬時に放電し、停電時の
バツクアツプ時間が極端に短くなる(一般には電
子回路7の消費電流よりコンデンサ6への充電電
流の方がかるかに大きい。)。
Problems to be Solved by the Invention However, in such a conventional capacitor charging circuit, in a power outage immediately after charging of the capacitor 6 has started, the capacitor 6 has not yet accumulated charge, so the electronic circuit 7 The electric charge accumulated in the smoothing circuit 3 is instantly discharged due to the consumption current of the electronic circuit 7 plus the charging current to the capacitor 6, and the backup time in the event of a power outage is extremely shortened. The charging current is much larger.)

また、充電電圧は充電時間に対して第4図のよ
うに指数関数的に変化するため、充電電流も指数
関数的に変化し、充電初期に大きな充電電流が必
要となり、その結果、整流回路2、平滑回路3、
定電圧回路4の負担が大きくなるという問題があ
つた。
Furthermore, since the charging voltage changes exponentially with respect to the charging time as shown in Figure 4, the charging current also changes exponentially, and a large charging current is required at the initial stage of charging. , smoothing circuit 3,
There was a problem that the load on the constant voltage circuit 4 increased.

本発はこのような問題点に鑑み、なされたもの
で、バツクアツプ用のコンデンサに電荷が蓄積さ
れていないときのバツクアツプ時間を長くすると
ともに、各部回路の負担を小さくしたコンデンサ
充電回路を提供することを目的とするものであ
る。
The present invention has been developed in view of these problems, and it is an object of the present invention to provide a capacitor charging circuit that lengthens the backup time when no charge is accumulated in the backup capacitor and reduces the burden on each circuit. The purpose is to

問題点を解決するための手段 上記問題点を解決するために本発明は、商用電
源を整流する整流回路の出力電圧が一定電圧以上
のときのみ、整流回路の出力電圧に比例した実効
値が定電流の充電電流をバツクアツプ用のコンデ
ンサに供給するようにしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides that the effective value proportional to the output voltage of the rectifier circuit is fixed only when the output voltage of the rectifier circuit that rectifies the commercial power supply is equal to or higher than a certain voltage. The charging current is supplied to a backup capacitor.

作 用 上記構成とすることにより、整流回路の出力電
圧が零電圧付近で、バツクアツプ用のコンデンサ
への充電が停止されるため、バツクアツプ用のコ
ンデンサに充電が開始された直後の停電において
も、定電圧回路の負荷は電子回路だけとなり、そ
の結果、少しの時間であれば電子回路のバツクア
ツプが可能となる。また、整流回路の出力電圧に
比例した一定電流(実効値)でバツクアツプ用の
コンデンサに充電されるため、充電初期の充電電
流も小さくてすむものである。
Effect With the above configuration, charging of the backup capacitor is stopped when the output voltage of the rectifier circuit is around zero voltage, so even in a power outage immediately after charging of the backup capacitor has started, it is possible to maintain constant power. The only load on the voltage circuit is the electronic circuit, and as a result, it is possible to back up the electronic circuit in a short amount of time. Furthermore, since the backup capacitor is charged with a constant current (effective value) proportional to the output voltage of the rectifier circuit, the charging current at the initial stage of charging can also be small.

実施例 以下、本発明の一実施例を添付図面にもとづい
て説明する。第1図において、11は商用電源、
12はトランス13とダイオードブリツジ14に
より構成された整流回路、15はダイオード16
とコンデンサ17により構成された平滑回路、1
8は抵抗19とトランジスタ20および定電圧ダ
イオード21により構成された定電圧回路、22
は抵抗23,24,25およびトランジスタ26
により構成された充電電流供給回路、27はバツ
クアツプ用のコンデンサ、28はバツクアツプ電
流供給用の抵抗、29は電子回路である。
Embodiment Hereinafter, an embodiment of the present invention will be described based on the accompanying drawings. In Fig. 1, 11 is a commercial power supply;
12 is a rectifier circuit composed of a transformer 13 and a diode bridge 14; 15 is a diode 16;
and a smoothing circuit composed of a capacitor 17, 1
8 is a constant voltage circuit composed of a resistor 19, a transistor 20, and a constant voltage diode 21; 22;
are resistors 23, 24, 25 and transistor 26
27 is a capacitor for backup, 28 is a resistor for supplying backup current, and 29 is an electronic circuit.

上記のように構成されたコンデンサ充電回路に
おいて、次にその動作を説明する。商用電源11
は、整流回路12により全波整流波形となる。こ
の全波整流波形は平滑回路15により平滑されて
直流電圧となる。この直流電圧は定電圧回路18
により定電圧化されて定電圧となる。一方、整流
回路12の出力電圧(全波整流波形)は抵抗2
3,24により分圧されてトランジスタ26のベ
ース電極に印加される。トランジスタ26のエミ
ツタ電極には抵抗25が接続されており、整流回
路12の出力電圧v、抵抗23,24,25の抵
抗値をそれぞれR23,R24,R25、トランジスタ
26のベース電極−エミツタ電極間の電圧をVBE
とすれば、抵抗25の両端電圧VE=v×R24/
(R23+R24)−VBEとなり、抵抗25に流れる電
流IE=VE/R25となる。よつてトランジスタ26
の電流増幅率、抵抗28の抵抗値が十分大きいと
仮定すれば、コンデンサ27の充電電流は抵抗2
5に流れる電流IEとなり、かつ整流回路12に比
例した定電流(実効値)となるため、充電電流の
実効値は充電電圧と無関係に定電流となり、充電
電圧上昇値が一定となるため充電電圧と充電時間
の関係は第2図のように定電流充電特性となる。
このため、充電完了時間が同じであれば、充電初
期の充電電流は従来例(第4図)に比べて大幅に
低減できる。例えば、定電圧回路の出力電圧
(E0)を5v、バツクアツプ用コンデンサの容量(C)
を10F、充電完了電圧(E1)を4.5v、充電完了時
間(t)を10分とすれば、従来例では、E1=E0(1−
e-t/CR)、但し、R=E0/i,iは充電初期電流、
なのでi=192mAとなるが本実施例ではC×E1
=i×tなのでi=75mAとなり約4割でよい。
また、商用電源11の電圧が高くなれば、整流回
路12の出力電圧も比例して高くなるため、充電
完了時間を短縮できる。一方、商用電源11の零
電圧付近では抵抗23に電流が流れないため、ト
ランジスタ26はオフし、充電電流供給回路22
によるコンデンサ27への充電は停止する。この
ため、停電時には充電しないので充電初期の停電
時においては、充電電流により、コンデンサ17
の電荷が浪費されるのを防止するこができ、その
結果、少しの時間であれば電子回路29のバツク
アツプが可能となる。抵抗28は、コンデンサ2
7の充電が完了している場合の停電時に、電子回
路29にコンデンサ27からバツクアツプ電流の
供給を行なう。
Next, the operation of the capacitor charging circuit configured as described above will be explained. Commercial power supply 11
becomes a full-wave rectified waveform by the rectifier circuit 12. This full-wave rectified waveform is smoothed by a smoothing circuit 15 to become a DC voltage. This DC voltage is the constant voltage circuit 18
The voltage is made constant by . On the other hand, the output voltage (full-wave rectified waveform) of the rectifier circuit 12 is
3 and 24 and applied to the base electrode of the transistor 26. A resistor 25 is connected to the emitter electrode of the transistor 26, and the output voltage v of the rectifier circuit 12 and the resistance values of the resistors 23, 24, and 25 are connected to R23, R24, and R25, respectively, between the base electrode and the emitter electrode of the transistor 26. Voltage V BE
Then, the voltage across the resistor 25 V E =v×R24/
(R23+R24)-V BE , and the current flowing through the resistor 25 becomes I E =V E /R25. Transistor 26
Assuming that the current amplification factor of and the resistance value of resistor 28 are sufficiently large, the charging current of capacitor 27 is
The current I E flows through IE 5, and it becomes a constant current (effective value) proportional to the rectifier circuit 12. Therefore, the effective value of the charging current is a constant current regardless of the charging voltage, and the charging voltage increase value is constant, so charging The relationship between voltage and charging time is a constant current charging characteristic as shown in FIG.
Therefore, if the charging completion time is the same, the charging current at the initial stage of charging can be significantly reduced compared to the conventional example (FIG. 4). For example, if the output voltage (E 0 ) of the constant voltage circuit is 5V, the capacity of the backup capacitor (C)
Assuming that the charging completion voltage (E 1 ) is 4.5V, and the charging completion time (t) is 10 minutes, in the conventional example, E 1 = E 0 (1-
e -t/CR ), where R=E 0 /i, i is the initial charging current,
Therefore, i=192mA, but in this example, C×E 1
= i x t, so i = 75 mA, which is about 40%.
Moreover, if the voltage of the commercial power source 11 increases, the output voltage of the rectifier circuit 12 also increases proportionally, so that the charging completion time can be shortened. On the other hand, since no current flows through the resistor 23 near the zero voltage of the commercial power supply 11, the transistor 26 is turned off and the charging current supply circuit 22
The charging of the capacitor 27 by the capacitor 27 is stopped. Therefore, since charging is not performed during a power outage, during a power outage in the early stages of charging, the charging current causes the capacitor 17 to
As a result, it is possible to back up the electronic circuit 29 in a short amount of time. The resistor 28 is the capacitor 2
At the time of a power outage when charging of the capacitor 7 has been completed, a backup current is supplied from the capacitor 27 to the electronic circuit 29.

発明の効果 以上のように本発明によれば、バツクアツプ用
のコンデンサへの充電が開始された直後の停電に
おいても、短時間であれば平滑回路のコンデンサ
で電子回路のバツクアツプが可能となり、また充
電電の実効値は整流回路の出力電圧に比例した定
電流であるため、充電完了時間が同じであれば、
充電初期電流を従来方式に比べて非常に小さくで
き、その結果、トランスをはじめ、部品の小型
化、低コスト化が図れる。さらに商用電源の電圧
の最小値において充電完了時間を保証できるよう
に設定した場合、商用電源の電圧が標準あるいは
それ以上のときには、充電完了時間が短縮できる
など種々のすぐれた効果を奏するものである。
Effects of the Invention As described above, according to the present invention, even in a power outage immediately after charging of the backup capacitor has started, it is possible to back up the electronic circuit with the smoothing circuit capacitor for a short time, and also to charge the backup capacitor. Since the effective value of current is a constant current proportional to the output voltage of the rectifier circuit, if the charging completion time is the same,
The initial charging current can be made much smaller than in conventional methods, and as a result, the transformer and other parts can be made smaller and lower in cost. Furthermore, if the setting is made so that the charging completion time can be guaranteed at the minimum voltage of the commercial power supply, when the voltage of the commercial power supply is standard or higher, the charging completion time can be shortened, and various other excellent effects can be achieved. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すコンデンサ充
電回路図、第2図は同コンデンサ充電回路の充電
波形図、第3図は従来のコンデンサ充電回路図、
第4図は同コンデンサ充電回路の充電波形図であ
る。 11……商用電源、12……整流回路、15…
…平滑回路、18……定電圧回路、22……充電
電流供給回路、27……コンデンサ。
Fig. 1 is a capacitor charging circuit diagram showing an embodiment of the present invention, Fig. 2 is a charging waveform diagram of the same capacitor charging circuit, and Fig. 3 is a conventional capacitor charging circuit diagram.
FIG. 4 is a charging waveform diagram of the same capacitor charging circuit. 11... commercial power supply, 12... rectifier circuit, 15...
...Smoothing circuit, 18... Constant voltage circuit, 22... Charging current supply circuit, 27... Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 商用電源を整流する整流回路と、この整流回
路の出力電圧を平滑する平滑回路と、この平滑回
路の出力電圧を定電圧化する定電圧回路と、前記
整流回路の出力電圧が一定電圧以上のときのみ前
記定電圧回路からバツクアプ用のコンデンサへ前
記整流回路の出力電圧に比例した実効値が定電流
の充電電流を供給する充電電流供給回路とにより
構成したコンデンサ充電回路。
1. A rectifier circuit that rectifies commercial power, a smoothing circuit that smoothes the output voltage of this rectifier circuit, a constant voltage circuit that makes the output voltage of this smoothing circuit a constant voltage, and a and a charging current supply circuit that supplies a constant charging current with an effective value proportional to the output voltage of the rectifier circuit from the constant voltage circuit to the backup capacitor only when the voltage is on.
JP60098357A 1985-05-09 1985-05-09 Capacitor charging circuit Granted JPS61258634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60098357A JPS61258634A (en) 1985-05-09 1985-05-09 Capacitor charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098357A JPS61258634A (en) 1985-05-09 1985-05-09 Capacitor charging circuit

Publications (2)

Publication Number Publication Date
JPS61258634A JPS61258634A (en) 1986-11-17
JPH0534888B2 true JPH0534888B2 (en) 1993-05-25

Family

ID=14217633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098357A Granted JPS61258634A (en) 1985-05-09 1985-05-09 Capacitor charging circuit

Country Status (1)

Country Link
JP (1) JPS61258634A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2996365B2 (en) * 1992-02-24 1999-12-27 船井電機株式会社 Circuit board mounting structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635839B2 (en) * 1976-11-19 1981-08-20
JPS57160338A (en) * 1981-03-30 1982-10-02 Sharp Kk Circuit for protecting battery drive electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635839U (en) * 1979-08-25 1981-04-07
JPS5654856U (en) * 1979-10-02 1981-05-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635839B2 (en) * 1976-11-19 1981-08-20
JPS57160338A (en) * 1981-03-30 1982-10-02 Sharp Kk Circuit for protecting battery drive electronic device

Also Published As

Publication number Publication date
JPS61258634A (en) 1986-11-17

Similar Documents

Publication Publication Date Title
JPH0534888B2 (en)
JPH0480621B2 (en)
JPS6412181B2 (en)
JPH1070884A (en) Output voltage compensating circuit
JPH06327149A (en) Power supply circuit
JPS633540B2 (en)
JPH0750847Y2 (en) Overvoltage detection circuit
JPH019270Y2 (en)
JP2563607Y2 (en) Power supply
JPS60200322A (en) Capacitor charging circuit
JPH062440Y2 (en) Charge control circuit
JPH0314952Y2 (en)
JPH0155532B2 (en)
JPH03273831A (en) Control method of battery charger
JPH062472Y2 (en) Magnetic amplifier control type switching power supply
JPH0619312Y2 (en) DC power supply circuit
KR910006688Y1 (en) The circuit of charging with electricity for a.c.
JPH0215129Y2 (en)
JPS61277318A (en) Power source unit
JPS6166537A (en) Constant-voltage power source circuit for backup
JPS60139171A (en) Starting circuit
JPH02188137A (en) Power supply circuit
JPS6015720A (en) Low temperature compensating circuit
JPH06225519A (en) Power-supply circuit
JPH02273075A (en) Power supply

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term