JPS6412181B2 - - Google Patents

Info

Publication number
JPS6412181B2
JPS6412181B2 JP59052962A JP5296284A JPS6412181B2 JP S6412181 B2 JPS6412181 B2 JP S6412181B2 JP 59052962 A JP59052962 A JP 59052962A JP 5296284 A JP5296284 A JP 5296284A JP S6412181 B2 JPS6412181 B2 JP S6412181B2
Authority
JP
Japan
Prior art keywords
output
voltage
power supply
resistor
output current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59052962A
Other languages
Japanese (ja)
Other versions
JPS60197160A (en
Inventor
Yukio Maeba
Yoichi Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP59052962A priority Critical patent/JPS60197160A/en
Publication of JPS60197160A publication Critical patent/JPS60197160A/en
Publication of JPS6412181B2 publication Critical patent/JPS6412181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Description

【発明の詳細な説明】 本発明は、出力垂下特性を有する電源装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply device having output drooping characteristics.

従来より、複写機などに用いられる電源装置
は、温度ドリフトを補償し複写むら発生を防止す
る等の目的により、第1図に示すように出力電圧
V0、出力電流I0の特性にある一定の勾配をもたせ
たいわゆる出力垂下特性が要求される。このた
め、従来の電源装置では、第2図に示すように高
圧トランスT0の二次側の出力段に出力抵抗R0
設け、この出力抵抗R0による電圧降下により所
要の出力垂下特性を得ている。ところが、このよ
うな装置では、出力抵抗R0に高圧が加わる関係
上、該抵抗R0は高耐圧用のものが必要となり、
また、形状も大きくなる。さらに、出力抵抗R0
の電力損失が大きいと、この抵抗R0自体の発熱
や、発振トランジスタの効率低下による対策のた
めヒートシンクの形状も大きくせねばならず、こ
れらのために、装置が大型化、高価になり小型、
低廉化が図れないという問題がある。
Conventionally, power supplies used in copying machines and the like have been designed to adjust the output voltage as shown in Figure 1 in order to compensate for temperature drift and prevent uneven copying.
A so-called output droop characteristic is required in which the characteristics of V 0 and output current I 0 have a certain slope. For this reason, in conventional power supplies, an output resistor R 0 is provided at the output stage on the secondary side of the high-voltage transformer T 0 as shown in Figure 2, and the voltage drop caused by this output resistor R 0 provides the required output droop characteristics. It has gained. However, in such a device, since a high voltage is applied to the output resistor R0 , the resistor R0 needs to be a high voltage resistor.
Also, the shape becomes larger. Additionally, the output resistance R 0
If the power loss is large, the shape of the heat sink must be made larger to counter the heat generation of this resistor R0 itself and the reduction in efficiency of the oscillation transistor, which makes the device larger and more expensive.
There is a problem that the price cannot be lowered.

本発明は従来のかかる問題点を解決し、小型
化、低廉化が図れ、しかも効率を損うことなく所
要の出力垂下特性が設定できるようにすることを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve these conventional problems, to achieve miniaturization and cost reduction, and to set a required output droop characteristic without impairing efficiency.

本発明は、このような目的を達成するため、高
圧トランスの二次側の出力電圧、出力電流を共に
検出し、これを一次側にフイードバツクして高圧
トランスの一次側の発振回路を制御するように構
成したものである。
In order to achieve such an object, the present invention detects both the output voltage and output current on the secondary side of a high voltage transformer, and controls the oscillation circuit on the primary side of the high voltage transformer by feeding this back to the primary side. It is composed of

以下、本発明を実施例について図面に基づいて
詳細に説明する。なお、この実施例では複写機に
適用した場合について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings. In this embodiment, a case where the present invention is applied to a copying machine will be explained.

第3図はこの実施例の負の出力電圧、電流が得
られるようにした電源装置の回路図である。この
電源装置1は高圧トランスTを備える。高圧トラ
ンスTの一次側のコイルN1には、発振トランジ
スタTrのコレクタが接続されている。また、発
振トランジスタTrは、エミツタが接地され、ベ
ースにはベース電流制御用の制御回路2が接続さ
れている。一方、高圧トランスTの二次側のコイ
ルN2には整流ダイオードD2、平滑コンデンサC2
でなる整流回路および火花放電防止用抵抗R2
順次接続されている。RLはこの電源装置1の出
力端子4に接続された複写機のチヤージヤ負荷で
ある。さらに、この電源装置1には、高圧トラン
スTの一次側と二次側との間に出力電圧検出回路
6、出力電流検出回路8および出力電圧検出回路
6の出力電圧と出力電流検出回路8の出力電圧と
を比較する比較手段、本例では比較増幅器10と
が設けられている。上記出力電圧検出回路6は、
高圧トランスTの二次側の出力電圧V0を検出す
る出力電圧検出抵抗RH、分圧用抵抗R1および電
圧引上用の補助電圧電源Vkでなる直列回路と、
この直列回路の分圧用抵抗R1および補助電圧電
源Vkに対して並列接続されたノイズ除去用コン
デンサC4とで構成される。そして、出力電圧検
出抵抗RHの一端が火花放電防止用抵抗R2と出力
端子4の中点X1に、また、補助電圧電源Vkの負
極側が接地され、さらに出力電圧検出抵抗RH
分圧抵抗R1との接続点X2が前記比較増幅器10
の非反転入力端子(+)に接続されている。前記
出力電流検出回路8は、高圧トランスTの二次側
の出力電圧I0を検出する出力電流検出抵抗Rfを基
準電圧電源Vsとでなる直列回路にノイズ除去用
コンデンサC3を並列接続して構成される。そし
て、出力電流検出抵抗Rfの一端が、高圧トラン
スTの二次側のコイルN2と、平滑コンデンサC2
との接続点X3と比較増幅器10の反転入力端子
(−)とにそれぞれ共通に接続され、基準電圧電
源Vsの負極側が接地されている。また、比較増
幅器10の出力端子は制御回路2に接続されてい
る。なお12は高圧トランスTの電源入力端子で
ある。
FIG. 3 is a circuit diagram of a power supply device that can obtain negative output voltage and current according to this embodiment. This power supply device 1 includes a high voltage transformer T. The collector of the oscillation transistor Tr is connected to the coil N1 on the primary side of the high voltage transformer T. Further, the emitter of the oscillation transistor Tr is grounded, and the base thereof is connected to a control circuit 2 for base current control. On the other hand, a rectifier diode D 2 and a smoothing capacitor C 2 are connected to the secondary coil N 2 of the high voltage transformer T.
A rectifier circuit and a spark discharge prevention resistor R2 are connected in sequence. R L is a charge load of the copying machine connected to the output terminal 4 of this power supply device 1. Furthermore, in this power supply device 1, an output voltage detection circuit 6, an output current detection circuit 8, and an output voltage of the output voltage detection circuit 6 and an output current detection circuit 8 are provided between the primary side and the secondary side of the high voltage transformer T. Comparing means for comparing the output voltage with the output voltage, in this example, a comparison amplifier 10 is provided. The output voltage detection circuit 6 is
a series circuit consisting of an output voltage detection resistor R H for detecting the output voltage V 0 on the secondary side of the high voltage transformer T, a voltage dividing resistor R 1 and an auxiliary voltage power supply Vk for voltage pull-up;
This series circuit is composed of a voltage dividing resistor R 1 and a noise removal capacitor C 4 connected in parallel to the auxiliary voltage power supply Vk. One end of the output voltage detection resistor R H is connected to the midpoint X 1 of the spark discharge prevention resistor R 2 and the output terminal 4, and the negative electrode side of the auxiliary voltage power supply Vk is grounded, and is further connected to the output voltage detection resistor R H. The connection point X 2 with the piezoresistor R 1 is the comparison amplifier 10
Connected to the non-inverting input terminal (+) of The output current detection circuit 8 is constructed by connecting a noise removal capacitor C3 in parallel to a series circuit consisting of an output current detection resistor Rf for detecting the output voltage I0 on the secondary side of the high voltage transformer T and a reference voltage power supply Vs. configured. One end of the output current detection resistor Rf is connected to the secondary coil N2 of the high voltage transformer T and the smoothing capacitor C2.
and the inverting input terminal (-) of the comparison amplifier 10 , respectively, and the negative electrode side of the reference voltage power supply Vs is grounded. Further, the output terminal of the comparator amplifier 10 is connected to the control circuit 2. Note that 12 is a power input terminal of the high voltage transformer T.

このような構成において、チヤージヤ負荷RL
が接続されている場合には、高圧トランスTで発
生する出力電流I0は第3図に示すように出力電流
検出抵抗Rfを流れる。今、所定の出力電流I0が流
れている場合、比較増幅器の反転入力端子(−)
には出力電流検出抵抗Rfを流れる出力電流I0によ
る電圧降下分に基準電圧電源Vsの基準電圧を重
畳した電圧が加わる。一方、非反転入力端子
(+)には出力電圧検出抵抗RHと分圧抵抗R1とで
分圧された電圧に補助電圧電源Vkの電圧を重畳
した電圧が加わる。従つて、比較増幅器10の非
反転、反転の各入力端子(+)(−)に同じレベ
ルの電圧が加わるように設定したときには次式が
成立する。
In such a configuration, the charge load R L
is connected, the output current I 0 generated by the high voltage transformer T flows through the output current detection resistor Rf as shown in FIG. Now, if a predetermined output current I 0 is flowing, the inverting input terminal (-) of the comparison amplifier
A voltage obtained by superimposing the reference voltage of the reference voltage power supply Vs on the voltage drop due to the output current I 0 flowing through the output current detection resistor Rf is added to . On the other hand, a voltage obtained by superimposing the voltage of the auxiliary voltage power supply Vk on the voltage divided by the output voltage detection resistor R H and the voltage dividing resistor R 1 is applied to the non-inverting input terminal (+). Therefore, when setting is made so that the same level of voltage is applied to each of the non-inverting and inverting input terminals (+) and (-) of the comparator amplifier 10, the following equation holds true.

(−V0+Vk)・R1/RH+R1+Vk=Vs+I0・Rs (1) (1)式から Vo={−(Vk−Vs)/R1/RH+R1+Vk} +I0・Rf/R1/RH+R1 (2) ここで α=−(Vk−Vs)/R1/RH+R1+Vk (3) β=−Rf/R1/RH+R1 (4) とすると(2)式は V0=α−βI0 (5) 出力電圧検出抵抗RH、分圧抵抗R1、出力電流検
出抵抗Rf、基準電圧Vs、補助電圧Vkは予じめ設
定されているので(3)(4)式におけるα,βは定数で
あり、従つて、第6図に示すように出力電圧V0
は出力電流I0の一次関数となる。つまり、チヤー
ジヤ負荷RLを接続しないときにはI0=0なので、 α=V0 となり、これにより無負荷電圧を設定できる。ま
た、(4)式のβは電圧降下分となり、出力電圧V0
の勾配が定まる。ゆえに、高圧トランスTの出力
電流I0の変動により比較増幅器10の非反転、反
転の各入力端子(+)(−)に加わる電圧のバラ
ンスがくずれた場合に、この比較増幅器10から
出力される信号を出力制御信号として次段の制御
回路2に加えると、制御回路2は、この入力され
た出力制御信号に対応して発振トランジスタTr
に加えるベース電流を増減するので、高圧トラン
スTの一次側の発振回路が制御され、所要の出力
垂下特性が得られることになる。なお、出力電流
検出抵抗Rfを可変抵抗にすれば、必要な任意の
勾配βをもつ出力垂下特性を選定できるようにな
る。さらに上記実施例では、基準電圧電源V5
補助電圧電源Vkとをそれぞれ別個に設けている
が、第4図に示すように、電圧電源Vs′を共用
し、分圧抵抗R4,R5により比較増幅器10の非
反転、反転の各入力端子(+)(−)に所定の電
圧が加わるようにすることもできる。
(−V 0 +Vk)・R 1 /R H +R 1 +Vk=Vs+I 0・Rs (1) From equation (1), Vo={−(Vk−Vs)/R 1 /R H +R 1 +Vk} +I 0・Rf/R 1 /R H +R 1 (2) where α=-(Vk-Vs)/R 1 /R H +R 1 +Vk (3) β=-Rf/R 1 /R H +R 1 (4) Then, equation (2) is V 0 = α−βI 0 (5) The output voltage detection resistor R H , voltage dividing resistor R 1 , output current detection resistor Rf, reference voltage Vs, and auxiliary voltage Vk are set in advance. Therefore, α and β in equations (3) and (4) are constants, and therefore, as shown in Figure 6, the output voltage V 0
is a linear function of the output current I0 . That is, when the charge load R L is not connected, I 0 = 0, so α = V 0 , and the no-load voltage can be set thereby. Also, β in equation (4) is the voltage drop, and the output voltage V 0
The slope of is determined. Therefore, when the voltages applied to the non-inverting and inverting input terminals (+) and (-) of the comparator amplifier 10 become unbalanced due to fluctuations in the output current I0 of the high-voltage transformer T, the output from the comparator amplifier 10 When the signal is applied as an output control signal to the control circuit 2 at the next stage, the control circuit 2 controls the oscillation transistor Tr in response to the input output control signal.
Since the base current applied to the high voltage transformer T is increased or decreased, the oscillation circuit on the primary side of the high voltage transformer T is controlled, and the desired output droop characteristic is obtained. Note that if the output current detection resistor Rf is made a variable resistor, it becomes possible to select an output drooping characteristic having an arbitrary gradient β. Furthermore, in the above embodiment, the reference voltage power supply V5 and the auxiliary voltage power supply Vk are provided separately, but as shown in FIG. 4, the voltage power supply Vs' is shared and the voltage dividing resistors R4 , R5 Accordingly, a predetermined voltage can be applied to each of the non-inverting and inverting input terminals (+) and (-) of the comparator amplifier 10.

第5図は、第3図に示した電源装置を逆に正の
出力電圧、電流が得られるようにした電源装置の
回路図であり、第3図と対応する部分には同一の
符号を付す。この実施例の電源装置1′の第3図
に示したものと異なる点は、高圧トランスTの二
次側の整流ダイオードD′2が極性を逆にして接続
されており、また、比較増幅器10′の非反転入
力端子tが出力電流検出回路8に、反転入力端子
(−)が出力電圧検出回路6にそれぞれ接続され、
さらに、出力電圧検出回路6の電圧引上用の補助
電圧電源が設けられていないことである。
Figure 5 is a circuit diagram of a power supply device in which the power supply shown in Figure 3 is reversed so that positive output voltage and current can be obtained, and parts corresponding to those in Figure 3 are given the same symbols. . The difference between the power supply device 1' of this embodiment and the one shown in FIG. The non-inverting input terminal t of ' is connected to the output current detection circuit 8, the inverting input terminal (-) is connected to the output voltage detection circuit 6,
Furthermore, an auxiliary voltage power source for pulling up the voltage of the output voltage detection circuit 6 is not provided.

従つて、この電源装置1′では、第5図に示す
ように出力電流I0が流れるので、前述の(1)式に代
えて次式が成立する。
Therefore, in this power supply device 1', the output current I 0 flows as shown in FIG. 5, so the following equation holds true in place of the above-mentioned equation (1).

V0・R1/RH+R1=Vs−I0・Rf (6) (6)式から V0=Vs/R1/RH+R1 −I0・Rs/R1/RH+R1 (7) ここで α′=Vs/R1/RH+R1 (8) β′=Rf/R1/RH+R1 (9) とすると(7)式は V0=α′−β′I0 (10) (8)(9)式におけるα′,β′は定数ゆえ、I0=0でV0
=α′となり、これにより無負荷電圧を設定でき
る。また(10)式のβ′は電圧降下分となり、出力電圧
V0の勾配が定まる。従つて、この場合も第3図
の実施例と同様、所要の出力垂下特性が得られ
る。
V 0・R 1 /R H +R 1 =Vs−I 0・Rf (6) From equation (6), V 0 =Vs/R 1 /R H +R 1 −I 0・Rs/R 1 /R H +R 1 (7) Here, α′=Vs/R 1 /R H +R 1 (8) β′=Rf/R 1 /R H +R 1 (9) Then, equation (7) becomes V 0 =α′−β′ I 0 (10) Since α' and β' in equations (8) and (9) are constants, I 0 = 0 and V 0
= α', which allows the no-load voltage to be set. Also, β′ in equation (10) is the voltage drop, and the output voltage
The slope of V 0 is determined. Therefore, in this case as well, the required output droop characteristic can be obtained, similar to the embodiment shown in FIG.

なお、第3図および第5図に示した実施例にお
いて、高圧トランスの二次側の整流回路を倍電圧
構成としてもよいのは勿論である。
In the embodiments shown in FIGS. 3 and 5, it goes without saying that the rectifier circuit on the secondary side of the high-voltage transformer may have a voltage doubler configuration.

以上のように本発明によれば、高圧トランスの
二次側の出力電圧、出力電流を共に検出し、これ
を一次側にフイードバツクして、高圧トランスの
一次側の発振回路を制御するので、従来のよう
に、出力垂下特性を得るために高圧トランスの二
次側に大きな形状の抵抗を設ける必要がなくな
る。このため、発熱も少なく小型化およびコスト
ダウンを図れる。しかも、低圧での制御になるの
で信頼性も高く、効率を損うことなく所要の出力
垂下特性が得られるという実用上優れた効果が発
揮される。
As described above, according to the present invention, both the output voltage and output current on the secondary side of the high voltage transformer are detected, and this is fed back to the primary side to control the oscillation circuit on the primary side of the high voltage transformer. This eliminates the need to provide a large resistor on the secondary side of the high-voltage transformer in order to obtain output droop characteristics. For this reason, there is less heat generation and miniaturization and cost reduction can be achieved. Furthermore, since the control is performed at low pressure, the reliability is high, and the desired output drooping characteristics can be obtained without impairing efficiency, which is an excellent practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電源装置の出力垂下特性図、第2図は
従来の電源装置の一部を示す回路図、第3図ない
し第6図は本発明の実施例を示し、第3図は電源
装置の回路図、第4図は第3図の一部変形例を示
す回路図、第5図は他の実施例の電源装置の回路
図、第6図は本発明の電源装置で得られる出力垂
下特性の説明図である。 1,1′……電源装置、6……出力電圧検出回
路、8……出力電流検出回路、10,10′……
比較増幅器、T……高圧トランス、RH……出力
電圧検出抵抗、Rf……出力電流検出抵抗。
Fig. 1 is an output droop characteristic diagram of a power supply device, Fig. 2 is a circuit diagram showing a part of a conventional power supply device, Figs. 3 to 6 show embodiments of the present invention, and Fig. 3 is a power supply device. 4 is a circuit diagram showing a partial modification of FIG. 3, FIG. 5 is a circuit diagram of a power supply device of another embodiment, and FIG. 6 is a diagram showing the output droop obtained with the power supply device of the present invention. It is an explanatory diagram of characteristics. 1, 1'... Power supply device, 6... Output voltage detection circuit, 8... Output current detection circuit, 10, 10'...
Comparison amplifier, T...High voltage transformer, RH ...Output voltage detection resistor, Rf...Output current detection resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 高圧トランスを備え、この高圧トランスの一
次側と二次側との間に、二次側の出力電圧を検出
する出力電圧検出抵抗を有する出力電圧検出回路
と、二次側の出力電流を検出する出力電流検出抵
抗を有する出力電流検出回路と、前記出力電圧検
出回路の出力電圧と前記出力電流検出回路の出力
電圧とを比較する比較手段とをそれぞれ設け、こ
の比較手段の出力により前記高圧トランスの一次
側の発振回路を制御することにより出力垂下特性
をもたせることを特徴とする電源装置。
1 Equipped with a high voltage transformer, an output voltage detection circuit having an output voltage detection resistor between the primary side and the secondary side of this high voltage transformer to detect the output voltage on the secondary side, and detect the output current on the secondary side. an output current detection circuit having an output current detection resistor, and comparison means for comparing the output voltage of the output voltage detection circuit and the output voltage of the output current detection circuit, and the output of the comparison means is used to detect the high voltage transformer. A power supply device characterized in that an output drooping characteristic is provided by controlling an oscillation circuit on the primary side of the power supply device.
JP59052962A 1984-03-19 1984-03-19 Power source Granted JPS60197160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59052962A JPS60197160A (en) 1984-03-19 1984-03-19 Power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59052962A JPS60197160A (en) 1984-03-19 1984-03-19 Power source

Publications (2)

Publication Number Publication Date
JPS60197160A JPS60197160A (en) 1985-10-05
JPS6412181B2 true JPS6412181B2 (en) 1989-02-28

Family

ID=12929511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59052962A Granted JPS60197160A (en) 1984-03-19 1984-03-19 Power source

Country Status (1)

Country Link
JP (1) JPS60197160A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083200Y2 (en) * 1986-01-29 1996-01-29 株式会社メレツク Stepping motor drive circuit
DE3717919C2 (en) * 1986-05-30 1997-09-04 Murata Manufacturing Co High voltage supply device
JPH01147682U (en) * 1988-03-29 1989-10-12
JPH0226263A (en) * 1988-07-15 1990-01-29 Murata Mfg Co Ltd Switching power circuit

Also Published As

Publication number Publication date
JPS60197160A (en) 1985-10-05

Similar Documents

Publication Publication Date Title
JPS607907B2 (en) switching regulator
JPH0582148B2 (en)
JPS6412181B2 (en)
US4403279A (en) Vehicular plural voltage system
JPH06253467A (en) Battery charger
JPH0540716Y2 (en)
JPH0435937Y2 (en)
JPH0145223Y2 (en)
JPS60197159A (en) Power source
JPS6314587B2 (en)
JPH06335248A (en) High-voltage power supply device
JP2000134924A (en) Power circuit
JPH041524B2 (en)
JPH0315428B2 (en)
JPS59144367A (en) Power source
JPH019270Y2 (en)
JPS63121471A (en) Constant-current and high-tension power source
JPS60194753A (en) Power source
JPS6147423B2 (en)
JPH0377111A (en) Constant voltage generating device
JPS6077672A (en) Power source
JPH04165410A (en) Direct-current power unit
JPS631024B2 (en)
JPH084385B2 (en) Multi-output power supply circuit
JPH0527341B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term