JPH0534866Y2 - - Google Patents
Info
- Publication number
- JPH0534866Y2 JPH0534866Y2 JP1986108704U JP10870486U JPH0534866Y2 JP H0534866 Y2 JPH0534866 Y2 JP H0534866Y2 JP 1986108704 U JP1986108704 U JP 1986108704U JP 10870486 U JP10870486 U JP 10870486U JP H0534866 Y2 JPH0534866 Y2 JP H0534866Y2
- Authority
- JP
- Japan
- Prior art keywords
- roller
- dewatering
- width
- groove
- filter cloth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004744 fabric Substances 0.000 claims description 20
- 239000010802 sludge Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 6
- 230000018044 dehydration Effects 0.000 claims description 4
- 238000006297 dehydration reaction Methods 0.000 claims description 4
- 239000000706 filtrate Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Treatment Of Sludge (AREA)
Description
〔産業上の利用分野〕
本考案は、泥状物脱水装置の脱水ローラ、詳し
くは、各種泥状物を連続的に大量処理し、低含水
率化しうる高性能のベルトプレス型脱水機の脱水
ローラに関するものである。
〔従来の技術〕及び〔考案が解決しようとする問
題点〕
従来のベルトプレス型脱水機では、圧搾ローラ
として平滑ローラが用いられてきた。しかしなが
ら、これは片面ろ過のため、脱水効率が悪く、特
にろ布の幅方向中央部での水切れが悪く、該中央
部で脱水ケーキの含水率が上昇するという問題点
があつた。
また、最近ローラ表面に排水溝を設けることも
行なわれているが、その形状、寸法や形成位置等
について十分な配慮がなされていないため、ろ液
の分離、スケールの防止などに対して十分な効果
があらわれているとは言い難い。
すなわち、たとえば、第10図のように排水溝
4が縦溝の場合、ローラにまかれたろ布ベルト
(ろ布)1により排水口がふさがれ、排水量に限
界があるという問題点があつたし、第9図のよう
な機構の場合、脱水されたろ液はローラ軸7の方
向に沿つて排水溝4の中を流れ、ローラ軸端より
排出されるが、排水溝4の大きさが適切でないと
滑らかに流れず停滞し、脱水ケーキに再吸収され
てしまうという問題点があつた。また、スケール
はローラ軸端に形成されやすく、成長すると排水
溝4をふさぐこともしばしば見受けられ、泥状物
の脱水効果が低下することも生じていた。なお、
図中5は脱水ローラの突部表面を示している。
このように、従来の脱水ローラを適用した脱水
機では汚泥の連続大量処理、脱水ケーキの低含水
率化が難しいという問題点があつた。
〔考案の目的〕
本考案は、以上の問題点を解消し、脱水ろ液の
排水性が良く、スケールがつきにくく、かつこれ
が除去しやすい脱水ローラとなし、もつて従来の
ものに比べ汚泥処理量の大幅な増大と脱水ケーキ
含水率の顕著な低下を達成しうる泥状物脱水装置
用の脱水ローラを提供することを目的とするもの
である。
〔考案の構成〕
本考案は、無端状のろ布ベルトを対面重合状態
で複数個の脱水ローラに走行可能に掛装し、これ
らろ布ベルト間で泥状物を挟圧して脱水する泥状
物脱水装置において、前記脱水ローラの少なくと
も一つのローラ円周面にローラの幅方向一端部か
ら他端部に連通する排水溝を複数条穿設せしめる
と共に、ローラの幅方向両端部に段部を形成し、
かつ、該段部の幅Aを脱水ローラの幅Bの0.1〜
3%の範囲内とすると共に、前記段部の深さCを
前記排水溝の溝深さDとほぼ同程度としたことを
特徴とする泥状物脱水装置の脱水ローラである。
〔実施例〕
本考案の一実施例を、第1図〜第3図を参照し
ながら説明すると、ベルトプレス型脱水機は第3
図に示すように無端状のろ布1a,1bを対面重
合状態で脱水ローラ2,3に走行可能に掛装して
構成されている。
これらのろ布1a,1bはいずれも透水性もし
くは吸水性の材料で形成され、これらが泥状物S
を挟持した状態で前記2つの脱水ローラにより形
成される泥状物の加圧脱水部を屈曲走行する間に
これらの脱水ローラにより圧搾され、泥状物Sが
脱水ケーキKとなつて排出される。
しかして、前記複数のローラ2,3の少なくと
も一方は、第1図及び第2図に示す構造を有して
いる。すなわち、ローラ円周面上に、ローラの軸
方向一端部から他端部へ連通する排水溝4が複数
条ローラ軸7に平行に形成され、さらに、ローラ
の幅方向の両端部には、ローラを切り欠いた形状
の段部6が設けられている。
実験によると、段部6の段部幅Aはローラ幅B
の0.1〜3%の範囲内とすることが重要であり、
この場合、段部幅Aの絶対値は通常5〜30mmが好
ましい。また、段部深さCは溝深さDとほぼ同程
度とすることが大切である。
一方、排水溝4の溝深さDは、0.5〜50mmが好
ましく、2〜20mmが特に効果的であり、これが浅
すぎるとスケールで閉塞し、深すぎても溝の形成
に手間が掛かるだけで、それ程排水性向上効果は
得られない。
しかして、本考案の脱水ローラでは、脱水され
たろ液は排水溝4の中を流れてローラの両端部に
移動し、段部6に集合し合体して水膜を形成し、
あたかもサイホン効果のようにろ液の排出が加速
され、排水性が向上する。
さらに、ろ液の系外への排出がよいためスケー
ルやSSが排水溝に堆積しにくくなるだけでなく、
スケール等は段部に集中するため、排水溝にスケ
ールがたまらず清掃がし易くなる効果がある。
前記段部を設けない場合、または設けてあつて
もその幅Aが脱水ローラ幅Bの0.1%未満である
とき、段部深さCが溝深さDより大きいときに
は、それぞれの排水溝のろ液は各排水溝単独で排
出されるため集合、合体が生じず、界面張力の影
響でろ液が容易に排出されないので汚泥脱水性が
悪化するうえ、スケール等が排水溝に堆積し閉塞
が生じ易くなり、段部深さCが溝深さDより小さ
いときには、脱水ろ液の流れが阻害され、溝内に
ろ液がたまりスケール等が堆積し易くなる。ま
た、段部幅Aが脱水ローラ幅Bの3%より大きい
場合にも、段部深さCが溝深さDとほぼ同程度で
ないと、脱水ろ液は各排水溝単独の流れとなり易
いため、集合・合体が生じにくくなり、ろ液の排
出が不十分で脱水性向上効果は生じないし、ま
た、脱水ローラが長くなりすぎ実用性、経済性に
欠ける結果となる。
前記排水溝4は、その総面積がローラ全円周面
の20〜80%を占めるように形成することが望まし
い。これは、20%未満であると脱水ろ液の排出が
完全に行われず泥状物に再吸収されてしまい、80
%を超えると泥状物受圧面が少なくなり、脱水性
能が劣るためである。
また、前記排水溝4の突部幅Wtと溝幅Wnの比
Wt/Wn(第2図参照)は0.20〜5が好ましく、
0.3〜3が特に有利であり、これが小さすぎると
汚泥の受圧面が減少し、反対に大きすぎると過
面が減少する。すなわち、いずれの場合も圧搾脱
水効果の低下を生じること、また、溝幅Wnは0.5
〜50mm特に3〜30mmの範囲が好ましいことが確認
されている。
前記排水溝4の形状としては、第1図例のほか
に横溝と縦溝の複合したもの(第4図)、横溝と
傾斜溝の複合したもの(第5図)、縦溝と傾斜溝
の複合したもの(第6図)、傾斜溝のみのもの
(第7図、第8図)、あるいは横溝、縦溝及び傾斜
溝の複合したものなどが好ましい。
これらのうち第5図例〜第8図例のように、ロ
ーラ軸7の中心線Caに対し傾きθをもたせた傾
斜溝4を、ローラ幅方向の中心線Cwに関して対
称的に、複数条形成したものが特に好ましく、θ
を10〜80°、特に30〜60°とすることにより脱水ろ
液の排出性が著しく向上することが確認されてい
る。また、上記のように排水溝をローラ幅方向の
中心線Cwに関して対称的に形成することにより、
脱水ローラを回転し、ろ布を走行させたときに、
例えば傾斜溝については、第7図に示すように、
排水溝に対し垂直に作用するろ布張力のローラ軸
方向分力が、ろ布を互いに均等の力で左右対称に
引張るように働くため、ろ布がローラ幅方向の中
心位置に常に保持され、ろ布の蛇行と、ろ布のし
わ寄りを的確に防止できる効果がある。
なお、脱水ローラは、金属等の硬質材料で製作
し、この表面に排水溝を形成したり、該硬質材料
の両端部に切欠きによる段部を形成してもよい
し、金属等の硬質材料表面にゴム等の不透水性の
弾性部材を被覆し、これに溝を形成してもよい。
後者の方が排水溝の加工が容易で、実用的であ
る。
試験例 1
濃度2.8%の下水混合生汚泥に有機性高分子凝
集剤を0.72%(対固形分)添加、混合し、ベルト
プレス型脱水機により脱水試験を行つた。
この場合、ろ布速度を1m/min、ろ布緊張圧
を5Kgf/cm2、ろ過速度を133Kg/m・hで一定
とし、脱水ローラの段部幅Aとローラ幅B(一定)
の比、及び段部深さCを変えて(溝深さDは一
定)脱水ケーキの含有率を調べた。結果を第1表
に示す。
[Industrial Application Field] The present invention is a dewatering roller for a sludge dewatering device, and more specifically, a high-performance belt press type dehydrator that can continuously process large quantities of various sludge and reduce the water content. It's about rollers. [Prior Art] and [Problems to be Solved by the Invention] In conventional belt press type dehydrators, smooth rollers have been used as squeezing rollers. However, since this is a single-sided filtration, the dewatering efficiency is poor, and water draining is particularly poor at the center of the filter cloth in the width direction, resulting in an increase in the water content of the dehydrated cake at the center. In addition, drainage grooves have recently been installed on the roller surface, but sufficient consideration has not been given to the shape, dimensions, and position of the grooves, so there is insufficient consideration to separate the filtrate and prevent scale formation. It is hard to say that it is having any effect. That is, for example, when the drain groove 4 is a vertical groove as shown in Fig. 10, there is a problem that the drain opening is blocked by the filter cloth belt (filter cloth) 1 wrapped around the roller, and there is a limit to the amount of drainage. In the case of the mechanism shown in FIG. 9, the dehydrated filtrate flows in the drain groove 4 along the direction of the roller shaft 7 and is discharged from the end of the roller shaft, but the size of the drain groove 4 is not appropriate. There was a problem that it did not flow smoothly and stagnated, and was reabsorbed by the dehydrated cake. In addition, scale tends to form at the end of the roller shaft, and when it grows, it often appears to block the drainage groove 4, resulting in a reduction in the effectiveness of dewatering mud. In addition,
In the figure, numeral 5 indicates the surface of the protrusion of the dewatering roller. As described above, conventional dewatering machines using dewatering rollers have had problems in that it is difficult to continuously process a large amount of sludge and to reduce the water content of the dehydrated cake. [Purpose of the invention] The present invention solves the above-mentioned problems and creates a dewatering roller that has good drainage properties for the dewatered filtrate, is less prone to scale buildup, and is easy to remove, thereby making it easier to treat sludge than conventional rollers. It is an object of the present invention to provide a dewatering roller for a sludge dewatering device that can achieve a significant increase in the amount of water and a significant decrease in the moisture content of the dehydrated cake. [Structure of the invention] The present invention consists of an endless filter cloth belt that is movably hung over a plurality of dewatering rollers in a face-to-face polymerized state, and a muddy material that is dehydrated by squeezing the muddy material between these filter cloth belts. In the material dewatering device, a plurality of drain grooves are formed on the circumferential surface of at least one of the dewatering rollers, the drain grooves communicating from one end in the width direction of the roller to the other end of the roller, and steps are provided at both ends in the width direction of the roller. form,
And, the width A of the stepped portion is 0.1 to 0.1 of the width B of the dewatering roller.
3%, and the depth C of the stepped portion is approximately the same as the groove depth D of the drain groove. [Example] An example of the present invention will be described with reference to Figures 1 to 3.
As shown in the figure, endless filter cloths 1a and 1b are movably hung on dewatering rollers 2 and 3 in a face-to-face overlapping state. Both of these filter cloths 1a and 1b are made of water-permeable or water-absorbing material, and these
The slurry S is compressed by these dewatering rollers while being held in a state of bending and traveling through the pressurized dewatering section formed by the two dewatering rollers, and the slurry S is discharged as a dewatered cake K. . Thus, at least one of the plurality of rollers 2 and 3 has the structure shown in FIGS. 1 and 2. That is, on the circumferential surface of the roller, a drainage groove 4 that communicates from one axial end of the roller to the other end is formed parallel to the multi-strip roller shaft 7, and furthermore, at both ends of the roller in the width direction, A stepped portion 6 having a cutout shape is provided. According to experiments, the step width A of the step portion 6 is the roller width B.
It is important to keep it within the range of 0.1 to 3%,
In this case, the absolute value of the step width A is usually preferably 5 to 30 mm. Furthermore, it is important that the step depth C be approximately the same as the groove depth D. On the other hand, the groove depth D of the drainage groove 4 is preferably 0.5 to 50 mm, and 2 to 20 mm is particularly effective; if it is too shallow, it will be clogged with scale, and if it is too deep, it will only take time and effort to form the groove. , the effect of improving drainage performance cannot be obtained that much. Therefore, in the dewatering roller of the present invention, the dehydrated filtrate flows through the drain groove 4, moves to both ends of the roller, collects at the stepped portion 6, and coalesces to form a water film.
The discharge of filtrate is accelerated as if by a siphon effect, improving drainage performance. Furthermore, since the filtrate can be easily drained out of the system, it not only makes it difficult for scale and SS to accumulate in the drain, but also
Since scale and the like are concentrated in the stepped portions, this has the effect of preventing scale from accumulating in the drain and making it easier to clean. When the step is not provided, or even if it is provided, its width A is less than 0.1% of the width B of the dewatering roller, and when the step depth C is greater than the groove depth D, the filter of each drain groove is Since the liquid is discharged from each drain independently, it does not collect or coalesce, and the filtrate cannot be easily drained due to the effect of interfacial tension, which worsens sludge dewatering performance and makes it easy for scale etc. to accumulate in the drain and cause blockage. Therefore, when the step depth C is smaller than the groove depth D, the flow of the dehydrated filtrate is inhibited, and the filtrate accumulates in the grooves, making it easy for scale and the like to accumulate. Furthermore, even when the step width A is larger than 3% of the dewatering roller width B, if the step depth C is not approximately the same as the groove depth D, the dewatered filtrate tends to flow in each drain groove independently. , aggregation and coalescence are less likely to occur, and the filtrate is insufficiently discharged, resulting in no improvement in dewatering performance, and the dewatering roller becomes too long, resulting in a lack of practicality and economic efficiency. It is desirable that the drain groove 4 is formed so that its total area occupies 20 to 80% of the entire circumferential surface of the roller. If this is less than 20%, the dehydrated filtrate will not be completely discharged and will be reabsorbed into the slurry.
%, the pressure receiving surface for sludge decreases, resulting in poor dewatering performance. Also, the ratio of the protrusion width W t of the drain groove 4 to the groove width W n
W t /W n (see Figure 2) is preferably 0.20 to 5;
A value of 0.3 to 3 is particularly advantageous; if it is too small, the pressure-receiving surface of the sludge will be reduced, and if it is too large, the pressure-receiving surface will be reduced. In other words, in either case, the compression dewatering effect will decrease, and the groove width W n is 0.5.
A range of ˜50 mm, particularly 3-30 mm, has been found to be preferred. In addition to the example shown in Fig. 1, the drainage groove 4 may have a combination of horizontal and vertical grooves (Fig. 4), a combination of horizontal and slanted grooves (Fig. 5), and a combination of vertical and slanted grooves. It is preferable to use a composite groove (FIG. 6), a groove with only slanted grooves (FIGS. 7 and 8), or a combination of horizontal grooves, vertical grooves, and slanted grooves. Among these, as shown in the examples in FIG. 5 to FIG . It is particularly preferable to form θ
It has been confirmed that the discharge performance of the dehydrated filtrate is significantly improved by setting the angle to 10 to 80°, particularly 30 to 60°. In addition, by forming the drainage grooves symmetrically with respect to the center line C w in the roller width direction as described above,
When rotating the dewatering roller and running the filter cloth,
For example, for inclined grooves, as shown in Figure 7,
The roller axial component of the filter cloth tension acting perpendicularly to the drain groove acts to pull the filter cloth symmetrically with equal force, so the filter cloth is always held at the center position in the width direction of the roller. It has the effect of accurately preventing meandering of the filter cloth and wrinkles of the filter cloth. The dewatering roller may be made of a hard material such as metal, and a drainage groove may be formed on the surface of the roller, or steps formed by notches may be formed at both ends of the hard material. The surface may be coated with a water-impermeable elastic member such as rubber, and grooves may be formed therein.
The latter method is easier and more practical to create drainage ditches. Test Example 1 0.72% (based on solid content) of an organic polymer flocculant was added and mixed to sewage mixed raw sludge with a concentration of 2.8%, and a dewatering test was conducted using a belt press type dehydrator. In this case, the filter cloth speed is 1 m/min, the filter cloth tension is 5 kgf/cm 2 , the filtration speed is constant at 133 kg/m・h, and the step width A of the dewatering roller and the roller width B (constant)
The content of the dehydrated cake was investigated by changing the ratio of 0 and the step depth C (the groove depth D was constant). The results are shown in Table 1.
【表】
第1表から、本考案の脱水ローラにより低含水
率の脱水ケーキが得られることがわかる。
試験例2 (段部深さCの効果)
濃度3.3%の下水混合生汚泥に有機性高分子凝
集剤を0.67%(対固形分)添加、混合し、ベルト
プレス型脱水機により脱水試験を行い、段部深さ
Cの影響を調べた。但し、ろ布速度を1m/
min、ろ布緊張圧を5Kgf/cm2とし、脱水ローラ
の段部幅Aを30mm、ローラ幅Bを2000mmとした。
結果を第2表に示す。[Table] From Table 1, it can be seen that a dehydrated cake with a low moisture content can be obtained using the dewatering roller of the present invention. Test Example 2 (Effect of step depth C) 0.67% organic polymer flocculant (based on solid content) was added and mixed to sewage mixed raw sludge with a concentration of 3.3%, and a dewatering test was conducted using a belt press type dehydrator. , the influence of step depth C was investigated. However, the filter cloth speed is 1m/
min, filter cloth tension pressure was 5 kgf/cm 2 , step width A of the dewatering roller was 30 mm, and roller width B was 2000 mm.
The results are shown in Table 2.
【表】【table】
【表】
第2表から、脱水ローラに排水溝と段部を設け
ても、C<Dであると溝の中にろ液がたまり脱水
効果を阻害することが、またC>Dの場合にも段
部がないのと同じく脱水効果が劣ることがわか
る。これに比べ本考案(C=D)では、低含水率
の脱水ケーキが得られること及び、この場合、溝
深さを増大するほどろ過速度すなわち汚泥処理量
が増大することがわかる。なお、溝深さと段部深
さが同程度なら、溝深さが50mmを超えても良好な
脱水効果は認められるが、溝の成形に手間がかか
り実用的価値が小さくなる。
試験例3 (段部幅Aの効果)
濃度3.3%の下水混合生汚泥に有機性高分子凝
集剤を0.67%(対固形分)添加、混合し、ベルト
プレス型脱水機により脱水試験を行い、段部幅A
の影響を調べた。但し、ろ布速度を1m/min、
ろ布緊張圧を5Kgf/cm2、脱水ローラのローラ幅
Bを2000mm、溝深さDを10mm、段部深さCを10mm
とした。結果を第3表に示す。[Table] From Table 2, even if the dewatering roller is provided with drainage grooves and steps, if C<D, the filtrate will accumulate in the grooves and impede the dehydration effect, and if C>D, It can be seen that the dehydration effect is inferior as well as when there is no step. In contrast, it can be seen that in the present invention (C=D), a dehydrated cake with a low water content can be obtained, and in this case, the filtration rate, that is, the amount of sludge throughput increases as the groove depth increases. Note that if the groove depth and step depth are about the same, a good dewatering effect can be observed even if the groove depth exceeds 50 mm, but it takes time and effort to form the grooves, which reduces its practical value. Test Example 3 (Effect of Step Width A) 0.67% (based on solid content) organic polymer flocculant was added and mixed to sewage mixed raw sludge with a concentration of 3.3%, and a dewatering test was conducted using a belt press type dehydrator. Step width A
We investigated the influence of However, the filter cloth speed is 1 m/min,
Filter cloth tension pressure is 5Kgf/cm 2 , dewatering roller width B is 2000mm, groove depth D is 10mm, step depth C is 10mm.
And so. The results are shown in Table 3.
以上述べたように本考案の泥状物脱水装置用脱
水ローラでは、該ローラからの脱水ろ液の排水性
向上及びスケール発生防止の効果があり、汚泥処
理量の増大と脱水ケーキ含水率の低下が可能であ
り、運転・維持管理が著しく容易になるなどの実
益がある。
As described above, the dewatering roller for a sludge dewatering device of the present invention has the effect of improving drainage of the dehydrated filtrate from the roller and preventing scale generation, increasing the amount of sludge throughput and reducing the water content of the dehydrated cake. There are practical benefits such as significantly easier operation and maintenance.
第1図〜第3図は本考案の実施例を示すもの
で、第1図は本考案の脱水ローラの正面図、第2
図は第1図の右側面図、第3図は前記脱水ローラ
を適用したベルトプレス型脱水機の概略側面図、
第4図〜第8図はそれぞれ相異なる別の実施例の
正面図であり、第9図、第10図はそれぞれ相異
なる従来の正面図である。
1,1a,1b……ろ布、2,3……脱水ロー
ラ、4……排水溝、5……突部表面、6……段
部、7……ローラ軸、A……段部幅、B……ロー
ラ幅、C……段部深さ、Ca……ローラ軸の中心
線、Cw……ローラ幅方向の中心線、D……溝深
さ、K……脱水ケーキ、S……泥状物、Wn……
溝幅、Wt……突部幅、θ……傾き。
Figures 1 to 3 show examples of the present invention; Figure 1 is a front view of the dewatering roller of the present invention;
The figure is a right side view of Fig. 1, and Fig. 3 is a schematic side view of a belt press type dehydrator to which the dewatering roller is applied.
4 to 8 are front views of different embodiments, and FIGS. 9 and 10 are front views of different conventional devices. 1, 1a, 1b... Filter cloth, 2, 3... Dewatering roller, 4... Drain groove, 5... Projection surface, 6... Step, 7... Roller shaft, A... Step width, B... Roller width, C... Step depth, Ca... Center line of roller shaft, C w ... Center line in roller width direction, D... Groove depth, K... Dehydrated cake, S... Sludge, W n ...
Groove width, W t ... Protrusion width, θ... Inclination.
Claims (1)
脱水ローラに走行可能に掛装し、これらろ布ベル
ト間で泥状物を挟圧して脱水する泥状物脱水装置
において、前記脱水ローラの少なくとも一つのロ
ーラ円周面にローラの幅方向一端部から他端部に
連通する排水溝を複数条穿設せしめると共に、ロ
ーラの幅方向両端部に段部を形成し、かつ、該段
部の幅Aを脱水ローラの幅Bの0.1〜3%の範囲
内とすると共に、前記段部の深さCを前記排水溝
の溝深さDとほぼ同程度としたことを特徴とする
泥状物脱水装置の脱水ローラ。 In a sludge dewatering device in which an endless filter cloth belt is movably hung over a plurality of dewatering rollers in a polymerized state, and the sludge is compressed and dehydrated between these filter cloth belts, the dewatering roller is A plurality of drain grooves are formed on the circumferential surface of at least one roller, each communicating from one end of the roller in the width direction to the other end. A muddy material characterized in that the width A is within the range of 0.1 to 3% of the width B of the dewatering roller, and the depth C of the stepped portion is approximately the same as the groove depth D of the drain groove. Dehydration roller of dehydration equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986108704U JPH0534866Y2 (en) | 1986-07-17 | 1986-07-17 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986108704U JPH0534866Y2 (en) | 1986-07-17 | 1986-07-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6316597U JPS6316597U (en) | 1988-02-03 |
JPH0534866Y2 true JPH0534866Y2 (en) | 1993-09-03 |
Family
ID=30986145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1986108704U Expired - Lifetime JPH0534866Y2 (en) | 1986-07-17 | 1986-07-17 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0534866Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0735677Y2 (en) * | 1990-03-27 | 1995-08-16 | 政勝 尾沢 | Belt press dehydrator |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5981597U (en) * | 1982-11-26 | 1984-06-01 | 日立建機株式会社 | Belt press dehydrator |
-
1986
- 1986-07-17 JP JP1986108704U patent/JPH0534866Y2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6316597U (en) | 1988-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4475453A (en) | Liquid-solid separation utilizing pressure rolls covered with elastomeric layers | |
US4358381A (en) | Sludge condensation and dewatering system | |
US3703963A (en) | Sludge hydroextractor | |
EP0047316A1 (en) | Dewatering system | |
JPH0534866Y2 (en) | ||
CA1202246A (en) | Belt filter press for filtering a heavy liquid | |
CA1124573A (en) | Device for dewatering sludge | |
JPS625834Y2 (en) | ||
CN108929015A (en) | A kind of sludge dewatering treatment device | |
CN201093849Y (en) | Novel belt type compression filter-press dewatering integrated machine | |
FI81965B (en) | FRAMEWORK FOR SUSPENSION. | |
CN210394123U (en) | Sludge concentration dehydrator capable of automatically adjusting inclination angle of dehydration filter belt | |
CN112195675A (en) | Paper grade (stock) paper rolling device based on it is absorbent that persistence is | |
CN210656648U (en) | Drainage squeezing roller of belt filter press | |
JPS6047040B2 (en) | Sludge dewatering equipment | |
CA1043274A (en) | Apparatus for continuous dewatering of aqueous suspension | |
JPS60191697A (en) | Traveling filter cloth type dehydrator | |
JPH0120078Y2 (en) | ||
AU566823B2 (en) | Liquid-solid separation utilizing pressure rolls covered withelastomeric layers | |
JP2003033800A (en) | Sludge concentration method and equipment | |
JP7245097B2 (en) | Aggregated sludge supply device | |
JPH10263889A (en) | Water saving type belt press dehydrator | |
JPS6032947Y2 (en) | Belt press type dehydrator | |
JP2004314456A (en) | Flow-on papermaking method for fiber reinforced cement panel | |
JP2757178B2 (en) | Solid-liquid separator |