JPH0534804Y2 - - Google Patents

Info

Publication number
JPH0534804Y2
JPH0534804Y2 JP3211688U JP3211688U JPH0534804Y2 JP H0534804 Y2 JPH0534804 Y2 JP H0534804Y2 JP 3211688 U JP3211688 U JP 3211688U JP 3211688 U JP3211688 U JP 3211688U JP H0534804 Y2 JPH0534804 Y2 JP H0534804Y2
Authority
JP
Japan
Prior art keywords
cooling
inlet
steel plate
flow
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3211688U
Other languages
Japanese (ja)
Other versions
JPH01135108U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3211688U priority Critical patent/JPH0534804Y2/ja
Publication of JPH01135108U publication Critical patent/JPH01135108U/ja
Application granted granted Critical
Publication of JPH0534804Y2 publication Critical patent/JPH0534804Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は、鋼板冷却装置の改良に関するもので
ある。 (従来の技術) 熱間圧延プロセスにおいて、鋼板の機械的性質
の向上や合金元素の削減等を目的としてオンライ
ン上で制御冷却を行う方法が一般に実用化されて
いるが、最近は弱冷却よりも強冷却の要求が酸化
スケール制御の面からも高まつている。 一般に鋼板のオンライン強冷却装置としては、
スリツトジエツト冷却法やマルチミストジエツト
冷却法が採用されている。前者は冷却有効面積が
狭く、板幅方向にスリツト間隔を数mmに維持して
おく手間がいる等の問題点がある。また後者は圧
空を用いて冷却水を霧化するため騒音対策や運転
コスト面で適用箇所に制約を受ける等の問題点が
ある。 そこで、本考案者等は先に、実願昭62−4386号
で「各々独立した冷却水の供給系を有する外側ヘ
ツダーと内側ヘツダーからなる冷却装置におい
て、前記外側ヘツダーの冷却水噴射面には所定角
度の絞り部を有する末広がりノズルを多数整列配
置せしめ、一方前記内側ヘツダーの前記末広がり
ノズルと同軸上にはジエツト流を生ずる管路を内
部に有し、さらに前記末広がりノズルとの組合わ
せにより環状衝突流を生ずる管路を形成すべくそ
の外表面先端部が先細曲面を有するジエツトノズ
ルを多数整列配置せしめた」冷却装置を提案し
た。 本考案者等が先に、実願昭62−4386号で提案し
た冷却装置を第8図及び第9図に示す。これら図
面に示すように、走行する高温鋼板Sの板幅に適
合する幅を有する外側ヘツダー23及びこの内部
に配置された内側ヘツダー24は、各々独立した
冷却水供給系25,26を有しており、外側ヘツ
ダー23には第9図に示すような所定の角度の絞
り部27を有する末広がりノズル28が、また内
側ヘツダー24には前記末広がりノズル28の同
軸上にジエツト流を生ずる管路29を内部に有
し、外表面先端部30が先細曲面を有するジエツ
トノズル31が整列配置されている。そして、前
記各々独立した冷却水供給系25,26より供給
された冷却水は、外側ヘツダー23では環状衝突
流、内側ヘツダー24ではジエツト流となり、そ
れぞれ合流することによりフルコーン状でかつ良
好な直進性を有する水流となり、高温鋼板Sを冷
却する。この前記冷却装置によれば、幅広い面を
均一に、より強力な冷却を行うことが可能であ
り、冷却水の供給系25,26が各々独立してい
るため、それぞれの供給水量の増加、減少あるい
は、それぞれの供給水量比の変化により、種々の
高温鋼板Sに最適な衝突圧を広範囲に制御でき、
弱冷却から強冷却まで幅広い冷却を行うことが可
能である。 (考案が解決しようとする課題) しかして、本考案者等がその後研究を続けた結
果、以下に述べることが明らかになつた。 まず、冷却ノズルが末広がりノズル28とジエ
ツトノズル31に分割されているため、外側ヘツ
ダー23内に内側ヘツダー24を組み込む必要が
あり、そのため構造が複雑で、製作上ノズルの中
心軸を合わせるのに多大な労力を要している。 また末広がりノズル28とジエツトノズル31
の隙間はわずか数mm程度であるため、ノズル取付
時の位置合わせに誤差が生じやすく、保守の面か
らも多大な労力が必要で実用上問題である。 一方、鋼板下面冷却装置33には第10図に示
すような鋼板衝突時の変形防止板34及び鋼板表
面の疵防止用のエプロン35を設ける必要があ
り、そのためフルコーン状の水流がキリ孔36,
37で直射流に変えられることになり、ノズルと
ノズルの間の冷却能力が低下するという問題点も
発生してきた。なお第8図中32は鋼板上面冷却
装置を示す。 本考案は、かかる問題点を解消するためになさ
れたものであり、冷却装置の構造を簡素化して、
製作面、制御面および保守面でも扱いが容易で、
かつ強力な冷却能力を有する冷却装置を提供せん
とするものである。 (課題を解決するための手段) 本考案者等は、前記問題点を解決するために、
第6図に示すノズルチツプを試作し、その冷却特
性を調査した結果、以下のことが明らかになつ
た。 すなわち、第7図に示すごとく、直射流と斜行
流の混合流を同時にスプレーする末広がり状の吐
出口におけるオリフイス径doと直射流導入口の
オリフイス径diの比do/diが1.0〜4.0の範囲にお
いて、斜行流の導入口面積Si′と吐出口面積So′の
比So′/Si′が0.45以下の先細状で、かつ先細状斜
行流の導入口径をφ4.0mm以上にすることにより、
直射流の圧力P1と先細状斜行流の圧力P2が同圧
の条件でも良好な性能が得られることがわかつ
た。 いいかえれば、冷却ヘツダーに関して単体構造
にできる条件が得られたわけである。 本考案はかかるノズルチツプを用いることによ
つて従来の欠点を解決せんとするものであり、走
行する高温鋼板の板幅に適合する幅を有する冷却
装置において、直射水流と斜行水流の混合水流を
同時にスプレーする末広がり状の吐出口を出口端
部に設けると共に、入口端部には直射水流の導入
口を設け、これら両者のオリフイス径の比(吐出
口/導入口:do/di)が1.0〜4.0の条件を満た
し、かつそれら両端部間における外周面において
は少なくとも3ケ以上の先細状通路を有する斜行
水流導入口を設け、該導入口径がφ4.0mm以上で斜
行流導入口面積Si′と斜行流吐出口面積So′の比
(So′/Si′)が0.45以下を満たすノズルチツプを、
鋼板と相対する冷却水噴射面に多数整列配置した
ものである。 本考案冷却装置において、先細状斜行流の導入
口面積Si′と吐出口面積So′の比So′/Si′を0.45以
下と限定した理由は、直射流と斜行流の衝突によ
りフルコーン状でかつ良好な直線性を有する水流
を得るには、斜行流をできるだけ先細状に絞るこ
とが有効であるという知見に基づくものである。
ただし、do′の最小径については異物等の目づま
りを考慮して選定する必要があるため、φ1.6mm以
上が望ましい。また少なくとも3ケ以上としたの
は円周方向の均一性確保のためからである。 (作用) 本考案冷却装置は上記のような構成であるた
め、ノズルチツプおよび冷却ヘツダーの製作が容
易で、また制御面でも冷却ヘツダーに供給してい
る冷却水単独の圧力を調整するだけで常に良好な
性能が維持できる。さらにノズル交換も簡単で保
守面でもすぐれた利点を有している。 (実施例) 以下、本考案を第1図〜第3図に示す一実施例
に基づいて説明する。第1図は鋼板上面冷却装
置、第2図は鋼板下面冷却装置の概略断面図、第
3図はノズル要部拡大図である。 図面において、1は走行する高温鋼板Sの板幅
に適合する幅を有する冷却ヘツダーで、冷却水供
給系2を有している。3は前記冷却ヘツダー1の
冷却水噴射面であり、この冷却水噴射面3には、
ノズルチツプ4が多数整列配置されている。この
ノズルチツプ4は第3図に示すように、直射流の
導入口15と、該導入口15より供給される直射
流と、後述する斜行流との混合流を同時にスプレ
ーする末広がり状の吐出口16を備え、かつこれ
ら導入口15と吐出口16の間における外周面に
この外周面から前記末広がり状の吐出口16に連
続する少なくとも2個所以上開設された斜行流の
導入口17を設けた構造である。 そして、このノズルチツプ4にあつては、前記
吐出口16のオリフイス径doと直射流の導入口
15のオリフイス径diの比do/diが1.0〜4.0の範
囲であり、また斜行流のオリフイス部は、その導
入口17側の面積Si′と吐出口15に連続する側
の面積So′の比So′/Si′が0.45以下の先細状となつ
ており、かつ導入口17の側の径がφ4.0mm以上で
ある。 本考案に係る冷却装置は、上記した構造のノズ
ルチツプ4を冷却水噴射面3に多数整列配置した
冷却ヘツダーを高温鋼板Sの上面(以下「鋼板上
面冷却装置5」という)と下面(以下「鋼板下面
冷却装置6」という)に配したものである。 本実施例における鋼板下面冷却装置6において
は、前記冷却水噴射面3に多数整列配置されたノ
ズルチツプ4と適合するキリ孔7を有する、例え
ば合成樹脂製のエプロン8を設けて鋼板衝突時の
疵を防止している。なお、本実施例においては鋼
板衝突時の変形防止板は特に設けず、冷却水噴射
面の厚みを50mm程度大きくしてその役割をもたせ
ている。 下記表に示すノズル条件のノズルチツプ4を備
えた本考案冷却装置を第4図に示すような、例え
ば仕上圧延機11の直後で従来冷却設備12の上
流側に設けることによつて、仕上圧延直後より高
温鋼板の冷却が開始されるとともに、その間の鋼
板表面に発生するスケールを可及的に抑制するこ
とが可能であり、表面温度900℃の高温鋼板Sを、
650℃まで約2.5秒以内で冷却することによりスケ
ール厚みを3μm以下にすることができた。その場
合、従来の分割ノズルタイプではキリ孔との干渉
により生じていた冷却能力の低下が、第5図に示
すごとく本考案冷却装置により解消され、冷却水
量を約30%少なくすることができ、冷却効率の向
上が図られた。なお、第4図において、13は鋼
板巻き取り部、14は温度計及び厚み計である。
(Field of Industrial Application) The present invention relates to improvement of a steel plate cooling device. (Prior art) In the hot rolling process, online controlled cooling methods have generally been put into practical use for the purpose of improving the mechanical properties of steel sheets and reducing alloying elements, but recently, methods have been put into practical use that control cooling on-line rather than weak cooling. Demand for strong cooling is also increasing from the perspective of oxide scale control. Generally speaking, as an online intense cooling system for steel plates,
Slit jet cooling methods and multi-mist jet cooling methods are used. The former has problems such as a narrow effective cooling area and the need to maintain the slit spacing of several mm in the width direction of the plate. Furthermore, since the latter uses compressed air to atomize the cooling water, there are problems such as restrictions on where it can be applied due to noise countermeasures and operating costs. Therefore, the inventors of the present invention previously wrote in Utility Application No. 62-4386 that ``In a cooling device consisting of an outer header and an inner header each having an independent cooling water supply system, the cooling water injection surface of the outer header is A large number of diverging nozzles having constricted portions at a predetermined angle are arranged in a line, and a conduit for generating a jet flow is provided inside the inner header coaxially with the divergent nozzles, and furthermore, in combination with the divergent nozzles, an annular shape is formed. We proposed a cooling device in which a large number of jet nozzles each having a tapered curved surface at the tip of its outer surface are arranged in a line to form a conduit that generates an impinging flow. The cooling device proposed by the inventors of the present invention in Utility Application No. 62-4386 is shown in FIGS. 8 and 9. As shown in these drawings, the outer header 23 having a width that matches the width of the running high-temperature steel plate S and the inner header 24 disposed inside this header each have independent cooling water supply systems 25 and 26. The outer header 23 is provided with a diverging nozzle 28 having a constriction portion 27 having a predetermined angle as shown in FIG. Jet nozzles 31 are arranged inside and have an outer surface tip 30 having a tapered curved surface. The cooling water supplied from the independent cooling water supply systems 25 and 26 becomes an annular impingement flow in the outer header 23 and a jet flow in the inner header 24, and by merging with each other, a full cone shape and good straightness are achieved. , and cools the high-temperature steel plate S. According to this cooling device, it is possible to uniformly and more powerfully cool a wide area, and since the cooling water supply systems 25 and 26 are each independent, it is possible to increase or decrease the amount of water supplied to each. Alternatively, the optimal collision pressure for various high-temperature steel plates S can be controlled over a wide range by changing the respective supply water ratios,
It is possible to perform a wide range of cooling from weak cooling to strong cooling. (Problem to be solved by the invention) However, as a result of subsequent research by the inventors of the present invention, the following has become clear. First, since the cooling nozzle is divided into the diverging nozzle 28 and the jet nozzle 31, it is necessary to incorporate the inner header 24 into the outer header 23, which makes the structure complicated and requires a great deal of effort to align the center axis of the nozzle. It requires effort. Also, the flared-out nozzle 28 and the jet nozzle 31
Since the gap is only a few millimeters, it is easy to make errors in positioning when installing the nozzle, which requires a lot of effort from a maintenance standpoint, which is a practical problem. On the other hand, the steel plate lower surface cooling device 33 needs to be provided with a plate 34 to prevent deformation when the steel plate collides and an apron 35 to prevent scratches on the surface of the steel plate as shown in FIG.
37, the flow is changed to a direct flow, which has caused the problem that the cooling capacity between the nozzles is reduced. Note that 32 in FIG. 8 indicates a steel plate upper surface cooling device. The present invention was made to solve this problem, and it simplifies the structure of the cooling device,
Easy to handle in terms of production, control and maintenance.
Moreover, it is an object of the present invention to provide a cooling device having a strong cooling capacity. (Means for solving the problem) In order to solve the above problem, the present inventors, etc.
As a result of making a prototype of the nozzle chip shown in FIG. 6 and investigating its cooling characteristics, the following was clarified. That is, as shown in Fig. 7, the ratio do/di of the orifice diameter do at the divergent discharge port that sprays a mixed flow of direct flow and oblique flow at the same time to the orifice diameter di at the direct flow inlet is 1.0 to 4.0. Within the range, the ratio of the inlet area Si′ of the oblique flow to the area So′ of the outlet port should be tapered so that the ratio So′/Si′ is 0.45 or less, and the inlet diameter of the tapered oblique flow should be φ4.0 mm or more. According to
It was found that good performance can be obtained even under the condition that the pressure P 1 of the direct flow and the pressure P 2 of the tapered oblique flow are the same pressure. In other words, conditions were obtained that allowed the cooling header to be constructed as a single unit. The present invention aims to solve the conventional drawbacks by using such a nozzle chip, and is designed to generate a mixed water flow of a direct water flow and an oblique water flow in a cooling device having a width that matches the width of a running high-temperature steel plate. A divergent discharge port for spraying at the same time is provided at the outlet end, and an inlet for direct water flow is provided at the inlet end, and the ratio of the orifice diameters of these two (discharge port/inlet port: do/di) is 1.0~ 4.0, and an oblique water flow inlet having at least three or more tapered passages on the outer circumferential surface between the two ends, and the inlet diameter is φ4.0 mm or more and the oblique flow inlet area is Si ′ and the oblique flow outlet area So′ (So′/Si′) is 0.45 or less.
A large number of them are arranged in a row on the cooling water injection surface facing the steel plate. In the cooling device of the present invention, the ratio So'/Si' of the inlet area Si' and the outlet area So' of the tapered oblique flow is limited to 0.45 or less. This is based on the knowledge that in order to obtain a water flow with good linearity, it is effective to narrow the oblique flow into a tapered shape as much as possible.
However, the minimum diameter of do' must be selected in consideration of clogging due to foreign matter, so it is desirable to have a diameter of 1.6 mm or more. The reason why there are at least three or more is to ensure uniformity in the circumferential direction. (Function) Since the cooling device of the present invention has the above-mentioned configuration, it is easy to manufacture the nozzle tip and cooling header, and in terms of control, it is always possible to maintain good control by simply adjusting the pressure of the cooling water supplied to the cooling header. performance can be maintained. Furthermore, the nozzle can be easily replaced, which has the advantage of being excellent in terms of maintenance. (Example) Hereinafter, the present invention will be explained based on an example shown in FIGS. 1 to 3. FIG. 1 is a schematic sectional view of a steel plate upper surface cooling device, FIG. 2 is a schematic cross-sectional view of a steel plate bottom surface cooling device, and FIG. 3 is an enlarged view of the main part of a nozzle. In the drawings, reference numeral 1 denotes a cooling header having a width matching the width of a running high-temperature steel plate S, and has a cooling water supply system 2. 3 is a cooling water injection surface of the cooling header 1, and this cooling water injection surface 3 includes:
A large number of nozzle tips 4 are arranged in a row. As shown in FIG. 3, this nozzle tip 4 includes an inlet 15 for a direct flow, and a divergent discharge port that simultaneously sprays a mixed flow of the direct flow supplied from the inlet 15 and an oblique flow to be described later. 16, and at least two oblique flow inlets 17 are provided on the outer circumferential surface between the inlet 15 and the outlet 16 and are continuous from the outer circumferential surface to the divergent outlet 16. It is a structure. In this nozzle chip 4, the ratio do/di of the orifice diameter do of the discharge port 16 and the orifice diameter di of the direct flow inlet 15 is in the range of 1.0 to 4.0, and the orifice portion of the oblique flow has a tapered shape in which the ratio So'/Si' of the area Si' on the side of the inlet 17 and the area So' on the side continuous to the outlet 15 is 0.45 or less, and the diameter on the side of the inlet 17 is φ4.0mm or more. The cooling device according to the present invention has a cooling header in which a large number of nozzle chips 4 having the above-mentioned structure are aligned and arranged on the cooling water injection surface 3. 6). In the steel plate lower surface cooling device 6 in this embodiment, an apron 8 made of, for example, synthetic resin is provided on the cooling water injection surface 3 and has drilled holes 7 that fit with the nozzle tips 4 arranged in a large number in order to prevent scratches when the steel plate collides with the steel plate. is prevented. Note that in this embodiment, a plate for preventing deformation upon collision with a steel plate is not particularly provided, and the thickness of the cooling water injection surface is increased by approximately 50 mm to fulfill this role. By installing the cooling device of the present invention equipped with the nozzle tip 4 having the nozzle conditions shown in the table below, for example, immediately after the finish rolling mill 11 and upstream of the conventional cooling equipment 12, as shown in FIG. As the cooling of the high-temperature steel sheet begins, it is possible to suppress as much as possible the scale that occurs on the surface of the steel sheet during that time.
By cooling to 650°C within about 2.5 seconds, the scale thickness could be reduced to 3 μm or less. In that case, as shown in Figure 5, the reduction in cooling capacity caused by interference with the through hole in the conventional split nozzle type is eliminated by the cooling device of the present invention, and the amount of cooling water can be reduced by approximately 30%. Cooling efficiency has been improved. In addition, in FIG. 4, 13 is a steel plate winding part, and 14 is a thermometer and a thickness gauge.

【表】 (考案の効果) 以上説明したように本考案冷却装置によれば、
高温鋼板の冷却において先に実願昭62−4386号で
提案した冷却装置の構造の簡素化が達成でき、製
作面、制御面および保守面でも取り扱いが容易と
なり、さらに冷却能力の向上も図ることができる
等優れた効果を発揮することができる。
[Table] (Effects of the invention) As explained above, according to the cooling device of the present invention,
For cooling high-temperature steel plates, it is possible to simplify the structure of the cooling device previously proposed in Utility Application No. 62-4386, making it easier to handle in terms of manufacturing, control, and maintenance, and further improving the cooling capacity. It is possible to achieve excellent effects such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す鋼板上面冷却
装置の概略断面図、第2図は前記同様の鋼板下面
冷却装置の概略断面図、第3図はノズル要部拡大
図、第4図は本考案に係る冷却装置を用いた熱延
鋼板製造ラインの一実施例を示す説明図、第5図
は冷却水量と冷却能力の関係を示す説明図、第6
図は本考案に係るノズルチツプの概略断面図、第
7図は本考案に係るノズルチツプの噴射性能を示
す説明図、第8図は本考案者等が先に提案した従
来冷却装置の一実施例を示す概略断面図、第9図
は第8図の一組のノズルの要部拡大断面図、第1
0図は第8図の鋼板下面冷却装置について異なる
実施例を示す概略断面図である。 1は冷却ヘツダー、3は冷却水噴射面、4はノ
ズルチツプ、5は鋼板上面冷却装置、6は鋼板下
面冷却装置、Sは高温鋼板。
Fig. 1 is a schematic sectional view of a steel plate top cooling device showing an embodiment of the present invention, Fig. 2 is a schematic sectional view of a steel plate bottom cooling device similar to the above, Fig. 3 is an enlarged view of the main part of the nozzle, and Fig. 4 5 is an explanatory diagram showing an example of a hot rolled steel plate production line using the cooling device according to the present invention, FIG. 5 is an explanatory diagram showing the relationship between the amount of cooling water and cooling capacity, and FIG.
Figure 7 is a schematic cross-sectional view of the nozzle chip according to the present invention, Figure 7 is an explanatory diagram showing the jetting performance of the nozzle chip according to the present invention, and Figure 8 is an example of the conventional cooling device previously proposed by the present inventors. 9 is an enlarged sectional view of essential parts of a set of nozzles in FIG.
FIG. 0 is a schematic sectional view showing a different embodiment of the steel plate lower surface cooling device of FIG. 8. 1 is a cooling header, 3 is a cooling water injection surface, 4 is a nozzle chip, 5 is a steel plate upper surface cooling device, 6 is a steel plate lower surface cooling device, and S is a high temperature steel plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 走行する高温鋼板の板幅に適合する幅を有する
冷却装置において、直射水流と斜行水流の混合水
流を同時にスプレーする末広がり状の吐出口を出
口端部に設けると共に、入口端部には直射水流の
導入口を設け、これら両者のオリフイス径の比
(吐出口/導入口:do/di)が1.0〜4.0の条件を
満たし、かつそれら両端部間における外周面にお
いては少なくとも3ケ以上の先細状通路を有する
斜行水流導入口を設け、該導入口径がφ4.0mm以上
で斜行流導入口面積Si′と斜行流吐出口面積So′の
比(So′/Si′)が0.45以下を満たすノズルチツプ
を、鋼板と相対する冷却水噴射面に多数整列配置
したことを特徴とする冷却装置。
In a cooling device having a width that matches the width of a running high-temperature steel plate, a divergent discharge port is provided at the outlet end to simultaneously spray a mixed water flow of a direct water flow and an oblique water flow, and a direct water flow is provided at the inlet end. The ratio of the orifice diameters of these two (discharge port/inlet port: do/di) satisfies the condition of 1.0 to 4.0, and the outer circumferential surface between the two ends has at least 3 or more tapered shapes. A diagonal water flow inlet having a passage is provided, and the inlet diameter is φ4.0 mm or more, and the ratio of the diagonal flow inlet area Si' to the diagonal flow discharge outlet area So'(So'/Si') is 0.45 or less. A cooling device characterized in that a large number of nozzle chips to fill the air are arranged in a row on a cooling water injection surface facing a steel plate.
JP3211688U 1988-03-10 1988-03-10 Expired - Lifetime JPH0534804Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3211688U JPH0534804Y2 (en) 1988-03-10 1988-03-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3211688U JPH0534804Y2 (en) 1988-03-10 1988-03-10

Publications (2)

Publication Number Publication Date
JPH01135108U JPH01135108U (en) 1989-09-14
JPH0534804Y2 true JPH0534804Y2 (en) 1993-09-03

Family

ID=31258433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3211688U Expired - Lifetime JPH0534804Y2 (en) 1988-03-10 1988-03-10

Country Status (1)

Country Link
JP (1) JPH0534804Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873437B2 (en) * 1998-03-19 2007-01-24 住友金属工業株式会社 Method for cooling hot-rolled steel sheet

Also Published As

Publication number Publication date
JPH01135108U (en) 1989-09-14

Similar Documents

Publication Publication Date Title
EP0450935B1 (en) Full cone spray nozzle with external air atomization
KR100606629B1 (en) Descaling nozzle and cemented carbide nozzle tip
KR890002516B1 (en) Cooling equipment for continous casting device
US6036116A (en) Fluid atomizing fan spray nozzle
EP0161307B1 (en) Nozzle for atomized fan-shaped spray
EP1731224B1 (en) Air assisted liquid spray nozzle assembly.
EP1444047B1 (en) Full cone liquid spray nozzle
JP5788693B2 (en) Injection nozzle and descaling or cleaning method
KR102623646B1 (en) Orifice plates and valves
JP3382573B2 (en) Two-fluid nozzle
JPH0534804Y2 (en)
JP4854935B2 (en) Steel plate scale remover
JP2719073B2 (en) spray nozzle
JPH0582441B2 (en)
US2287458A (en) Spraying apparatus
JPS588345Y2 (en) fluid jet nozzle
SU905293A1 (en) Rolled stock cooling nozzle
JPH0211961Y2 (en)
JPH062977B2 (en) Method for manufacturing meltblown nonwoven fabric
JP2588803Y2 (en) Liquid injection nozzle
KR100345729B1 (en) Spray nozzle for descaling
JPH0638605Y2 (en) Coolant spray device for transport rollers
JPH0732886B2 (en) Gas-liquid spray nozzle
JPS62227510A (en) Cooler for hot rolling roll
JPS627400Y2 (en)