JPH05347423A - Manufacture of optoelectric transducer - Google Patents

Manufacture of optoelectric transducer

Info

Publication number
JPH05347423A
JPH05347423A JP4141747A JP14174792A JPH05347423A JP H05347423 A JPH05347423 A JP H05347423A JP 4141747 A JP4141747 A JP 4141747A JP 14174792 A JP14174792 A JP 14174792A JP H05347423 A JPH05347423 A JP H05347423A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
active layer
concentration
conversion element
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4141747A
Other languages
Japanese (ja)
Other versions
JP2634730B2 (en
Inventor
Shuichi Ajiki
秀一 安食
Masami Kumei
正美 粂井
Hiroaki Sugino
弘明 杉野
Hideki Toyotama
英樹 豊玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP4141747A priority Critical patent/JP2634730B2/en
Publication of JPH05347423A publication Critical patent/JPH05347423A/en
Application granted granted Critical
Publication of JP2634730B2 publication Critical patent/JP2634730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To manufacture an optoelectric transducer having a large photoelectric response by a method wherein an optoelectric transducing active layer is made of biopolymer composition and buffer solution is added to it to obtain a required buffer concentration. CONSTITUTION:An indium-tin-oxide electrode 1 is formed on a glass substrate 10. The ITO electrode 1 is divided into two parts 1a and 1b. An optoelectric transducing active layer 2 having a higher buffer concentration than a conventional optoelectric transducing active layer is formed on the ITO electrode 1. After the optoelectric transducing active layer 2 is dried, a gold facing electrode 3 is formed on it. The end part of the gold facing electrode 3 is connected the one part 1b of the ITO electrode 1. A drawing-out lead wire 4a is connected to the other part 1a of the ITO electrode 1 and a drawing-out lead wire 4b is connected to the gold facing electrode 3. If a light is applied to the glass substrate 10 side of an optoelectric transducer constituted as described above, the applied light transmits the glass substrate 10 and the ITO electrode 1 and falls on the optoelectric transducing active layer 2. The response of the optoelectric transducing active layer 2 is taken out through the drawing out lead wires 4a and 4b and a large photoelectric response can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光電変換素子の製造方
法に関し、特に光電変換機能を有する生体高分子複合体
を用いた光電変換素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a photoelectric conversion element, and more particularly to a method for manufacturing a photoelectric conversion element using a biopolymer composite having a photoelectric conversion function.

【0002】[0002]

【従来の技術】光合成細菌から調製した光電変換機能を
有する生体高分子複合体を利用し、光電変換素子を作成
する技術が、特開平1−110224号、特開平1−2
31886号公報等に提案されている。光電変換活性層
の形成方法としては、塗布法、印刷法、電着法、スピン
コート法が知られている。
2. Description of the Related Art A technique for producing a photoelectric conversion element by using a biopolymer complex having a photoelectric conversion function prepared from photosynthetic bacteria is disclosed in JP-A-1-110224 and 1-2.
It is proposed in Japanese Patent No. 31886. Known methods for forming the photoelectric conversion active layer include a coating method, a printing method, an electrodeposition method, and a spin coating method.

【0003】また、光電変換活性層の材料として、クロ
マトフォア(光合成器官膜断片)、スフェロプラスト
(細胞壁を取り除いた膜小胞)、光電変換機能を持つ生
体高分子複合体を可溶化、精製した後にリポソームに組
み込んだ試料等が知られている。
As materials for the photoelectric conversion active layer, chromatophores (photosynthetic organ membrane fragments), spheroplasts (membrane vesicles with cell walls removed), and biopolymer complexes having a photoelectric conversion function are solubilized and purified. Samples and the like which are incorporated into liposomes after that are known.

【0004】たとえば、特開平1−110224号公
報、特開平1−231886号公報は、紅色光合成細菌
の一種であるロドシュードモナス・ビリディス(ATC
C19567)のクロマトフォアを用いて光電変換素子
を作製する方法を開示している。
For example, JP-A-1-110224 and JP-A-1-231886 disclose Rhodopseudomonas viridis (ATC) which is a kind of red photosynthetic bacteria.
Disclosed is a method for producing a photoelectric conversion element using a chromatophore of C19567).

【0005】菌体を破砕し、分画することでクロマトフ
ォアと呼ばれる光合成膜断片の小胞化したものを得、こ
のクロマトフォアをトリス−塩酸緩衝液(pH8.0)
に懸濁したものを利用し、光電変換活性層を形成する。
By crushing the bacterial cells and fractionating, vesicles of a photosynthetic membrane fragment called a chromatophore are obtained, and the chromatophore is tris-hydrochloric acid buffer solution (pH 8.0).
A photoelectric conversion active layer is formed by using the one suspended in.

【0006】塗布乾燥法、スピンコート法では、約10
mMトリス塩酸(pH約7.8)を緩衝液として用いて
いた。また、電着法では、電場を利用するために溶液の
導電性を低くする必要があり、緩衝能を維持できる低濃
度(通常、約3mM)のトリス塩酸(pH約7.8)を
緩衝液として使用していた。
About 10 by the coating and drying method and the spin coating method.
mM Tris-HCl (pH about 7.8) was used as a buffer. Further, in the electrodeposition method, it is necessary to reduce the conductivity of the solution in order to use an electric field, and a low concentration (usually about 3 mM) of Tris-hydrochloric acid (pH about 7.8) that can maintain the buffer capacity is used as a buffer solution. Was used as.

【0007】このような方法で得られた光電変換素子か
らは、開放光電圧約10mV、短絡光電流約100pA
程度の光応答が得られ、その持続時間は数十ミリ秒程度
であった。
From the photoelectric conversion device obtained by such a method, an open-circuit photovoltage of about 10 mV and a short-circuit photocurrent of about 100 pA were obtained.
A light response of a certain degree was obtained, and its duration was about several tens of milliseconds.

【0008】[0008]

【発明が解決しようとする課題】以上説明したように、
生体高分子複合体を用いて、光電変換素子を作製するこ
とができる。しかしながら、その光電応答は絶対値が低
かった。
As described above,
A photoelectric conversion element can be produced using the biopolymer composite. However, the photoelectric response had a low absolute value.

【0009】本発明の目的は、生体高分子複合体を用
い、光電応答の大きな光電変換素子を製造することので
きる光電変換素子の製造方法を提供することである。
An object of the present invention is to provide a method for producing a photoelectric conversion element, which can produce a photoelectric conversion element having a large photoelectric response by using a biopolymer composite.

【0010】[0010]

【課題を解決するための手段】本発明の光電変換素子の
製造方法は、光電変換機能を有する生体高分子複合体を
用いて光電変換活性層を形成する工程と、光電変換活性
層に緩衝液を添加して所定の緩衝剤濃度にする工程とを
含む。
A method for manufacturing a photoelectric conversion element of the present invention comprises a step of forming a photoelectric conversion active layer using a biopolymer composite having a photoelectric conversion function, and a buffer solution for the photoelectric conversion active layer. Is added to obtain a predetermined buffer concentration.

【0011】また、本発明の光電変換素子の製造方法
は、クロマトフォアを燐酸塩緩衝液中に分散させ、蛋白
濃度4〜400mg/ml、燐酸濃度10〜150mM
とし、基板上に分散クロマトフォアの層を形成する工程
と、前記分散クロマトフォアの層を乾燥させる工程とを
含むものであってもよい。
Further, in the method for producing a photoelectric conversion element of the present invention, the chromatophore is dispersed in a phosphate buffer solution to obtain a protein concentration of 4 to 400 mg / ml and a phosphoric acid concentration of 10 to 150 mM.
And a step of forming a layer of the dispersion chromatophore on the substrate and a step of drying the layer of the dispersion chromatophore.

【0012】[0012]

【作用】本発明者らは、光電変換機能を有する生体高分
子複合体を分散する緩衝液の濃度を高めると、光電応答
が増大することを発見した。
The present inventors have discovered that increasing the concentration of the buffer solution in which the biopolymer complex having a photoelectric conversion function is dispersed increases the photoelectric response.

【0013】光電変換活性層を形成する前に、緩衝液濃
度を高めると、製造工程に影響が出る場合は、一旦低い
緩衝液濃度で光電変換活性層を形成し、その後光電変換
活性層に緩衝液を添加すればよい。
If increasing the buffer solution concentration before forming the photoelectric conversion active layer affects the manufacturing process, once the photoelectric conversion active layer is formed with a low buffer solution concentration, and then the photoelectric conversion active layer is buffered. The liquid may be added.

【0014】[0014]

【実施例】図1に、以下に述べる製造方法によって製造
する光電変換素子の構造を概略的に示す。ガラス基板1
0の上に、インジウム錫酸化物(ITO)電極1を形成
する。このITO電極1は、2つの部分1aと1bとに
分割されている。
EXAMPLE FIG. 1 schematically shows the structure of a photoelectric conversion element manufactured by the manufacturing method described below. Glass substrate 1
An indium tin oxide (ITO) electrode 1 is formed on 0. This ITO electrode 1 is divided into two parts 1a and 1b.

【0015】ITO電極1の上に、従来の光電変換活性
層よりも緩衝液濃度の高い光電変換活性層2を形成す
る。光電変換活性層2を乾燥させた後、その上に金(A
u)の対向電極3を形成する。
A photoelectric conversion active layer 2 having a buffer solution concentration higher than that of a conventional photoelectric conversion active layer is formed on the ITO electrode 1. After the photoelectric conversion active layer 2 is dried, gold (A
The counter electrode 3 of u) is formed.

【0016】このAu対向電極3は、ITO電極の一方
1bと端部で接続される。他方のITO電極1aに取出
しリード線4aを接続し、Au対向電極3に取出リード
線4bを接続する。
The Au counter electrode 3 is connected to one of the ITO electrodes 1b at the end. The lead wire 4a is connected to the other ITO electrode 1a, and the lead wire 4b is connected to the Au counter electrode 3.

【0017】このようにして形成した光電変換素子にガ
ラス基板10側から光を入射すると、入射光はガラス基
板10、ITO電極1を透過して光電変換活性層2に入
射する。光電変換活性層2の光電応答は、取出しリード
線4a、4bから取り出される。
When light enters the photoelectric conversion element thus formed from the glass substrate 10 side, the incident light passes through the glass substrate 10 and the ITO electrode 1 and enters the photoelectric conversion active layer 2. The photoelectric response of the photoelectric conversion active layer 2 is taken out from the lead wires 4a and 4b.

【0018】なお、上記工程の光電変換素子を実用化す
る場合には、Au対向電極の上にさらにガラス基板を重
ね、周囲をシールすること等によって光電変換素子を気
密に封止することが好ましい。なお、光学変換活性層を
透明電極と他の電極の間に挟める構造であれば、他の構
造を採用してもよい。
When the photoelectric conversion element in the above process is put to practical use, it is preferable to hermetically seal the photoelectric conversion element by further stacking a glass substrate on the Au counter electrode and sealing the periphery. .. Other structures may be adopted as long as the optical conversion active layer is sandwiched between the transparent electrode and another electrode.

【0019】以下、光電変換活性層2をクロマトフォア
を用いて形成する場合を例にとって説明する。嫌気的条
件下で光培養した紅色光合成細菌ロドシュードモナス・
ビリディス(ATCC19567)を超音波で破砕し、
分画遠心分離を行なうことで光合成器官膜断片であるク
ロマトフォアを調製する。
Hereinafter, the case where the photoelectric conversion active layer 2 is formed by using a chromatophore will be described as an example. A red-colored photosynthetic bacterium, Rhodopseudomonas, cultured under anaerobic conditions
Crush Viridis (ATCC 19567) with ultrasonic waves,
A chromatophore, which is a photosynthetic organ membrane fragment, is prepared by performing fractional centrifugation.

【0020】このクロマトフォアを燐酸ナトリウム緩衝
液(3mM、pH7.0)に懸濁し、クロマトフォア濃
度を波長1015nmの光学吸収密度(OD)で約10
0に調整する。この光学吸収密度を示すクロマトフォア
溶液は蛋白濃度約40mg/mlに相当する。なお、こ
の対応関係は牛血清γグロブミンを標準試料とした色素
結合法(ブラッドフォード法)によって求めた。
This chromatophore was suspended in a sodium phosphate buffer (3 mM, pH 7.0) and the chromatophore concentration was about 10 at an optical absorption density (OD) at a wavelength of 1015 nm.
Adjust to 0. A chromatophore solution showing this optical absorption density corresponds to a protein concentration of about 40 mg / ml. This correspondence was determined by the dye binding method (Bradford method) using bovine serum γ-globumin as a standard sample.

【0021】別途、ガラス基板10の上にITO電極1
a、1bを形成する。このITO電極1を形成したガラ
ス基板10上に、上述のように調製したクロマトフォア
懸濁液を用いて、光電変換活性層を形成する。この未乾
燥の状態の光電変換活性層に緩衝液を適当量添加する。
緩衝液の濃度は、たとえば約10〜1000mMとす
る。
Separately, the ITO electrode 1 is formed on the glass substrate 10.
a and 1b are formed. A photoelectric conversion active layer is formed on the glass substrate 10 on which the ITO electrode 1 is formed, using the chromatophore suspension prepared as described above. An appropriate amount of buffer solution is added to this undried photoelectric conversion active layer.
The concentration of the buffer solution is, for example, about 10 to 1000 mM.

【0022】緩衝液を添加した光電変換活性層を乾燥さ
せ、乾燥後の光電変換活性層上に真空蒸着等により、A
uを約200Å蒸着してAu対向電極3を形成する。そ
の後、ITO電極1aと、Au対向電極3に取出しリー
ド線4a、4bを取付け、光電変換素子を完成する。
The photoelectric conversion active layer containing the buffer solution is dried, and the dried photoelectric conversion active layer is vacuum-deposited on the photoelectric conversion active layer to form A.
About 200Å of u is vapor-deposited to form the Au counter electrode 3. After that, the lead wires 4a and 4b are attached to the ITO electrode 1a and the Au counter electrode 3 to complete the photoelectric conversion element.

【0023】光合成細菌には、上述のロドシュードモナ
ス・ビリディスの他、ロドバクタ・スフェロイデス(A
TCC17023)等の菌体を用いることもできる。ま
た、スフェロプラストや光反応ユニット(PRU)、光
反応中心(RC)をリポソームに再構成した試料を用い
ることもできる。
Photosynthetic bacteria include Rhodobacter sphaeroides (A) in addition to Rhodopseudomonas viridis described above.
It is also possible to use bacterial cells such as TCC17023). Further, a sample in which spheroplast, a photoreaction unit (PRU), and a photoreaction center (RC) are reconstituted in a liposome can also be used.

【0024】ITO基板上への光電変換活性層の形成
は、塗布、スピンコート、印刷、電着等、種々の方法に
よって実施することができるが、電着法は塗布法、印刷
法等と比較して大面積で均一な厚い膜を作製するのに適
した方法である。たとえば、電着法により厚さ数μm以
上の均質な光電変換活性層を作製することができる。
The formation of the photoelectric conversion active layer on the ITO substrate can be carried out by various methods such as coating, spin coating, printing and electrodeposition. The electrodeposition method is different from the coating method and the printing method. It is a method suitable for producing a thick film having a large area and uniform. For example, a uniform photoelectric conversion active layer having a thickness of several μm or more can be produced by the electrodeposition method.

【0025】電着法を用いる場合、クロマトフォア懸濁
緩衝液は電着操作時に必要な電場強度を得るためには、
導電性を低く抑える必要がある。このため、緩衝作用が
得られる下限程度の数mM程度とすることが好ましい。
When the electrodeposition method is used, the chromatophore suspension buffer is required to obtain the required electric field strength during the electrodeposition operation.
It is necessary to keep the conductivity low. For this reason, it is preferable to set it to about several mM, which is the lower limit of the buffer action.

【0026】この場合、得られた光電変換活性層の緩衝
液濃度は不足するため、その不足する分を光電変換活性
層形成後、光電変換活性層に緩衝液を添加することによ
って補充する。
In this case, since the concentration of the buffer solution in the obtained photoelectric conversion active layer is insufficient, the insufficient amount is supplemented by adding the buffer solution to the photoelectric conversion active layer after forming the photoelectric conversion active layer.

【0027】光電変換活性層の形成は、電着法の他、塗
布法、スピンコート法、スクリーン印刷法、ラングミュ
アブロジエット法(LB法)等を用いることもできる。
これらの方法を用いる場合は、光電変換活性層形成時の
導電性に関する制約はない。
The photoelectric conversion active layer can be formed by an electrodeposition method, a coating method, a spin coating method, a screen printing method, a Langmuir-Bloget method (LB method), or the like.
When these methods are used, there is no restriction on conductivity when forming the photoelectric conversion active layer.

【0028】このため、所望の緩衝液濃度を有するクロ
マトフォア懸濁液を調製し、このクロマトフォア懸濁液
を用いて光電変換活性層を作製することもできる。勿
論、上述の電着法と同様に、緩衝液濃度の薄い光電変換
活性層をまず形成し、その後緩衝液を添加することもで
きる。
Therefore, it is also possible to prepare a chromatophore suspension having a desired buffer concentration and use this chromatophore suspension to prepare a photoelectric conversion active layer. Of course, similarly to the above-mentioned electrodeposition method, it is also possible to first form a photoelectric conversion active layer having a low buffer solution concentration and then add the buffer solution.

【0029】緩衝液の添加は、光電変換活性層を乾燥さ
せる前のみでなく、光電変換活性層を乾燥させた後にも
行なうことができる。乾燥方法は、自然乾燥、真空乾燥
等を用いることができる。
The buffer solution can be added not only before drying the photoelectric conversion active layer, but also after drying the photoelectric conversion active layer. As a drying method, natural drying, vacuum drying or the like can be used.

【0030】また、添加する緩衝液は単独で使用するだ
けでなく、他の緩衝液やメディエータと呼ばれる電子伝
達物質や酸化還元剤等の成分を加えたものを用いること
もできる。
The buffer solution to be added may be used not only alone but also to which other buffer solution or components such as an electron transfer substance called a mediator and a redox agent are added.

【0031】対向電極としては、Auの他、ITO、M
g−Ag等の他の金属電極、化合物半導体電極、電界重
合法で得られるポリピロール等の有機導電性材料等を用
いることもできる。
As the counter electrode, in addition to Au, ITO, M
Other metal electrodes such as g-Ag, compound semiconductor electrodes, and organic conductive materials such as polypyrrole obtained by the electric field polymerization method can also be used.

【0032】例1 光電変換活性層の材料としてロドシュードモナス・ビリ
ディスのクロマトフォアを用い、緩衝液として水酸化ナ
トリウムでpHを7.0に調整した燐酸緩衝液を用い
た。
Example 1 A Rhodopseudomonas viridis chromatophore was used as the material for the photoelectric conversion active layer, and a phosphate buffer whose pH was adjusted to 7.0 with sodium hydroxide was used as the buffer.

【0033】ITO透明電極を備えたガラス基板とAu
対向電極を備えたガラス基板の間を約0.5mm空けて
対向させ、両基板間にクロマトフォア懸濁液を満たし、
電着法による膜形成を行なった。ITO電極にAu対向
電極に対して3.5Vの正電圧を約30秒間印加した。
この電圧印加により、ITO電極上にクロマトフォア膜
が厚さ約20μm堆積した。この時、吸光度は波長10
15nmで1〜1.5absであった。
Glass substrate with ITO transparent electrode and Au
A glass substrate provided with a counter electrode is made to face each other with a gap of about 0.5 mm, and a chromatophore suspension is filled between the two substrates.
A film was formed by the electrodeposition method. A positive voltage of 3.5 V was applied to the ITO electrode with respect to the Au counter electrode for about 30 seconds.
By applying this voltage, a chromatophore film having a thickness of about 20 μm was deposited on the ITO electrode. At this time, the absorbance is 10
It was 1-1.5 abs at 15 nm.

【0034】堆積したクロマトフォア膜に10〜100
0mMの濃度の緩衝液を適当量添加した後、膜を自然乾
燥した。なお、素子面積は1cm2 とした。クロマトフ
ォア膜を乾燥後、クロマトフォア膜の上にAuを対向電
極として真空蒸着した。さらにITO電極とAu対向電
極に取出しリード線を取り付けた。
10-100 on the deposited chromatophore membrane
After adding an appropriate amount of a buffer solution having a concentration of 0 mM, the membrane was naturally dried. The element area was 1 cm 2 . After drying the chromatophore film, Au was vacuum-deposited on the chromatophore film by using Au as a counter electrode. Furthermore, extraction lead wires were attached to the ITO electrode and the Au counter electrode.

【0035】このようにして形成した光電変換素子に対
して、中心波長850nmの近赤外光を発光ダイオード
の光源を用いて照射した。この時、光電変換素子から得
られた光電応答を図2(A)、(B)に示す。なお、図
2(C)に照射した近赤外光パルスの波形を示す。
The thus-formed photoelectric conversion element was irradiated with near infrared light having a central wavelength of 850 nm by using a light source of a light emitting diode. At this time, the photoelectric response obtained from the photoelectric conversion element is shown in FIGS. Note that FIG. 2C shows the waveform of the irradiated near-infrared light pulse.

【0036】近赤外光パルスを照射すると、光電変換素
子を開放状態にした時の光電応答電圧(光開放電圧)
は、急速に立ち上がり、次第に緩やかな増加に変化しな
がら、約3秒後には、約120mVの値となった。光照
射を停止すると、光開放電圧は徐々に減衰した。
When a near-infrared light pulse is emitted, the photoelectric response voltage (light open voltage) when the photoelectric conversion element is opened
Rapidly rises and gradually changes to a gradually increasing value, and after about 3 seconds, the value becomes about 120 mV. When the light irradiation was stopped, the light release voltage gradually decreased.

【0037】また、取出しリード線間を短絡した時に流
れる光短絡電流は、近赤外光パルス照射と同時に急速に
立ち上がり、150nA以上の値となった後、一旦急激
に減衰し、その後緩やかな減少に変化し、ほぼ90nA
程度の値を保った。なお、この電流値は、近赤外光パル
スが連続している間観察された。
The optical short circuit current flowing when the lead wires are short-circuited rapidly rises at the same time as the irradiation of the near infrared light pulse, reaches a value of 150 nA or more, then abruptly attenuates, and then gradually decreases. Changes to about 90nA
The value of the degree was kept. The current value was observed while the near infrared light pulse was continuous.

【0038】添加した燐酸緩衝剤の濃度を種々に変化さ
せ、図2に示すような近赤外光パルス照射3秒後の光開
放電圧と光短絡電流の光電応答を調べた。この結果を図
3に示す。横軸に添加燐酸緩衝剤の量を示し、縦軸に光
開放電圧(mV)と光短絡電流(nA/cm2 )を示
す。
The concentration of the added phosphate buffer was variously changed, and the photoelectric response of the optical open circuit voltage and the optical short circuit current 3 seconds after the near infrared light pulse irradiation as shown in FIG. 2 was examined. The result is shown in FIG. The horizontal axis shows the amount of the added phosphate buffer, and the vertical axis shows the photo-release voltage (mV) and photo-short-circuit current (nA / cm 2 ).

【0039】添加燐酸緩衝剤が増大すると共に光開放電
圧は急激に立ち上がり、次第に飽和傾向を示しながら、
約1000nanomol/cm2 程度でほぼ飽和値に
達した。添加燐酸緩衝液をさらに増加させると、光開放
電圧は低下し始める。
As the added phosphate buffer increases, the light release voltage rises sharply and gradually shows a saturation tendency.
The saturation value was almost reached at about 1000 nanomol / cm 2 . When the added phosphate buffer solution is further increased, the photo-opening voltage starts decreasing.

【0040】しかしながら、約2500nanomol
/cm2 ではまだ高い値を示している。光短絡電流は、
添加燐酸緩衝剤の濃度増加と共に、光開放電圧よりは緩
やかに立ち上がり、約1000nanomol/cm2
程度で飽和値となった。添加燐酸緩衝剤をさらに増大さ
せると、光短絡電流はわずかに減少した。
However, about 2500 nanomol
/ Cm 2 still shows a high value. The optical short circuit current is
As the concentration of the added phosphate buffer increases, it rises more slowly than the light open-circuit voltage, and about 1000 nanomol / cm 2
It became a saturation value at about the level. Further increase in the added phosphate buffer reduced the photoshort circuit current slightly.

【0041】例2 光電変換活性層の材料としては、例1と同様、ロドシュ
ードモナス・ビリディスのクロマトフォアを用いた。緩
衝液としては、水酸化ナトリウム(NaOH)でpHを
7.0に調整したPIPES(ピペラジン−N、N′−
ビス(2−エタンスルホン酸))を用いた。光電変換活
性層の形成および測定方法は例1と同様に行なった。添
加緩衝剤量と光照射後3秒後の光電応答を測定した結果
を図4に示す。
Example 2 As the material for the photoelectric conversion active layer, a chromatophore from Rhodopseudomonas viridis was used as in Example 1. As the buffer solution, PIPES (piperazine-N, N'-) adjusted to pH 7.0 with sodium hydroxide (NaOH) was used.
Bis (2-ethanesulfonic acid)) was used. The photoelectric conversion active layer was formed and measured in the same manner as in Example 1. The results of measuring the amount of added buffer and the photoelectric response 3 seconds after light irradiation are shown in FIG.

【0042】光開放電圧は、添加PIPES量が増加す
ると、直ちに増加を始め、添加PIPES量が250n
anomol/cm2 でほぼ飽和値の30mV程度に達
した。添加PIPES量をさらに増加させても光開放電
圧はほぼ同様の値を示した。光開放電圧の値は例1の場
合よりも小さい。
The light release voltage starts to increase immediately when the amount of added PIPES increases, and the amount of added PIPES becomes 250 n.
It reached a saturation value of about 30 mV at anomol / cm 2 . Even if the amount of added PIPES was further increased, the light release voltage showed almost the same value. The value of the light release voltage is smaller than that in the case of Example 1.

【0043】光短絡電流は、添加PIPES量が約25
0nanomol/cm2 まではほとんど増大せず、そ
の後急激に増大して750nanomol/cm2 でほ
ぼ飽和値の3.5nA/cm2 に達した。さらに、添加
PIPESの量を1000nanomol/cm2 まで
増大させても光短絡電流はほぼ同じ値を示した。光短絡
電流は例1の場合より小さく、低濃度ではほとんど生じ
ない。
The optical short circuit current is about 25 when the amount of added PIPES is about 25.
0nanomol / cm hardly increased to 2, reached 3.5nA / cm 2 of near saturation value 750nanomol / cm 2 and thereafter rapidly increases. Furthermore, even when the amount of added PIPES was increased to 1000 nanomol / cm 2, the photo-short circuit current showed almost the same value. The photo-short circuit current is smaller than that in Example 1 and hardly occurs at low concentration.

【0044】例3 光電変換活性層の物質としてロドシュードモナス・ビリ
ディスのクロマトフォアを用い、添加緩衝液として水酸
化ナトリウム(NaOH)でpHを7.8に調整したM
OPS(3−(N−モルホリノ)プロパンスルホン酸)
を用いた。光電変換活性層の形成および光電応答の測定
は例1と同様に行なった。
Example 3 Rhodopseudomonas viridis chromatophore was used as the material for the photoelectric conversion active layer, and the pH was adjusted to 7.8 with sodium hydroxide (NaOH) as an addition buffer.
OPS (3- (N-morpholino) propanesulfonic acid)
Was used. Formation of the photoelectric conversion active layer and measurement of photoelectric response were performed in the same manner as in Example 1.

【0045】図5に添加緩衝剤量と光照射後3秒後の光
電応答の値を示す。光開放電圧は、添加MOPS量が増
大すると直ちに急激に立ち上がり、250nanomo
l/cm2 でピーク値を描き、その後急激に低下した。
添加MOPSの濃度が約2000nanomol/cm
2 では光開放電圧はほぼ0となった。
FIG. 5 shows the amount of added buffer and the value of photoelectric response 3 seconds after light irradiation. The optical open-circuit voltage rises rapidly as soon as the amount of added MOPS increases, and it reaches 250 nanomo
The peak value was drawn at 1 / cm 2 , and then dropped sharply.
Concentration of added MOPS is about 2000 nanomol / cm
At 2 , the light release voltage was almost zero.

【0046】光短絡電流は、500nanomol/c
2 から立ち上がり、1000nanomol/cm2
でほぼ飽和値となり、2000nanomol/cm2
までほぼ同様な値を示した。光電応答の大きさは例2の
場合よりもさらに小さいが、従来得られていたものより
は大きい。
The optical short circuit current is 500 nanomol / c
It rises from m 2, 1000nanomol / cm 2
Reached a saturation value at 2000 nanomol / cm 2
Up to almost the same value. The magnitude of the photoelectric response is smaller than that in Example 2, but larger than that obtained in the related art.

【0047】例4 光電変換活性層の材料として、ロドシュードモナス・ビ
リディスから得たクロマトフォアを用い、添加緩衝液と
して塩酸(HCl)でpH7.9に調製したTris
(トリス(ヒドロキシメチル)アミノメタン)を用い
た。光電変換活性層の形成および光電応答の測定は例1
と同様に行なった。
Example 4 A chromatophore obtained from Rhodopseudomonas viridis was used as a material for the photoelectric conversion active layer, and Tris was adjusted to pH 7.9 with hydrochloric acid (HCl) as an addition buffer.
(Tris (hydroxymethyl) aminomethane) was used. The formation of the photoelectric conversion active layer and the measurement of the photoelectric response are described in Example 1.
It carried out similarly to.

【0048】図6に添加緩衝剤量と光照射後3秒後の光
電応答を示す。添加Tris−HClの濃度が増大する
と、光開放電圧は急激に立ち上がり、250nanom
ol/cm2 でほぼ12mV程度のピーク値を示した。
その後光開放電圧は低下し、2500nanomol/
cm2 ではほぼ0となった。
FIG. 6 shows the amount of added buffer and the photoelectric response 3 seconds after light irradiation. When the concentration of added Tris-HCl increases, the light open-circuit voltage rises sharply to reach 250 nanom.
A peak value of about 12 mV was shown at ol / cm 2 .
After that, the optical open-circuit voltage decreases and 2500 nanomol /
It became almost 0 in cm 2 .

【0049】光短絡電流は、250nanomol/c
2 程度から立ち上がり、500nanomol/cm
2 でほぼ1.5nA/cm2 程度のピーク値となり、1
250nanomol/cm2 までほぼ同様な値を示
し、その後減衰した。光電応答の大きさは例3の場合よ
りさらに小さかったが、それでも従来のものと較べれば
優るとも劣るものではない。
The optical short circuit current is 250 nanomol / c.
Standing up from about m 2 , 500 nanomol / cm
Becomes almost 1.5 nA / cm 2 about the peak value at 2, 1
It showed almost the same value up to 250 nanomol / cm 2 , and then decreased. The magnitude of the photoelectric response was smaller than that in Example 3, but it was neither superior nor inferior to the conventional one.

【0050】以上の例においては、まず電着法で光電変
換活性層を形成し、その光電変換活性層に緩衝剤を添加
した。電着法を用いる場合は、光電変換活性層形成時の
緩衝液濃度を高くすることができないため、光電変換活
性層形成後緩衝剤を添加することが好ましいが、他の膜
形成方法によればこのような2段階の形成方法を取る必
要は必ずしもない。たとえば、塗布法等を用いて光電変
換活性層を形成する場合は、始めから所定濃度の緩衝液
にクロマトフォアを分散させた溶液を用いることができ
る。
In the above examples, first, the photoelectric conversion active layer was formed by the electrodeposition method, and the buffer was added to the photoelectric conversion active layer. When the electrodeposition method is used, it is not possible to increase the buffer concentration during the formation of the photoelectric conversion active layer, so it is preferable to add a buffer after the formation of the photoelectric conversion active layer, but according to other film forming methods. It is not always necessary to adopt such a two-step formation method. For example, when the photoelectric conversion active layer is formed using a coating method or the like, a solution in which a chromatophore is dispersed in a buffer solution having a predetermined concentration can be used from the beginning.

【0051】例5 光電変換活性層の物質としてロドシュードモナス・ビリ
ディスから得たクロマトフォアを用い、緩衝液として燐
酸ナトリウム(pH7.0)を用いた。クロマトフォア
溶液の濃度は、波長1015nmの光学吸収密度(O
D)で100(セル長1cm)となるように調製した。
Example 5 A chromatophore obtained from Rhodopseudomonas viridis was used as the material for the photoelectric conversion active layer, and sodium phosphate (pH 7.0) was used as the buffer. The concentration of the chromatophore solution is the optical absorption density (O
D) was adjusted to 100 (cell length 1 cm).

【0052】なお、このクロマトフォア濃度は、蛋白濃
度に換算すると、約40mg/mlに相当する。なお、
この較正は、牛血清γグロブミンを標準とし、色素結合
法(ブラッドフォード法)を用いて測定した。
The chromatophore concentration corresponds to about 40 mg / ml when converted into protein concentration. In addition,
This calibration was performed using a dye binding method (Bradford method) with bovine serum γ-globumin as a standard.

【0053】このようにして準備したクロマトフォア懸
濁液を約20μl使用して、ガラス基板上のITO電極
上に光電変換活性層を塗布法によって形成した。膜厚は
約8μmとした。
About 20 μl of the chromatophore suspension thus prepared was used to form a photoelectric conversion active layer on the ITO electrode on the glass substrate by a coating method. The film thickness was about 8 μm.

【0054】緩衝液の燐酸ナトリウム濃度を5〜80m
Mに変化させた時の緩衝液濃度に対する光電応答の変化
を図7に示す。光開放電圧は、燐酸緩衝液の濃度がある
程度大きくなると、急激に大きな値を示し、その後緩衝
液濃度によらずほぼ一定値を示した。光短絡電流は、燐
酸緩衝液の濃度が約10mM程度まで比較的緩やかに立
ち上がり、その後20mMまでより急激に立ち上がり、
再び増加率を弱めて80mMまで増大し続けるようであ
る。
The sodium phosphate concentration of the buffer solution is 5 to 80 m.
FIG. 7 shows the change in photoelectric response with respect to the buffer solution concentration when changed to M. The light open-circuit voltage suddenly showed a large value when the concentration of the phosphate buffer solution increased to a certain degree, and thereafter showed a substantially constant value regardless of the buffer solution concentration. The photoshort-circuit current rises relatively slowly until the concentration of the phosphate buffer is about 10 mM, and then rises more rapidly to 20 mM.
It seems that the rate of increase is weakened again and it continues to increase to 80 mM.

【0055】なお、光電変換活性層を自然乾燥させた場
合、燐酸緩衝液濃度が80mM以上では光電変換活性層
に緩衝剤が析出し、膜がボロボロになってしまった。こ
のため、濃度80mMより上のデータは得られていない
が、析出を抑えることにより、より高濃度でも光電応答
は得られるであろう。
When the photoelectric conversion active layer was naturally dried, when the phosphate buffer solution concentration was 80 mM or more, the buffer agent was deposited on the photoelectric conversion active layer, and the film was broken. Therefore, although data above a concentration of 80 mM were not obtained, by suppressing the precipitation, a photoelectric response would be obtained even at a higher concentration.

【0056】なお、蛋白濃度は約40mg/mlを用い
たが、約4〜400mg/mlの範囲で用いることがで
きると考えられる。また、燐酸緩衝液の濃度は乾燥方法
等を工夫することにより、150mM程度まで利用可能
と思われる。
Although a protein concentration of about 40 mg / ml was used, it is believed that it can be used within a range of about 4-400 mg / ml. Also, the concentration of the phosphate buffer can be used up to about 150 mM by devising the drying method and the like.

【0057】ただし、燐酸緩衝液の濃度が10mM以下
では光短絡電流の値が低いため、10〜150mMとす
るのが好ましい。さらに好ましくは、蛋白濃度は20〜
150mg/ml、燐酸緩衝液濃度は20〜80mMと
するのがよい。
However, when the concentration of the phosphate buffer solution is 10 mM or less, the value of the photo-short-circuit current is low, so that it is preferably 10 to 150 mM. More preferably, the protein concentration is 20-
It is preferable that the concentration is 150 mg / ml and the phosphate buffer concentration is 20 to 80 mM.

【0058】なお、比較のために説明すると、従来の光
電変換活性層の製造方法においては、緩衝液としてTr
is−HClを使用し、緩衝液濃度は十mM以下程度で
あった。
For comparison, in the conventional method for manufacturing a photoelectric conversion active layer, Tr is used as a buffer solution.
The buffer concentration was about 10 mM or less using is-HCl.

【0059】図2〜7の光電応答を見ると、緩衝液とし
ては特に燐酸塩を用いることが好ましいことが判る。次
にPIPESが好ましい。なお、上述の例において、p
HをNaOH、HClで調整したが、pHを調整する材
料はこれらに限るものではない。また、上述の例に示し
たように、同一の光電変換物質を用いても得られる素子
の電流特性、電圧特性は添加する緩衝液の種類、pH、
添加濃度により異なる。これらのパラメータを最適に選
ぶことにより、最適の特性を得ることができる。
From the photoelectric response of FIGS. 2 to 7, it can be seen that it is particularly preferable to use phosphate as the buffer solution. Then PIPES is preferred. In the above example, p
Although H was adjusted with NaOH and HCl, the material for adjusting the pH is not limited to these. Further, as shown in the above-mentioned example, the current characteristics and voltage characteristics of the device obtained by using the same photoelectric conversion substance are the kind of buffer solution to be added, pH,
Depends on the added concentration. Optimal characteristics can be obtained by optimally selecting these parameters.

【0060】従来の製造方法、特に電着法による光電変
換活性層の光電応答に対し、上述の例によれば光開放電
圧で約20倍、光短絡電流で約100倍の大きな光電応
答を得ることもできる。
According to the above-mentioned example, a large photoelectric response of about 20 times at the open circuit voltage and about 100 times at the optical short circuit current is obtained as compared with the photoelectric response of the photoelectric conversion active layer by the conventional manufacturing method, especially the electrodeposition method. You can also

【0061】緩衝液として燐酸塩またはPIPESを用
いる場合、添加量は250〜2500nanomol/
cm2 とすることが好ましい。また、緩衝液としてMO
PSまたはTrisを用いる場合は、緩衝液は50〜2
500nanomol/cm 2 とすることが好ましい。
Use phosphate or PIPES as buffer
If it is present, the addition amount is 250 to 2500 nanomol /
cm2It is preferable that Also, as a buffer solution, MO
When using PS or Tris, the buffer should be 50-2.
500 nanomol / cm 2It is preferable that

【0062】以上説明したように、本発明の実施例によ
る光電変換素子の製造方法によれば、従来得られた光電
応答をはるかに上回る優れた光電応答を得ることもでき
る。
As described above, according to the method for manufacturing the photoelectric conversion element of the embodiment of the present invention, it is possible to obtain an excellent photoelectric response far exceeding the photoelectric response obtained in the related art.

【0063】[0063]

【発明の効果】以上説明したように、本発明によれば、
光電変換機能を有する生体高分子複合体を用いて、大き
な光電応答を示す光電変換素子を製造することができ
る。
As described above, according to the present invention,
The biopolymer composite having a photoelectric conversion function can be used to manufacture a photoelectric conversion element exhibiting a large photoelectric response.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によって製造すべき光電変換素
子の構造を概略的に示す断面図である。
FIG. 1 is a sectional view schematically showing the structure of a photoelectric conversion element to be manufactured according to an embodiment of the present invention.

【図2】例1によって製造した光電変換素子の光電応答
を示すグラフである。
FIG. 2 is a graph showing the photoelectric response of the photoelectric conversion element manufactured according to Example 1.

【図3】例1によって製造した光電変換素子の光電応答
を燐酸緩衝剤の添加量の関数として示したグラフであ
る。
FIG. 3 is a graph showing the photoelectric response of the photoelectric conversion device manufactured in Example 1 as a function of the amount of phosphate buffer added.

【図4】例2によって製造した光電変換素子の光電応答
をPIPESの添加量の関数として示したグラフであ
る。
FIG. 4 is a graph showing the photoelectric response of the photoelectric conversion device manufactured in Example 2 as a function of the amount of PIPES added.

【図5】例3にしたがって製造した光電変換素子の光電
応答をMOPSの添加量の関数として示したグラフであ
る。
FIG. 5 is a graph showing the photoelectric response of a photoelectric conversion element manufactured according to Example 3 as a function of the amount of MOPS added.

【図6】例4にしたがって製造した光電変換素子の光電
応答をTris−HClの添加量の関数として示したグ
ラフである。
FIG. 6 is a graph showing the photoelectric response of a photoelectric conversion element manufactured according to Example 4 as a function of the amount of Tris-HCl added.

【図7】例5にしたがって製造した光電変換素子の光電
応答を燐酸緩衝液濃度の関数として示したグラフであ
る。
FIG. 7 is a graph showing the photoelectric response of a photoelectric conversion element manufactured according to Example 5 as a function of phosphate buffer solution concentration.

【符号の説明】[Explanation of symbols]

1 ITO電極 2 光電変換活性層 3 Au対向電極 4 取出しリード線 10 ガラス基板 1 ITO electrode 2 Photoelectric conversion active layer 3 Au counter electrode 4 Extraction lead wire 10 Glass substrate

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光電変換機能を有する生体高分子複合体
を用いて光電変換活性層を形成する工程と、 光電変換活性層に緩衝液を添加して所定の緩衝剤濃度に
する工程とを含む光電変換素子の製造方法。
1. A step of forming a photoelectric conversion active layer using a biopolymer composite having a photoelectric conversion function, and a step of adding a buffer solution to the photoelectric conversion active layer to obtain a predetermined buffer agent concentration. Method for manufacturing photoelectric conversion element.
【請求項2】 前記緩衝液がpH4〜10の緩衝能領域
を有し、前記所定の緩衝剤濃度が50〜5000nan
omol/cm2 である請求項1記載の光電変換素子の
製造方法。
2. The buffer solution has a buffer capacity region of pH 4 to 10, and the predetermined buffer agent concentration is 50 to 5000 nan.
The method for producing a photoelectric conversion element according to claim 1, wherein the photoelectric conversion element has an omol / cm 2 .
【請求項3】 前記光電変換活性層を形成する工程が、
電着ないし塗布による膜形成を含む請求項1ないし2記
載の光電変換素子の製造方法。
3. The step of forming the photoelectric conversion active layer,
The method for manufacturing a photoelectric conversion element according to claim 1, which comprises film formation by electrodeposition or coating.
【請求項4】 前記緩衝剤が燐酸塩ないしピペラジン−
N、N′−ビス(2−エタンスルホン酸)であり、前記
所定の緩衝剤濃度が250〜2500nanomol/
cm2 である請求項1〜3のいずれかに記載の光電変換
素子の製造方法。
4. The buffer is phosphate or piperazine.
N, N′-bis (2-ethanesulfonic acid), and the predetermined buffer concentration is 250 to 2500 nanomol /
The method for producing a photoelectric conversion element according to claim 1, wherein the photoelectric conversion element has a size of cm 2 .
【請求項5】前記緩衝剤が3−(N−モルホリノ)プロ
パンスルホン酸ないしトリス(ヒドロキシメチル)アミ
ノメタンであり、前記所定の緩衝剤濃度が50〜250
0nanomol/cm2 である請求項1〜3のいずれ
かに記載の光電変換素子の製造方法。
5. The buffering agent is 3- (N-morpholino) propanesulfonic acid or tris (hydroxymethyl) aminomethane, and the predetermined buffering agent concentration is 50 to 250.
It is 0 nanomol / cm < 2 >, The manufacturing method of the photoelectric conversion element in any one of Claims 1-3.
【請求項6】 クロマトフォアを燐酸塩緩衝液中に分散
させ、蛋白濃度4〜400mg/ml、燐酸濃度10〜
150mMとし、基板上に分散クロマトフォアの層を形
成する工程と、 前記分散クロマトフォアの層を乾燥させる工程とを含む
光電変換素子の製造方法。
6. The chromatophore is dispersed in a phosphate buffer solution to give a protein concentration of 4 to 400 mg / ml and a phosphoric acid concentration of 10 to 10.
A method for producing a photoelectric conversion element, comprising: a step of forming a dispersion chromatophore layer on a substrate at 150 mM; and a step of drying the dispersion chromatophore layer.
【請求項7】 前記蛋白濃度が20〜150mg/m
l、燐酸塩濃度が20〜80mMである請求項6記載の
光電変換素子の製造方法。
7. The protein concentration is 20 to 150 mg / m 2.
7. The method for producing a photoelectric conversion element according to claim 6, wherein the concentration of phosphate is 20 to 80 mM.
JP4141747A 1992-06-02 1992-06-02 Method for manufacturing photoelectric conversion element Expired - Fee Related JP2634730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4141747A JP2634730B2 (en) 1992-06-02 1992-06-02 Method for manufacturing photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4141747A JP2634730B2 (en) 1992-06-02 1992-06-02 Method for manufacturing photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH05347423A true JPH05347423A (en) 1993-12-27
JP2634730B2 JP2634730B2 (en) 1997-07-30

Family

ID=15299263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4141747A Expired - Fee Related JP2634730B2 (en) 1992-06-02 1992-06-02 Method for manufacturing photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2634730B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352044A (en) * 2005-06-20 2006-12-28 Matsushita Electric Works Ltd Functional organic material element and organic solar cell
JP2007220445A (en) * 2006-02-16 2007-08-30 Sony Corp Photoelectric conversion element, semiconductor device, and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061659A (en) * 1983-08-22 1985-04-09 オーソ・ダイアグノステイツク・システムズ・インコーポレーテツド Dissolving reagent for fluid type blood corpuscle measuring method containing leukocyte protectant
JPH03119997A (en) * 1989-09-30 1991-05-22 Kyowa Medetsukusu Kk Method for measuring ingredient
JPH03280897A (en) * 1990-03-30 1991-12-11 Mitsubishi Petrochem Co Ltd Method for measuring hydrogen peroxide
JPH04125425A (en) * 1990-09-18 1992-04-24 Stanley Electric Co Ltd Manufacture of photoelectric conversion member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061659A (en) * 1983-08-22 1985-04-09 オーソ・ダイアグノステイツク・システムズ・インコーポレーテツド Dissolving reagent for fluid type blood corpuscle measuring method containing leukocyte protectant
JPH03119997A (en) * 1989-09-30 1991-05-22 Kyowa Medetsukusu Kk Method for measuring ingredient
JPH03280897A (en) * 1990-03-30 1991-12-11 Mitsubishi Petrochem Co Ltd Method for measuring hydrogen peroxide
JPH04125425A (en) * 1990-09-18 1992-04-24 Stanley Electric Co Ltd Manufacture of photoelectric conversion member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352044A (en) * 2005-06-20 2006-12-28 Matsushita Electric Works Ltd Functional organic material element and organic solar cell
JP2007220445A (en) * 2006-02-16 2007-08-30 Sony Corp Photoelectric conversion element, semiconductor device, and electronic equipment

Also Published As

Publication number Publication date
JP2634730B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
Zhang Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles
US5185208A (en) Functional devices comprising a charge transfer complex layer
O'regan et al. Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation
Brelle et al. Synthesis and ultrafast study of cysteine-and glutathione-capped Ag2S semiconductor colloidal nanoparticles
US5009958A (en) Functional devices comprising a charge transfer complex layer
DE602005005868T2 (en) Production method for a dye solar cell
Horn et al. Photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes
Ottova-Leitmannova et al. Bilayer lipid membranes: An experimental system for biomolecular electronic devices development
JPH11295145A (en) Visible light responsive electrode
US4294520A (en) Electrochromic display device
Wang et al. Molecular mechanism of the differential photoelectric response of bacteriorhodopsin
CN106601909A (en) Porphyrin memristor and preparation method thereof
JPH05347423A (en) Manufacture of optoelectric transducer
DE3118470C2 (en)
Liu et al. Sensitive and prolonged intracellular electrophysiological recording by three‐dimensional nanodensity regulation
ITMI20081844A1 (en) &#34;PHOTOELECTROCHEMICAL SOLAR CELL INCLUDING ANTICHIANINIC AND BETALAINIC SENSITIZING DYES OF VEGETABLE OR SYNTHETIC ORIGIN, OR THEIR MIXTURES&#34;
Bakkers et al. Time resolved photoelectrochemistry with size-quantized PbS adsorbed on gold
JP2677298B2 (en) Photoelectric conversion device using biopolymer composite
JPS6033255B2 (en) electrochromic display device
Herrmann et al. The effect of osmotic pressure of aqueous PEG solutions on red blood cells
JPH0797044B2 (en) Photoelectric conversion element and method for manufacturing the same
Ajiki et al. Light-induced electrical response of chromatophore film in a semi-wet photocell with an agar layer containing an electron mediator
Terasaki et al. Fabrication of a photoelectrochemical cell using a self-assembled monolayer of tris (2, 2'-bipyrisine) ruthenium (II)-viologen linked thiol on multistructured gold nanoparticles
CN110467357B (en) Tungsten oxide film with horn-shaped pore structure and preparation method thereof
JPH065730B2 (en) Method for producing photoelectric response element using functional protein complex

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970225

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370