JPH0797044B2 - Photoelectric conversion element and method for manufacturing the same - Google Patents

Photoelectric conversion element and method for manufacturing the same

Info

Publication number
JPH0797044B2
JPH0797044B2 JP3111741A JP11174191A JPH0797044B2 JP H0797044 B2 JPH0797044 B2 JP H0797044B2 JP 3111741 A JP3111741 A JP 3111741A JP 11174191 A JP11174191 A JP 11174191A JP H0797044 B2 JPH0797044 B2 JP H0797044B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conductive polymer
conversion element
electrode
photosynthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3111741A
Other languages
Japanese (ja)
Other versions
JPH07120305A (en
Inventor
利和 眞島
淳 三宅
正之 原
正美 粂井
弘明 杉野
秀一 安食
英樹 豊玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP3111741A priority Critical patent/JPH0797044B2/en
Publication of JPH07120305A publication Critical patent/JPH07120305A/en
Publication of JPH0797044B2 publication Critical patent/JPH0797044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光電変換機能を有する
生体高分子複合体を用いた光電変換素子およびその作製
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion element using a biopolymer composite having a photoelectric conversion function and a method for producing the same.

【0002】[0002]

【従来の技術】光合成細菌は、光合成器官を内膜構造と
して持つ。光合成器官は脂質、光合成ユニット、酸化還
元酵素等を含み、その断片として得られる光合成顆粒は
クロマトフォア、スフェロプラスト小胞のような蛋白
質、脂質等からなる膜から構成されている閉じた小胞で
ある。この種の膜は光電変換反応を行なう光合成反応中
心蛋白質複合体を持ち、光刺激によって膜を挾んで電位
差を生じる。
2. Description of the Related Art Photosynthetic bacteria have a photosynthetic organ as an inner membrane structure. Photosynthetic organs contain lipids, photosynthetic units, oxidoreductases, etc., and the photosynthetic granules obtained as fragments are closed vesicles composed of a membrane consisting of chromatophores, proteins such as spheroplast vesicles, and lipids. Is. This kind of membrane has a photosynthetic reaction center protein complex that carries out a photoelectric conversion reaction, and it sandwiches the membrane by photostimulation to generate a potential difference.

【0003】菌体膜を超音波処理等の方法で破砕するこ
とによってクロマトフォア等の膜断片が得られる。クロ
マトフォア等の光合成膜断片や光反応ユニット、反応中
心といった光合成蛋白質(光合成顆粒と総称する)が、
光刺激を受けて電荷分離および電子伝達を起こすことを
利用した光電変換素子が考えられている(特開平1−1
10224号)。
A membrane fragment such as a chromatophore is obtained by crushing the cell membrane by a method such as ultrasonic treatment. Photosynthetic proteins (collectively called photosynthetic granules) such as photosynthetic membrane fragments such as chromatophores, photoreactive units, and reaction centers
A photoelectric conversion element utilizing the effect of causing charge separation and electron transfer upon light stimulation has been considered (Japanese Patent Laid-Open No. 1-11).
10224).

【0004】この光電変換素子は図2に示すように、I
TO(インジウム−錫酸化物)等の透明電極3を形成し
たガラス基板4上に光電変換活性層1となる光合成顆粒
の乾燥固化膜を設け、さらにAu蒸着等により上部対向
電極2を形成している。各電極2、3から銀ペースト5
を介してリード線6を導出している。
As shown in FIG. 2, this photoelectric conversion element has an I
On the glass substrate 4 on which the transparent electrode 3 such as TO (indium-tin oxide) is formed, the dried and solidified film of the photosynthetic granules to be the photoelectric conversion active layer 1 is provided, and the upper counter electrode 2 is further formed by Au vapor deposition or the like. There is. Silver paste 5 from each electrode 2 and 3
The lead wire 6 is led out via.

【0005】この素子に透明電極3側から光を照射する
ことによって電力が得られる。
Electric power can be obtained by irradiating this element with light from the transparent electrode 3 side.

【0006】[0006]

【発明が解決しようとする課題】ところが、光電変換機
能を有する生体高分子複合体である光合成顆粒を利用し
た従来技術の光電変換素子の示す光電応答特性は過度的
現象であり、光照射に伴う定常的な電力を得ることはで
ききなかった。これは、従来の素子においては、光合成
顆粒の機能性蛋白質複合体の方向性が無秩序であるため
に、出力として得られる光電応答は、無秩序な方向性を
持った反応の総和における両電極間での微小な差に起因
するものや、電極間での電子移動の仕事関数の差に依存
する微弱な応答にすぎないためと考えられる。
However, the photoelectric response characteristics of the prior art photoelectric conversion device using photosynthetic granules, which are biopolymer composites having a photoelectric conversion function, are an excessive phenomenon and are accompanied by light irradiation. It was not possible to obtain steady power. This is because in the conventional device, the direction of the functional protein complex of the photosynthetic granules is disordered, so that the photoelectric response obtained as the output is between both electrodes in the sum of reactions having disordered directionality. It is considered that this is due only to a minute difference due to a small difference in the above or a weak response depending on the difference in the work function of the electron transfer between the electrodes.

【0007】従って、観察される光電応答の出力は微小
なものであった。このため、有力な応答出力の向上が望
まれていた。
Therefore, the observed photoelectric response output was very small. Therefore, it has been desired to improve the effective response output.

【0008】本発明の目的は、光電変換機能を有する生
体高分子複合体を用いた光電変換素子の簡便かつ有力な
応答出力の向上方法を提供しようとするものである。
An object of the present invention is to provide a simple and effective method for improving the response output of a photoelectric conversion element using a biopolymer composite having a photoelectric conversion function.

【0009】[0009]

【課題を解決するための手段】本発明の光電変換素子
は、少なくとも一方の電極が光を十分透過する一対の電
極間に、光電変換機能を有する生体高分子複合体の乾燥
固化膜からなる活性層と導電性高分子の膜からなる媒介
層とを積層することを特徴とする。
The photoelectric conversion element of the present invention comprises an active material composed of a dried and solidified film of a biopolymer composite having a photoelectric conversion function, between a pair of electrodes in which at least one electrode sufficiently transmits light. It is characterized in that a layer and an intermediate layer made of a conductive polymer film are laminated.

【0010】[0010]

【作用】生体高分子複合体を利用した光電変換素子を利
用するためには、応答出力の向上が望まれていた。この
目的を達成するため、主として2つの観点からの素子特
性向上が考えられる。
In order to use the photoelectric conversion element using the biopolymer composite, improvement in response output has been desired. In order to achieve this object, improvement of device characteristics can be considered mainly from two viewpoints.

【0011】ひとつは、光電変換機能に極性を有する生
体高分子複合体の配向を秩序正しく制御することで、電
子の流れの方向付けをするものである。他のひとつは、
素子構造の面から、電子授受の媒介層を形成することで
電子の流れを制御するものである。
One is to orient the flow of electrons by orderly controlling the orientation of a biopolymer complex having a polar photoelectric conversion function. The other one is
From the aspect of the device structure, an electron transfer medium is formed to control the flow of electrons.

【0012】本発明は、後者の観点から光電変換素子の
層構造に着目した。電極で挾まれた光電変換活性層とい
う素子構造に、さらに電子授受の媒介層として導電性高
分子の膜を挿入することで従来を上回る素子出力を得る
ことができた。
The present invention focuses on the layer structure of the photoelectric conversion element from the latter viewpoint. By further inserting a conductive polymer film as an electron transfer medium layer into the device structure of the photoelectric conversion active layer sandwiched by the electrodes, it was possible to obtain a device output higher than conventional ones.

【0013】[0013]

【実施例】以下に本発明の実施例による光電変換素子を
図1を参照して詳述する。
EXAMPLE A photoelectric conversion element according to an example of the present invention will be described in detail below with reference to FIG.

【0014】まず、ガラス基板4上に透明電極3を形成
する。透明電極としては、インジウム錫酸化物(IT
O)、二酸化錫(SnO2 )、酸化亜鉛(ZnO)等の
半導体、あるいは半透明の蒸着金薄膜を用いるのが好ま
しい。
First, the transparent electrode 3 is formed on the glass substrate 4. As a transparent electrode, indium tin oxide (IT
It is preferable to use a semiconductor such as O), tin dioxide (SnO2), zinc oxide (ZnO), or a semitransparent evaporated gold thin film.

【0015】ついで、この透明電極3上に導電性高分子
の膜からなる媒介層7を形成する。導電性高分子として
は、ポリチオフェンやポリピロール等の酸化重合型導電
性高分子およびそれらの誘導体が好ましい。導電性高分
子膜の形成法としては、モノマーから電解重合法や触媒
重合法により電極上に直接高分子膜を折出させる方法、
あるいは予め調製しておいた高分子溶液を電極上にハケ
塗り・浸漬・スピンコート等の方法で塗布する方法があ
る。
Next, an intermediate layer 7 made of a conductive polymer film is formed on the transparent electrode 3. The conductive polymer is preferably an oxidative polymerization type conductive polymer such as polythiophene or polypyrrole and derivatives thereof. As a method for forming a conductive polymer film, a method in which a polymer film is directly protruded from an monomer by an electrolytic polymerization method or a catalytic polymerization method,
Alternatively, there is a method of applying a polymer solution prepared in advance onto the electrode by a method such as brush coating, dipping, or spin coating.

【0016】ついで、形成された導電性高分子膜7上に
光電変換活性層1を形成する。光電変換活性層を構成す
る生体高分子複合体としては、光合成細菌、好ましくは
紅色光合成細菌由来のクロマトフォア、光合成ユニット
(PRU)、反応中心(RC)等の光合成顆粒や、他の
光合成生物由来の光合成蛋白質複合体等が挙げられる。
形成法には、ハケ塗・スピンコート・印刷等の手法があ
る。活性層を形成した後、自然乾燥、減圧乾燥等の手法
により乾燥し、固化膜とする。
Next, the photoelectric conversion active layer 1 is formed on the formed conductive polymer film 7. Examples of the biopolymer complex that constitutes the photoelectric conversion active layer include photosynthetic bacteria, preferably chromatophores derived from red photosynthetic bacteria, photosynthetic units (PRU), photosynthetic granules such as reaction centers (RC), and other photosynthetic organisms. And the photosynthetic protein complex.
As the forming method, there are methods such as brush coating, spin coating, and printing. After forming the active layer, it is dried by a technique such as natural drying or vacuum drying to obtain a solidified film.

【0017】ついで、上部対向電極2を形成し、素子を
完成させる。上部対向電極の形成法としては、たとえば
金等の電極材を真空蒸着法等の手法で積層する。信号導
出のためのリード線6は両電極に銀ペースト5等で結線
する。
Next, the upper counter electrode 2 is formed to complete the device. As a method of forming the upper counter electrode, for example, an electrode material such as gold is laminated by a method such as a vacuum deposition method. The lead wire 6 for deriving a signal is connected to both electrodes with silver paste 5 or the like.

【0018】なお、透明電極3と、光電変換活性層1お
よび導電性高分子からなる媒介層7との相対的位置関係
は逆転してもよい。
The relative positional relationship between the transparent electrode 3 and the photoelectric conversion active layer 1 and the mediating layer 7 made of a conductive polymer may be reversed.

【0019】このようにして調製された導電性高分子膜
層を介する光電変換素子の透明電極側から太陽光・スト
ロボ・LED等の光を照射すると、光電応答出力を得る
ことができる。
When light of sunlight, strobe light, LED or the like is irradiated from the transparent electrode side of the photoelectric conversion element through the conductive polymer film layer thus prepared, photoelectric response output can be obtained.

【0020】以下、具体例について説明する。具体例 (1).光合成細菌の培養とクロマトフォアの調製 紅色光合成細菌ロドシュードモナス・ビリディス(Rhod
opseudomonas viridis、ATCC 19567)を30
℃、光照射、嫌気条件にて培養した。回収した菌体を緩
衝溶液に懸濁し、超音波を用いて菌体膜を破砕した。次
に分画遠心分離によりクロマトフォアを調製した。クロ
マトフォアは緩衝溶液にホモジナイズして均一に懸濁さ
せた。
A specific example will be described below. Specific example (1). Cultivation of photosynthetic bacteria and preparation of chromatophores Red photosynthetic bacterium Rhodesudomonas viridis ( Rhod
opseudomonas viridis, ATCC 19567) 30
The cells were cultured at ℃, light irradiation and anaerobic conditions. The collected bacterial cells were suspended in a buffer solution, and the bacterial cell membrane was disrupted using ultrasonic waves. The chromatophore was then prepared by differential centrifugation. The chromatophore was homogenized in a buffer solution and uniformly suspended.

【0021】(2).導電性高分子層の形成 導電性高分子層の形成は、図3に示すような電解重合装
置を用いて、溶液中での電解重合法により行なった。高
純度のアセトニトリルに55mMのチオフェン(あるい
はピロール)および支持電解質として55mMの過塩素
酸テトラエチルアンモニウムを溶かした溶液を調製し
た。減圧脱気後、電解槽中に移し、N2 入口11からN
2 を流入し、N2 出口12から排出して約30分間N2
バブリングを行なった。このようにして電解質溶液10
を準備した。その後、白金(Pt)電極8とITO電極
を形成した素子基板9を溶液中に浸漬して、電解重合を
行なった。5V、約15秒間の定電圧印加により、正極
のITO基板上にポリチオフェン(あるいはポリピロー
ル)が形成された。
(2). Formation of conductive polymer layer The conductive polymer layer was formed by an electrolytic polymerization method in a solution using an electrolytic polymerization apparatus as shown in FIG. A solution was prepared by dissolving 55 mM thiophene (or pyrrole) in high-purity acetonitrile and 55 mM tetraethylammonium perchlorate as a supporting electrolyte. After degassing under reduced pressure, transfer to the electrolytic cell, and from the N2 inlet 11 to N
2 flow in, discharge from N2 outlet 12, N2 for about 30 minutes
Bubbling was performed. In this way, the electrolyte solution 10
Prepared. Then, the element substrate 9 having the platinum (Pt) electrode 8 and the ITO electrode formed thereon was immersed in the solution to carry out electrolytic polymerization. By applying a constant voltage of 5 V for about 15 seconds, polythiophene (or polypyrrole) was formed on the positive electrode ITO substrate.

【0022】(3).光電変換活性層の形成 (1) の方法で調製したクロマトフォアを用いて、(2) で
形成した導電性高分子層に重ねてクロマトフォア層を形
成する。まず、クロマトフォアの持つ1020nmの主
要吸収ピークに対し光学密度OD=100になるように
クロマトフォア濃度を調製した。調製した溶液を導電性
高分子層の上に均一に塗布し、冷暗所で蒸発乾燥させ
た。乾燥後、さらに同じ操作を2回繰り返してクロマト
フォア層を完成した。
(3). Formation of photoelectric conversion active layer Using the chromatophore prepared by the method of (1), a chromatophore layer is formed by superposing it on the conductive polymer layer formed in (2). First, the chromatophore concentration was adjusted so that the optical density OD = 100 with respect to the main absorption peak of the chromatophore at 1020 nm. The prepared solution was uniformly applied on the conductive polymer layer, and evaporated and dried in a cool dark place. After drying, the same operation was repeated twice to complete the chromatophore layer.

【0023】(4).上部対向電極の形成 (3) で形成したクロマトフォア層の上に上部対向電極2
を形成し、素子を完成した。上部対向電極は真空蒸着を
用いて金の薄膜電極をクロマトフォア層上に形成した。
(4). Formation of upper counter electrode The upper counter electrode 2 is formed on the chromatophore layer formed in (3).
Was formed to complete the device. As the upper counter electrode, a gold thin film electrode was formed on the chromatophore layer by using vacuum deposition.

【0024】その後、信号導出のためのリード線6を両
電極に銀ペースト5で結線した。このように、紅色光合
成細菌のクロマトフォアを用いた光電変換素子で、IT
O電極と光電変換活性層の間に新たに導電性高分子層を
設けた場合、従来光照射時間に対して一過的であった電
流応答が改善された。
After that, a lead wire 6 for deriving a signal was connected to both electrodes with a silver paste 5. Thus, the photoelectric conversion element using the chromatophore of red photosynthetic bacteria
When a conductive polymer layer was newly provided between the O electrode and the photoelectric conversion active layer, the current response, which was transient with respect to the conventional light irradiation time, was improved.

【0025】すなわち、本素子においては図4に示すよ
うに、初期の大きな過度的応答に引き続いて光照射に伴
って定常電流を示す成分が観察された。導電性高分子が
クロマトフォアとITO電極との間で電子移動のプロモ
ーターあるいはメディエーターとして働き、電極までの
電子移動をよりスムーズにしているためと考えられる。
That is, in this device, as shown in FIG. 4, a component showing a steady current was observed following light irradiation, following a large initial transient response. It is considered that the conductive polymer acts as a promoter or a mediator of electron transfer between the chromatophore and the ITO electrode to make the electron transfer to the electrode smoother.

【0026】また、同じ光電変換素子を用いて電圧を測
定したところ、図5に示すように、従来よりも大きな電
圧出力が得られた。これは上記と同様の理由でクロマト
フォアとITO電極との間の電子授受がスムーズに行な
われ、その結果、発生したチャージの流れが方向性を得
たためと考えられる。
When the voltage was measured using the same photoelectric conversion element, as shown in FIG. 5, a larger voltage output than the conventional one was obtained. It is considered that this is because the electrons were smoothly transferred between the chromatophore and the ITO electrode due to the same reason as described above, and as a result, the flow of the generated charge was directional.

【0027】さらに、本例の2つの素子を、直列および
並列に接続した場合、電圧および電流応答の定常値がそ
れぞれ倍増した。この結果は、素子が電池としての特性
を具備していることを示した。
Furthermore, when the two elements of this example were connected in series and in parallel, the steady-state values of the voltage and current response were each doubled. This result showed that the device had the characteristics as a battery.

【0028】以上より、本発明の光電変換素子は光セン
サー・太陽電池等の素子として極めて有用である。
From the above, the photoelectric conversion element of the present invention is extremely useful as an element such as an optical sensor or a solar cell.

【0029】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。たとえば、
種々の変更、改良、組み合わせ等が可能なことは当業者
に自明であろう。
The present invention has been described above with reference to the embodiments.
The present invention is not limited to these. For example,
It will be apparent to those skilled in the art that various changes, improvements, combinations and the like can be made.

【0030】[0030]

【発明の効果】新たな構成を有する生体高分子複合体利
用の光電変換素子によって従来より優れた特性が提供さ
れる。
EFFECTS OF THE INVENTION A photoelectric conversion element using a biopolymer composite having a new structure provides characteristics superior to conventional ones.

【0031】過渡的応答のみでなく、定常的な光電応答
を得ることができる。
Not only a transient response but also a steady photoelectric response can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光電変換素子の概略断面図であ
る。
FIG. 1 is a schematic sectional view of a photoelectric conversion element according to the present invention.

【図2】従来の光電変換素子の概略断面図である。FIG. 2 is a schematic sectional view of a conventional photoelectric conversion element.

【図3】導電性高分子の電解重合装置を示す図である。FIG. 3 is a diagram showing an electropolymerization apparatus for a conductive polymer.

【図4】本発明の光電変換素子の光電応答(電流)を示
す図である。
FIG. 4 is a diagram showing a photoelectric response (current) of the photoelectric conversion element of the present invention.

【図5】本発明の光電変換素子の光電応答(電圧)を示
す図である。
FIG. 5 is a diagram showing a photoelectric response (voltage) of the photoelectric conversion element of the present invention.

【符号の説明】[Explanation of symbols]

1 光電変換活性層(光合成顆粒の乾燥固化膜) 2 上部対向電極(Au膜) 3 透明電極(ITO電極) 4 ガラス基板 5 銀ペースト 6 リード線 7 媒介層(導電性高分子膜) 8 Pt電極 9 素子基板 10 電解質溶液 11 N2 入口 12 N2 出口 1 Photoelectric conversion active layer (dried and solidified film of photosynthetic granules) 2 Upper counter electrode (Au film) 3 Transparent electrode (ITO electrode) 4 Glass substrate 5 Silver paste 6 Lead wire 7 Mediation layer (conductive polymer film) 8 Pt electrode 9 Element substrate 10 Electrolyte solution 11 N2 inlet 12 N2 outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 正之 茨城県つくば市東1丁目1番3 工業技術 院微生物工業技術研究所内 (72)発明者 粂井 正美 茨城県つくば市東光台5丁目9番地の5 スタンレー電気株式会社 筑波研究所内 (72)発明者 杉野 弘明 茨城県つくば市東光台5丁目9番地の5 スタンレー電気株式会社 筑波研究所内 (72)発明者 安食 秀一 茨城県つくば市東光台5丁目9番地の5 スタンレー電気株式会社 筑波研究所内 (72)発明者 豊玉 英樹 茨城県つくば市東光台5丁目9番地の5 スタンレー電気株式会社 筑波研究所内 審査官 関根 洋之 (56)参考文献 特開 平4−270926(JP,A) 特開 平4−125425(JP,A) 特開 平1−110224(JP,A) 特開 昭62−63823(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masayuki Hara Inventor, 1-3-1, Higashi Tsukuba, Ibaraki Prefectural Institute of Microbial Science and Technology (72) Inventor Masami Awai 5-9, Tokodai, Tsukuba, Ibaraki Stanley Electric Co., Ltd. Tsukuba Research Institute (72) Inventor Hiroaki Sugino 5-9 Tokodai, Tsukuba City, Ibaraki Prefecture 5 Stanley Electric Co., Ltd. Tsukuba Research Institute (72) Inventor Shuichi Aji, 5-9 Tokodai, Tsukuba City, Ibaraki Prefecture No. 5 Stanley Electric Co., Ltd. Tsukuba Research Institute (72) Inventor Hideki Toyoda 5-5-9 Tokodai, Tsukuba City, Ibaraki Prefecture Stanley Electric Co., Ltd. Tsukuba Research Laboratory Examiner Hiroyuki Sekine (56) Reference JP-A-4-270926 (JP, A) JP-A-4-125425 (JP, A) JP-A-1-110224 ( P, A) JP Akira 62-63823 (JP, A)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方の電極が光を十分透過す
る一対の電極間に、光電変換機能を有する生体高分子複
合体乾燥固化膜からなる活性層と導電性高分子の膜から
なる媒介層とを積層したことを特徴とする光電変換素
子。
1. An active layer composed of a dried and solidified biopolymer composite film having a photoelectric conversion function, and an intermediate layer composed of a conductive polymer film, between a pair of electrodes in which at least one electrode sufficiently transmits light. A photoelectric conversion element, characterized in that
【請求項2】 活性層に紅色光合成細菌由来の光合成顆
粒を用いることを特徴とする請求項1に記載の光電変換
素子。
2. The photoelectric conversion element according to claim 1, wherein photosynthetic granules derived from purple photosynthetic bacteria are used in the active layer.
【請求項3】 導電性高分子として酸化重合型導電性高
分子およびそれらの誘導体を用いることを特徴とする請
求項1ないし2に記載の光電変換素子。
3. The photoelectric conversion device according to claim 1, wherein an oxidative polymerization type conductive polymer and a derivative thereof are used as the conductive polymer.
【請求項4】 導電性高分子がポリチオフェンである請
求項3に記載の光電変換素子。
4. The photoelectric conversion element according to claim 3, wherein the conductive polymer is polythiophene.
【請求項5】 導電性高分子がポリピロールである請求
項3に記載の光電変換素子。
5. The photoelectric conversion element according to claim 3, wherein the conductive polymer is polypyrrole.
【請求項6】 少なくとも一方の電極が光を十分透過す
る一対の電極間に、光電変換機能を有する生体高分子複
合体乾燥固化膜からなる活性層と導電性高分子の膜から
なる媒介層とを積層した光電変換素子の作製方法であっ
て、前記導電性高分子膜を電解重合によって電極上に折
出させることによって形成することを特徴とする光電変
換素子の作製方法。
6. An active layer made of a biopolymer composite dry-solidified film having a photoelectric conversion function and a mediating layer made of a conductive polymer film, between at least one of the pair of electrodes that sufficiently transmits light. A method of manufacturing a photoelectric conversion element, wherein the conductive polymer film is formed by bending the conductive polymer film onto an electrode by electrolytic polymerization.
JP3111741A 1991-05-16 1991-05-16 Photoelectric conversion element and method for manufacturing the same Expired - Lifetime JPH0797044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3111741A JPH0797044B2 (en) 1991-05-16 1991-05-16 Photoelectric conversion element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3111741A JPH0797044B2 (en) 1991-05-16 1991-05-16 Photoelectric conversion element and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07120305A JPH07120305A (en) 1995-05-12
JPH0797044B2 true JPH0797044B2 (en) 1995-10-18

Family

ID=14569012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3111741A Expired - Lifetime JPH0797044B2 (en) 1991-05-16 1991-05-16 Photoelectric conversion element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0797044B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1817800A1 (en) * 2004-12-02 2007-08-15 The Trustees Of Princeton University Solid state photosensitive devices which employ isolated photosynthetic complexes

Also Published As

Publication number Publication date
JPH07120305A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
Seo et al. Faster dye-adsorption of dye-sensitized solar cells by applying an electric field
Molaeirad et al. Photocurrent generation by adsorption of two main pigments of Halobacterium salinarum on T i O 2 nanostructured electrode
CN107317041B (en) A kind of catalyst layer and metal-air battery for metal air battery cathodes
CN107256809A (en) A kind of preparation method of transparent flexible ultracapacitor
CN102723212A (en) ITO (indium tin oxid) nanofiber/cadmium sulfide (CdS) quantum dot solar cell and preparing method thereof
Janfaza et al. Efficient bio-nano hybrid solar cells via purple membrane as sensitizer
CN110129850B (en) Stepwise deposition preparation method of ferric ferrocyanide film
JPH0797044B2 (en) Photoelectric conversion element and method for manufacturing the same
JP4812953B2 (en) Method for producing dye-sensitized solar cell photoelectrode and method for producing dye-sensitized solar cell
JP2003257509A (en) Photovoltaic sheet as well as solar power generating unit and power generating device using it
Chu et al. Fabrication and photoelectric response of poly (allylamine hydrochloride)/PM thin films by layer-by-layer deposition technique
JPS5928388A (en) Photoelectric conversion element
CN105448698B (en) The preparation method of phosphatide membrane array is patterned on a kind of indium tin oxide-coated glass
JP2677298B2 (en) Photoelectric conversion device using biopolymer composite
JP2634730B2 (en) Method for manufacturing photoelectric conversion element
JPH065730B2 (en) Method for producing photoelectric response element using functional protein complex
Ajiki et al. Light-induced electrical response of chromatophore film in a semi-wet photocell with an agar layer containing an electron mediator
JPH02281770A (en) Manufacture of optoelectric transducer using functional conjugated protein
DE19826814A1 (en) Production of flexible solar foils
Chen et al. Fabrication of dye-sensitized solar cells with a 3D nanostructured electrode
JPH04270926A (en) Manufacture of photoelectric conversion element
Zhang et al. Chemical treatments of the nanocrystalline porous TiO 2 electrodes
Tien Energy conversion via pigmented bilayer lipid membranes
KR101082987B1 (en) Method for fabricating of Dye-sensitized solar cell
Uehara et al. Photoelectric response of oriented purple membrane electrodeposited onto poly (vinyl alcohol) film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960402

EXPY Cancellation because of completion of term