JPH05346488A - Reactor startup region monitor - Google Patents

Reactor startup region monitor

Info

Publication number
JPH05346488A
JPH05346488A JP4156799A JP15679992A JPH05346488A JP H05346488 A JPH05346488 A JP H05346488A JP 4156799 A JP4156799 A JP 4156799A JP 15679992 A JP15679992 A JP 15679992A JP H05346488 A JPH05346488 A JP H05346488A
Authority
JP
Japan
Prior art keywords
detector
output
srnm
reactor
neutron flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4156799A
Other languages
Japanese (ja)
Inventor
Mikio Izumi
幹雄 泉
Tadayoshi Oda
直敬 小田
Kiyobumi Okawa
清文 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4156799A priority Critical patent/JPH05346488A/en
Publication of JPH05346488A publication Critical patent/JPH05346488A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To make possible ensuring on operable state of a standby SRNM detector by monitoring the output of startup region neutron (SRNM) detector in power operation on the basis of normal characteristics with using a detector diagnosis device. CONSTITUTION:The output of an SRNM detector 1 is measured with a startup region measurement device 2 for the output pulse generation rate, square mean of alternating current output and direct current value. An irradiation dose evaluation device 4 measures the output of a local output monitor system (LPRM) detector 6 placed at a symmetrical position to the detector 1 across the center of a core 8 with an output region measurement device 7 and using the value, evaluates the irradiated neutron flux to the detector 1. By measuring the detector 1 output vs. irradiated neutron flux and storing it in a characteristic storage device 5, or calculating normal time output in real time with the device 5, small variation is judged with a detector diagnostic device 3. That is, the device 3 obtains the detector 1 output in normal time from the device 5 and compares it with the present value to judge whether any abnormality exists.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば沸騰水型原子炉
(以下、BWRと記す)の原子炉圧力容器内の広域にわ
たる中性子束またはγ線束を測定監視する原子炉の起動
領域監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor start-up area monitoring device for measuring and monitoring a wide range of neutron flux or γ-ray flux in a reactor pressure vessel of a boiling water reactor (hereinafter referred to as BWR). ..

【0002】[0002]

【従来の技術】一般に原子炉圧力容器内の中性子束また
はγ線束は、広い測定レンジ(例えば、BWRでは11桁
の測定レンジ)を持っており、1つの測定手段で測定す
ることは技術的に困難である。このため、従来から3つ
の測定手段を組み合わせて測定される。
2. Description of the Related Art In general, a neutron flux or a γ-ray flux in a reactor pressure vessel has a wide measurement range (for example, an 11-digit measurement range in BWR), and it is technically possible to measure with one measurement means. Have difficulty. Therefore, conventionally, measurement is performed by combining three measuring means.

【0003】第1の測定手段は、低中性子束レンジ(中
性子源領域)に関するもので、この領域では炉出力が検
出器の出力パルス数に比例するので、低レンジ6桁をパ
ルス計数法により測定する。
The first measuring means relates to the low neutron flux range (neutron source region). In this region, since the reactor output is proportional to the number of output pulses of the detector, the low range 6 digits are measured by the pulse counting method. To do.

【0004】第2の測定手段は、中間の中性子束レンジ
(中間領域)に関するもので、この領域では炉出力が検
出器出力信号の揺らぎ成分の2乗平均値に比例すること
に着目し測定するもので、キャンベル法またはMSV法
と呼ばれる。
The second measuring means relates to an intermediate neutron flux range (intermediate region), and in this region, the reactor power is measured by focusing on the fact that it is proportional to the root mean square value of the fluctuation components of the detector output signal. It is called Campbell method or MSV method.

【0005】第3の測定手段は、高中性子束レンジ(出
力領域)に関するもので、この領域では炉出力が検出器
出力信号の直流成分に比例することに着目し、検出器の
直流電流を測定するものである。
The third measuring means relates to the high neutron flux range (output region), and in this region, the direct current of the detector is measured by paying attention to the fact that the reactor output is proportional to the direct current component of the detector output signal. To do.

【0006】従来、これらの測定方法には、それぞれ異
なる検出器を用いている。つまり、第1の測定手段には
4〜6本の中性子源領域用中性子検出器(SRM検出
器)、第2の測定手段には6〜8本の中間領域用中性子
検出器(IRM検出器)、また第3の測定方法には、炉
心内に配置された 100〜 200本の局部出力領域用中性子
検出器(LPRM検出器)が用いられる。
Conventionally, different detectors are used for these measuring methods. That is, the first measuring means has 4 to 6 neutron source region neutron detectors (SRM detectors), and the second measuring means has 6 to 8 intermediate region neutron detectors (IRM detectors). In the third measurement method, 100 to 200 neutron detectors for local power range (LPRM detectors) arranged in the core are used.

【0007】このように構成された原子炉の中性子計装
監視装置では、原子炉の起動時にはSRM検出器を炉内
に挿入し、その出力を監視し、原子炉出力が上昇し、S
RM検出器の測定範囲を超えそうになると、次にIRM
検出器をSRM検出器の代わりに炉内に挿入し、その出
力を監視する。さらに出力が上り、ほぼ原子炉が定格運
転の 100%出力になると、炉内に固定されているLPR
M検出器の出力により中性子束を監視する。
In the reactor neutron instrumentation monitoring device thus constructed, the SRM detector is inserted into the reactor at the time of startup of the reactor, its output is monitored, and the reactor output rises.
If the measurement range of the RM detector is about to be exceeded, then the IRM
The detector is inserted in the furnace instead of the SRM detector and its output is monitored. When the output further rises and the reactor reaches 100% of its rated operation, the LPR fixed inside the reactor
The neutron flux is monitored by the output of the M detector.

【0008】原子炉は数ヵ月 100%運転を続けるため、
通常の原子炉炉心の中性子束監視はこのLPRM検出器
と、その測定装置によって行われるが、このLPRM検
出器は炉心内に 100〜 200本配置され、炉心内の一部の
異常も瞬時に判明するような構成となっている。
Since the reactor will continue to operate at 100% for several months,
The neutron flux of a normal reactor core is monitored by this LPRM detector and its measuring device, but 100 to 200 of this LPRM detectors are arranged in the core, and some abnormalities in the core can be found instantly. It is configured to do.

【0009】このように構成されていた中性子計装系
は、最近改良が進み、中性子源領域と中間領域の中性子
レベルを連続して測定できるように構成した起動領域モ
ニタが開発されている。
The neutron instrumentation system configured as described above has been improved recently, and a start-up area monitor has been developed which is configured to continuously measure neutron levels in a neutron source area and an intermediate area.

【0010】この起動領域モニタは、炉内に固定された
6〜8本の起動領域中性子検出器(以下、SRNM検出
器と記す)の出力信号を第1の計測方法(以下、パルス
計測法と記す)と第2の計測方法(以下、キャンベル計
測法と記す)とを中性子束のレベルで使い分けて中性子
源領域と中間領域の中性子束を連続して監視できるよう
にしたものである。
In this start-up area monitor, the output signals of 6 to 8 start-up area neutron detectors (hereinafter referred to as SRNM detectors) fixed in the reactor are measured by a first measurement method (hereinafter referred to as a pulse measurement method). Note) and the second measurement method (hereinafter referred to as Campbell measurement method) depending on the level of the neutron flux so that the neutron flux in the neutron source region and the intermediate region can be continuously monitored.

【0011】[0011]

【発明が解決しようとする課題】しかし、これに使用さ
れるSRNM検出器は、炉内に固定されているため、中
性子束レベルが出力領域となり数ヵ月にわたる 100%定
格運転中、高い中性子束に照射される。しかも、原子炉
がスクラムするなど急激に中性子束が低下し、中性子束
レベルが起動領域に移った場合には、その中性子束を監
視できるように常に測定可能な状態で待機していなくて
はならない。
However, since the SRNM detector used for this is fixed in the reactor, the neutron flux level becomes the output region and high neutron flux is maintained during 100% rated operation for several months. Is irradiated. Moreover, when the neutron flux drops sharply, such as when the reactor scrums, and the neutron flux level shifts to the start-up region, the neutron flux must always be in a measurable state so that it can be monitored. ..

【0012】このように出力運転中のSRNM検出器は
常に測定可能な状態であるが、中性子束が高く出力電流
が大きくなり、また、電源の保護およびケーブル等の断
線を防止するため、検出器へ加える電圧を正常に動作す
る電圧以下に下げて、出力電流を制限している。
Thus, the SRNM detector during output operation is always in a measurable state, but the neutron flux is high, the output current is large, and the detector is used to protect the power supply and prevent disconnection of cables and the like. The output current is limited by lowering the voltage applied to the voltage below the level at which it normally operates.

【0013】この電流を制限している領域では、この低
下させた検出器への印加電圧を監視することで、常に検
出器の状態を確認できる。しかしながら、この電圧監視
のみでは、個々の検出器毎に照射中性子束が異なり、ま
た出力が飽和状態であるため、早期の微少な異常兆候検
出することは難しい課題がある。
In the region where the current is limited, the state of the detector can be always confirmed by monitoring the lowered applied voltage to the detector. However, with this voltage monitoring alone, the irradiation neutron flux is different for each detector and the output is in a saturated state, so there is a problem that early detection of minute abnormal signs is difficult.

【0014】本発明は、上記課題を解決するためになさ
れたもので、原子炉出力が出力領域に移り、SRNM検
出器が待機状態にある数ヵ月の定格運転中に、待機中の
SRNM検出器が動作可能状態にあることを定量的に確
認することができ、また、早期に検出器の異常な兆候を
も検出できる原子炉の起動領域監視装置を提供すること
を目的とする。
The present invention has been made in order to solve the above-mentioned problems, and the SRNM detector in the standby state is in operation during the rated operation for several months when the reactor output shifts to the output region and the SRNM detector is in the standby state. It is an object of the present invention to provide a reactor start-up area monitoring device capable of quantitatively confirming that is in an operable state, and capable of detecting an abnormal sign of a detector at an early stage.

【0015】[0015]

【課題を解決するための手段】本発明は原子炉の起動領
域の中性子束またはγ線束を測定する起動領域検出器
と、この検出器の出力信号を処理する起動領域測定装置
と、前記検出器の設置位置における中性子束またはγ線
束を評価する照射量評価装置と、この照射量評価装置お
よび前記起動領域測定装置に接続し前記検出器の照射中
性子束またはγ線束と前記検出器の出力の関係を演算・
記憶する特性記憶装置と、この特性記憶装置および前記
照射量評価装置に接続し前記検出器の健全性を診断する
検出器診断装置とを備えたことを特徴とする。
SUMMARY OF THE INVENTION The present invention is a start-up area detector for measuring neutron flux or γ-ray flux in the start-up area of a nuclear reactor, a start-up area measuring device for processing an output signal of the detector, and the detector. Irradiation dose evaluation device to evaluate the neutron flux or γ-ray flux at the installation position of, the relationship between the irradiation neutron flux or γ-ray flux of the detector and the output of the detector connected to the irradiation amount evaluation device and the activation area measurement device Calculate
A characteristic storage device for storing the information, and a detector diagnostic device connected to the characteristic storage device and the dose evaluation device for diagnosing the soundness of the detector are provided.

【0016】[0016]

【作用】SRNM検出器の出力信号を起動領域測定装置
により測定する。照射量評価装置によって評価したSR
NM検出器の設置位置での中性子束またはγ線束に対し
て、SRNM検出器の正常時の出力特性を特性記憶装置
により演算する。この特性記憶装置から得られる正常時
の特性を基準に、原子炉出力運転中のSRNM検出器の
出力を検出器診断装置で監視し、SRNM検出器の早期
異常を検出する。
The output signal of the SRNM detector is measured by the activation area measuring device. SR evaluated by the dose evaluation device
With respect to the neutron flux or the γ-ray flux at the installation position of the NM detector, the output characteristic of the SRNM detector at the normal time is calculated by the characteristic storage device. The output of the SRNM detector during the reactor power operation is monitored by the detector diagnostic device on the basis of the normal characteristic obtained from the characteristic storage device to detect an early abnormality of the SRNM detector.

【0017】[0017]

【実施例】図1ないし図2を参照して本発明に係る原子
炉の起動領域監視装置の一実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a reactor starting area monitoring apparatus according to the present invention will be described with reference to FIGS.

【0018】図1において符号1はSRNM検出器で、
このSRNM検出器1の出力側は起動領域測定装置2に
接続される。符号3は検出器診断装置で、この検出器診
断装置3は前記起動領域測定装置2と特性記憶装置5に
接続される。特性記憶装置5には前記起動領域測定装置
2と、照射量評価装置4および検出器診断装置3が接続
される。
In FIG. 1, reference numeral 1 is an SRNM detector,
The output side of the SRNM detector 1 is connected to the activation area measuring device 2. Reference numeral 3 is a detector diagnostic device, and the detector diagnostic device 3 is connected to the activation area measuring device 2 and the characteristic storage device 5. The characteristic storage device 5 is connected to the activation area measuring device 2, the dose evaluation device 4 and the detector diagnostic device 3.

【0019】図2(a)は図1に示した構成の装置を原
子炉炉心8内のSRNM検出器1とLPRM検出器6に
接続した状態を示しており、図2(b)は図2(a)の
原子炉炉心8内に設置された上記各検出器1,6の配置
状態を示している。
FIG. 2 (a) shows a state in which the apparatus having the configuration shown in FIG. 1 is connected to the SRNM detector 1 and the LPRM detector 6 in the reactor core 8, and FIG. 2 (b) is shown in FIG. The arrangement state of each said detector 1,6 installed in the reactor core 8 of (a) is shown.

【0020】このように構成された原子炉の起動領域監
視装置において、SRNM検出器1の出力は出力パルス
の発生率(計数率)、交流出力の2乗平均値(キャンベ
ル出力)および直流電流値を起動領域測定装置2により
測定する。
In the reactor start-up area monitoring apparatus configured as described above, the output of the SRNM detector 1 is the output pulse generation rate (counting rate), the mean square value of the AC output (Campbell output), and the DC current value. Is measured by the activation area measuring device 2.

【0021】照射量評価装置4は、例えば図2(b)に
示すように、原子炉炉心8の中心に対してSRNM検出
器1に対称の位置に設けた局部出力モニタ系検出器6
(以下、対称LPRM検出器と記す)の出力を出力領域
測定装置7により測定し、その値からSRNM検出器1
への照射中性子束を評価する。
As shown in FIG. 2 (b), for example, the dose evaluation device 4 includes a local power monitor system detector 6 provided at a position symmetrical to the SRNM detector 1 with respect to the center of the reactor core 8.
The output (hereinafter referred to as a symmetric LPRM detector) is measured by the output area measuring device 7, and the SRNM detector 1 is measured from the measured value.
Evaluate the neutron flux irradiated to.

【0022】これは、原子炉炉心8内の中性子分布が原
子炉炉心8の中心に対して対称になるように原子炉は運
転されるため、軸方向の位置はSRNM検出器1の軸方
向位置とほぼ等しく、原子炉炉心8の径方向は炉心中心
に対して回転対称または点対称の位置に配置された対称
LPRM検出器6の出力が、SRNM検出器1の照射中
性子束にほぼ比例していると考えられることを利用して
いる。
This is because the nuclear reactor is operated so that the neutron distribution in the nuclear reactor core 8 is symmetrical with respect to the center of the nuclear reactor core 8, so the axial position is the axial position of the SRNM detector 1. Is almost equal to, and the output of the symmetrical LPRM detector 6 arranged at the position of rotational symmetry or point symmetry with respect to the core center in the radial direction of the reactor core 8 is approximately proportional to the irradiation neutron flux of the SRNM detector 1. I use what I think to be.

【0023】図3(a)に、原子炉起動時または停止動
作に測定された、照射中性子束に対するSRNM検出器
1の出力電流値を示す。SRNM検出器1の出力電流
は、SRNM検出器1の測定範囲では照射中性子束(つ
まり対称LPRM検出器6の指示値)に比例する(図3
(a)中、比例領域)。
FIG. 3 (a) shows the output current value of the SRNM detector 1 with respect to the irradiation neutron flux measured at the time of starting or shutting down the reactor. The output current of the SRNM detector 1 is proportional to the irradiation neutron flux (that is, the indicated value of the symmetrical LPRM detector 6) in the measurement range of the SRNM detector 1 (FIG. 3).
(A) Middle, proportional region).

【0024】そして、原子炉出力が上昇し照射中性子束
が増加すると、SRNM検出器1の出力電流が飽和し
て、比例しなくなる(図3(a)中、飽和領域)。さら
に照射中性子束が高くなると、前述したように検出器お
よび測定装置の電源を保護するため、検出器への印加電
圧を下げ出力電流をある一定値に制限させる。
When the reactor output rises and the irradiation neutron flux increases, the output current of the SRNM detector 1 saturates and is no longer proportional (saturation region in FIG. 3 (a)). When the irradiation neutron flux further increases, the voltage applied to the detector is reduced to limit the output current to a certain constant value in order to protect the power source of the detector and the measurement device as described above.

【0025】図3(b)に、対称LPRM指示値に対す
る検出器への印加電圧の変化を示す。通常、約 100%出
力の原子炉運転中では、図3(b)中で示すようにSR
NM検出器の印加電圧は、検出器の動作電圧より低い電
圧となっている。
FIG. 3 (b) shows changes in the applied voltage to the detector with respect to the symmetric LPRM indication value. Normally, when the reactor is operating at about 100% power, SR as shown in Fig. 3 (b)
The applied voltage of the NM detector is lower than the operating voltage of the detector.

【0026】このような出力特性は、SRNM検出器が
正常な場合であるが、検出器の絶縁抵抗が低下する場合
など、検出器に異常が発生した場合にはこの正常な特性
と異なったものとなる。
Such an output characteristic is different from the normal characteristic when the SRNM detector is normal, but when an abnormality occurs in the detector such as when the insulation resistance of the detector is lowered. Becomes

【0027】SRNM検出器1は、図4に示すように陽
極11、陰極13および絶縁材12により構成されている。こ
の陽極11と陰極13に電源15により電圧を印加し、陽極11
と陰極13の間に発生する中性子束に比例した電荷を収集
する。この電荷収集によって流れる電流lsを、照射中
性子束レベルが小さい場合はパルス計測法、中性子束レ
ベルが高くなるとキャンベル計測法によって測定装置14
で計測する。
The SRNM detector 1 comprises an anode 11, a cathode 13 and an insulating material 12, as shown in FIG. A voltage is applied to the anode 11 and the cathode 13 by the power supply 15, and the anode 11
A charge proportional to the neutron flux generated between the cathode 13 and the cathode 13 is collected. The current Is flowing by this charge collection is measured by a pulse measuring method when the irradiation neutron flux level is low, and by a Campbell measuring method when the neutron flux level is high.
Measure with.

【0028】図5はSRNM検出器の絶縁抵抗低下の場
合の出力電流の変化を示している。図中il は漏洩電流
s は中性子電流である。出力領域では、これらの計測
が正確に行われないため、直流電流を測定することで検
出器の健全性を確認しているが、この測定している電流
は中性子による電流lsと絶縁材12を通して流れる漏洩
電流llとの合計の電流ld(ld=ls+ll)であ
る。
FIG. 5 shows changes in the output current when the insulation resistance of the SRNM detector is lowered. In the figure, i l is the leakage current i s is the neutron current. Since these measurements are not performed accurately in the output region, the soundness of the detector is confirmed by measuring the direct current, but this measured current passes through the current ls due to neutrons and the insulating material 12. It is a total current ld (ld = ls + ll) together with the flowing leakage current ll.

【0029】長時間にわたり高い中性子束場に置かれる
SRNM検出器1の異常の一可能性として、この絶縁抵
抗の劣化による漏洩電流の増加が考えられる。この場
合、出力電流lsに漏洩電流llが加わり、測定される
電流の増加として測定できる。しかし、漏洩電流は出力
が高い場合、出力電流に比べて小さく、原子炉の出力変
動により判別することは難しい。
One possible cause of the abnormality of the SRNM detector 1 which is placed in a high neutron flux field for a long time is an increase in leakage current due to the deterioration of the insulation resistance. In this case, the leakage current ll is added to the output current ls, and it can be measured as an increase in the measured current. However, when the output is high, the leakage current is smaller than the output current, and it is difficult to determine the leakage current by the output fluctuation of the reactor.

【0030】しかし、本実施例に係る原子炉の起動領域
監視装置では、原子炉の起動時また停止時に炉内に挿入
されている検出器の各々について、照射中性子束に対す
るSRNM検出器1の出力を事前に測定し特性記憶装置
5に記憶しておくことで、または、リアルタイムに正常
時の出力を特性記憶装置5で演算することにより、この
微量の変動を検出器診断装置3により判定することがで
きる。
However, in the reactor start-up area monitoring apparatus according to the present embodiment, the output of the SRNM detector 1 with respect to the irradiation neutron flux for each of the detectors inserted in the reactor at the time of starting or shutting down the reactor. Is detected and stored in the characteristic storage device 5 in advance, or the output of the normal state is calculated in real time by the characteristic storage device 5, and the detector diagnostic device 3 determines this slight variation. You can

【0031】すなわち、検出器診断装置3では、照射量
評価装置4からそのときのSRNM検出器1の照射中性
子束、つまり前記対称LPRM検出器6の指示値から求
めた照射中性子束を基に、その照射中性子束に対する正
常時のSRNM検出器1の出力を特性記憶装置5から獲
得し、現在のSRNM検出器1の出力と比較し、異常が
ないかを判定する。
That is, in the detector diagnostic device 3, based on the irradiation neutron flux of the SRNM detector 1 at that time, that is, the irradiation neutron flux obtained from the indicated value of the symmetrical LPRM detector 6 from the irradiation amount evaluation device 4, The normal output of the SRNM detector 1 for the irradiated neutron flux is acquired from the characteristic storage device 5 and compared with the current output of the SRNM detector 1 to determine whether there is any abnormality.

【0032】図6に検出器の正常時および絶縁低下を起
こした異常時における対称LPRM検出器の指示値に対
する出力電流の変化(a)、検出器への印加電圧変化
(b)およびキャンベル出力の変化(c)をそれぞれ示
す。
FIG. 6 shows changes in the output current (a), changes in the applied voltage to the detector (b), and Campbell output with respect to the indicated value of the symmetrical LPRM detector when the detector is normal and when the insulation is degraded and abnormal. The changes (c) are shown respectively.

【0033】図5に示したように絶縁抵抗の低下で測定
される電流は上昇するが、図6(a)に示すように原子
炉 100%出力時には回路保護のため、電流リミッタによ
り電流は制限され、この電流の増加は検出できない。そ
の代わり絶縁抵抗が低下すると、図6(b)に示すよう
に電流リミッタが電流の増加分だけ印加電圧を低下させ
る。
As shown in FIG. 5, the measured current increases as the insulation resistance decreases, but as shown in FIG. 6 (a), the current is limited by the current limiter at 100% reactor output for circuit protection. This increase in current cannot be detected. Instead, when the insulation resistance decreases, the current limiter decreases the applied voltage by the increase in the current as shown in FIG. 6B.

【0034】つまり、この低下により絶縁抵抗の低下に
よる検出器の異常を検出する。また、同時にキャンベル
出力も、図6(c)のように絶縁抵抗の低下による異常
時には、正常時と比べ特性が変化するため、印加電圧の
変化と同様に異常時はその変化を測定できる。
In other words, this decrease detects an abnormality in the detector due to a decrease in insulation resistance. At the same time, the characteristics of the Campbell output change in the abnormal state due to the decrease of the insulation resistance as shown in FIG. 6C as compared with the normal state. Therefore, the change can be measured in the abnormal state like the change of the applied voltage.

【0035】以上述べたように、本実施例に係る原子炉
の起動領域監視装置によれば、原子炉起動時または停止
時に照射中性子束に対する正常時の検出器出力特性を測
定して、記憶しておくことで、SRNM検出器が待機状
態となっている原子炉の定格出力、つまり 100%出力で
もSRNM検出器の健全性が定量的に確認でき、異常の
兆候も早期に検出できる。
As described above, according to the reactor start-up area monitoring apparatus according to the present embodiment, the detector output characteristics under normal conditions with respect to the irradiated neutron flux at the time of reactor startup or shutdown are measured and stored. By doing so, the soundness of the SRNM detector can be quantitatively confirmed even at the rated output of the reactor in which the SRNM detector is in the standby state, that is, 100% output, and the sign of abnormality can be detected early.

【0036】すなわち、原子炉が停止操作に入り、中性
子束がSRNM検出器の測定範囲に低下する以前にその
動作状態が確認できるため、その停止操作時に回復作業
等を行う必要がなくなり、信頼性がさらに向上すること
になる。
That is, since the operating state of the reactor can be confirmed before the reactor enters the shutdown operation and the neutron flux falls within the measurement range of the SRNM detector, it is not necessary to perform recovery work or the like during the shutdown operation, and reliability is improved. Will be further improved.

【0037】次に図7により本発明の他の実施例を説明
する。本実施例が図1の実施例と異なる点は照射量評価
装置4に炉心性能計算装置9を接続し、かつ起動領域測
定装置2と検出器診断装置3に特性復旧装置10を接続し
たことにある。他の部分は図1と同様であるので、重複
する部分の説明は省略する。
Next, another embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the embodiment of FIG. 1 in that a core performance calculation device 9 is connected to the dose evaluation device 4, and a characteristic restoration device 10 is connected to the starting region measurement device 2 and the detector diagnostic device 3. is there. Since the other parts are the same as those in FIG. 1, description of the overlapping parts will be omitted.

【0038】この実施例では、原子炉の定格運転中にお
けるSRNM検出器1の照射中性子束を炉心性能計算装
置9で計算により求めている。炉心性能計算装置9は、
燃料の燃焼度、原子炉圧力、熱出力等諸特性から原子炉
の中性子束分布を計算できるもので、この計算結果から
照射量評価装置4においてSRNM検出器1の照射中性
子束を計算する。
In this embodiment, the irradiation performance neutron flux of the SRNM detector 1 during the rated operation of the nuclear reactor is calculated by the core performance calculation device 9. The core performance calculation device 9
The neutron flux distribution of the reactor can be calculated from various characteristics such as the burnup of the fuel, the reactor pressure, and the heat output. From the calculation result, the irradiation neutron flux of the SRNM detector 1 is calculated in the dose evaluation device 4.

【0039】また、原子炉運転中にSRNM検出器の異
常兆候が検出された場合、SRNM検出器は待機状態に
あるので、その診断結果をもって特性復旧装置10により
適正な復旧作業を選択し、回復作業を実施する。
Further, when an abnormal sign of the SRNM detector is detected during the operation of the reactor, the SRNM detector is in a standby state, and the characteristic restoration device 10 selects an appropriate restoration work based on the diagnosis result and the restoration is performed. Carry out the work.

【0040】特に、絶縁抵抗が低下した場合、たとえば
電極表面に突起ができ抵抗が低下する場合は、検出器へ
の印加電圧を上げ、電極間に小さな放電を発生させてそ
の突起を消滅させて抵抗を回復させる。このような復旧
作業を本実施例では自動的に実施できるので、さらに信
頼性の高い、保守作業の簡単なシステムが可能となる。
In particular, when the insulation resistance is lowered, for example, when a protrusion is formed on the electrode surface and the resistance is lowered, the voltage applied to the detector is increased to generate a small discharge between the electrodes to eliminate the protrusion. Restores resistance. Since such a recovery work can be automatically performed in this embodiment, a system with higher reliability and simple maintenance work can be realized.

【0041】なお、本発明は次の実施態様を採ることが
できる。 (1) 起動領域検出器の設置位置における中性子束または
γ線束を、前記検出器に原子炉中心に対して点対称また
は90度回転対称の位置に配置した出力領域用検出器の出
力により評価する出力評価装置を備えること。 (2) 起動領域検出器の位置における中性子束またはγ線
束を、原子炉の性能計算から評価する出力装置を備える
こと。 (3) 検出器診断装置から異常が検出された場合、検出器
を正常な特性に回復させる復旧装置を備えること。
The present invention can take the following embodiments. (1) Neutron flux or γ-ray flux at the installation position of the starting area detector is evaluated by the output of the detector for output area arranged at the detector in a point symmetric or 90 degree rotational symmetry position with respect to the reactor center. Equipped with an output evaluation device. (2) An output device for evaluating the neutron flux or γ-ray flux at the position of the start-up area detector from the reactor performance calculation shall be provided. (3) Provide a recovery device that restores the detector to its normal characteristics when an abnormality is detected by the detector diagnostic device.

【0042】[0042]

【発明の効果】本発明によれば、SRNM検出器が待機
状態となっている原子炉の定格出力つまり 100%出力時
において、SRNM検出器の健全性が定量的に評価で
き、原子炉の出力がSRNM検出器の測定範囲に低下し
た場合に、正確な測定ができることを確認できる。
According to the present invention, the soundness of the SRNM detector can be quantitatively evaluated at the rated output of the reactor in which the SRNM detector is in the standby state, that is, 100% output, and the output of the reactor can be quantitatively evaluated. It can be confirmed that an accurate measurement can be performed when the value falls within the measurement range of the SRNM detector.

【0043】また、SRNM検出器の異常な兆候も早期
に検出でき、さらに診断機能で対策を策定し自動的に復
旧作業を行うことができるため、常にSRNM検出器を
健全な状態で保つことができ、信頼性が高く、保守も容
易な原子炉の起動領域監視装置を提供できる。
Further, since abnormal signs of the SRNM detector can be detected at an early stage, and the diagnostic function can formulate countermeasures and automatically perform restoration work, the SRNM detector can always be kept in a healthy state. It is possible to provide a reactor start-up area monitoring device that is reliable, has high reliability, and is easy to maintain.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原子炉の起動領域監視装置の一実
施例を示すブロック図。
FIG. 1 is a block diagram showing an embodiment of a reactor starting area monitoring apparatus according to the present invention.

【図2】(a)は図1における装置を原子炉炉心内検出
器に接続した状態を示す系統図、(b)は(a)におけ
る原子炉炉心内の検出器の配置状態を概略的に示す平面
図。
2 (a) is a system diagram showing a state in which the apparatus in FIG. 1 is connected to a detector in a nuclear reactor core, and FIG. 2 (b) is a schematic diagram showing the arrangement state of detectors in a nuclear reactor core in FIG. 2 (a). FIG.

【図3】(a)は図1におけるSRNM検出器の照射中
性子束に対する検出器出力電流の変化を示す特性図、
(b)は(a)における検出器印加電圧の変化を示す特
性図。
3 (a) is a characteristic diagram showing changes in detector output current with respect to irradiation neutron flux of the SRNM detector in FIG. 1,
FIG. 7B is a characteristic diagram showing a change in the detector applied voltage in FIG.

【図4】図1におけるSRNM検出器の構造を概略的に
示す縦断面図。
FIG. 4 is a vertical sectional view schematically showing the structure of the SRNM detector in FIG.

【図5】図1におけるSRNM検出器の絶縁抵抗低下の
場合の出力電流の変化を示す曲線図。
5 is a curve diagram showing a change in output current when the insulation resistance of the SRNM detector in FIG. 1 is lowered.

【図6】(a)は図1におけるSRNM検出器の照射中
性子束に対する検出器出力電流の変化を示す特性図、
(b)は同じく検出器印加電圧の変化を示す特性図、
(c)は同じく検出器キャンベル出力の変化を示す特性
図。
6 (a) is a characteristic diagram showing changes in detector output current with respect to irradiation neutron flux of the SRNM detector in FIG. 1,
(B) is a characteristic diagram showing a change in detector applied voltage,
FIG. 6C is a characteristic diagram similarly showing a change in detector Campbell output.

【図7】本発明に係る原子炉の起動領域監視装置の他の
実施例を示すブロック図。
FIG. 7 is a block diagram showing another embodiment of the reactor starting area monitoring apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1…SRNM検出器、2…起動領域測定装置、3…検出
器診断装置、4…照射量評価装置、5…特性記憶装置、
6…対称LPRM検出器、7…出力領域測定装置、8…
原子炉炉心、9…炉心性能計算装置、10…特性復旧装
置、11…陽極、12…絶縁材、13…陰極、14…測定装置、
15…電源。
1 ... SRNM detector, 2 ... starting area measuring device, 3 ... detector diagnostic device, 4 ... dose evaluation device, 5 ... characteristic storage device,
6 ... Symmetric LPRM detector, 7 ... Output area measuring device, 8 ...
Reactor core, 9 ... Core performance calculation device, 10 ... Characteristic restoration device, 11 ... Anode, 12 ... Insulation material, 13 ... Cathode, 14 ... Measuring device,
15 ... power.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子炉の起動領域の中性子束またはγ線
束を測定する起動領域検出器と、この検出器の出力信号
を処理する起動領域測定装置と、前記検出器の設置位置
における中性子束またはγ線束を評価する照射量評価装
置と、この照射量評価装置および前記起動領域測定装置
に接続し前記検出器の照射中性子束またはγ線束と前記
検出器の出力の関係を演算・記憶する特性記憶装置と、
この特性記憶装置および前記照射量評価装置に接続し前
記検出器の健全性を診断する検出器診断装置とを備えた
ことを特徴とする原子炉の起動領域監視装置。
1. A start-up area detector for measuring neutron flux or γ-ray flux in a start-up area of a nuclear reactor, a start-up area measuring device for processing an output signal of the detector, and a neutron flux at an installation position of the detector or A dose evaluation device for evaluating a γ-ray flux, and a characteristic memory which is connected to the dose evaluation device and the activation region measurement device to calculate and store the relationship between the irradiation neutron flux of the detector or the γ-ray flux and the output of the detector. A device,
A reactor start-up area monitoring device comprising: the characteristic storage device; and a detector diagnostic device that is connected to the dose evaluation device and diagnoses the soundness of the detector.
JP4156799A 1992-06-16 1992-06-16 Reactor startup region monitor Pending JPH05346488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4156799A JPH05346488A (en) 1992-06-16 1992-06-16 Reactor startup region monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4156799A JPH05346488A (en) 1992-06-16 1992-06-16 Reactor startup region monitor

Publications (1)

Publication Number Publication Date
JPH05346488A true JPH05346488A (en) 1993-12-27

Family

ID=15635578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4156799A Pending JPH05346488A (en) 1992-06-16 1992-06-16 Reactor startup region monitor

Country Status (1)

Country Link
JP (1) JPH05346488A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147187A (en) * 1998-08-31 2000-05-26 Toshiba Corp Neutron flux measuring device
JP2001272495A (en) * 2000-03-27 2001-10-05 Toshiba Corp Reactor power monitor
JP2006250802A (en) * 2005-03-11 2006-09-21 Toshiba Corp Power distribution monitoring device and its monitoring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147187A (en) * 1998-08-31 2000-05-26 Toshiba Corp Neutron flux measuring device
JP2001272495A (en) * 2000-03-27 2001-10-05 Toshiba Corp Reactor power monitor
JP4625557B2 (en) * 2000-03-27 2011-02-02 株式会社東芝 Reactor power monitoring device
JP2006250802A (en) * 2005-03-11 2006-09-21 Toshiba Corp Power distribution monitoring device and its monitoring method
JP4509831B2 (en) * 2005-03-11 2010-07-21 株式会社東芝 Output distribution monitoring apparatus and monitoring method thereof

Similar Documents

Publication Publication Date Title
US6765388B1 (en) Assessing a parameter of cells in the batteries of uninterruptable power supplies
JP3064084B2 (en) Apparatus and method for monitoring power oscillation range for a nuclear reactor
US4623508A (en) Wide range flux monitor assembly
JPH0477877B2 (en)
US4803040A (en) Expert system for surveillance and diagnosis of breach fuel elements
CN106024078B (en) A kind of method of diagnostic reaction pile neutron detector failure
US6122339A (en) Method and device for operating a reactor in an unstable state
KR940003801B1 (en) Controlling a nuclear reactor with dropped control rods
JPH05346488A (en) Reactor startup region monitor
US5956380A (en) Method and apparatus for determining neutron flux density, in particular in a nuclear power facility
EP0147212A2 (en) Method for determining the operability of a source range detector
JP2008014705A (en) Nuclear reactor monitoring unit
JPS61155887A (en) Radiation measuring instrument
JP4881033B2 (en) Neutron detector lifetime determination apparatus, lifetime determination method thereof, and reactor core monitoring apparatus
JP4509831B2 (en) Output distribution monitoring apparatus and monitoring method thereof
JPS6259794B2 (en)
KR950012820B1 (en) Method for detecting and correcting for isotope burn-in during long-term neutron dosimetry exposure
JP4052618B2 (en) In-reactor monitoring device
JPS59180480A (en) Fault detector for neutron detector
Glesius et al. Development of an Extended Range Start-Up Monitor (ERSM) for Boiling Water Reactors
Swaminathan Computer based on-line monitoring system for Fast Breeder Test Reactor, India
CN116153539A (en) Method for evaluating damage condition of fuel element in pressurized water reactor
KR20230129853A (en) Solar power generation system and method capable of detecting leakage section through leakage monitoring for each solar cell module
JPH06235771A (en) Multiple-element type neutron detector
JPS58100786A (en) Method of diagnosing abnormality of reactor plant