JP2008014705A - Nuclear reactor monitoring unit - Google Patents

Nuclear reactor monitoring unit Download PDF

Info

Publication number
JP2008014705A
JP2008014705A JP2006184494A JP2006184494A JP2008014705A JP 2008014705 A JP2008014705 A JP 2008014705A JP 2006184494 A JP2006184494 A JP 2006184494A JP 2006184494 A JP2006184494 A JP 2006184494A JP 2008014705 A JP2008014705 A JP 2008014705A
Authority
JP
Japan
Prior art keywords
reactor
signal
neutron
detector
monitoring apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006184494A
Other languages
Japanese (ja)
Inventor
Yoshio Kita
好夫 北
Akira Yunoki
彰 柚木
Taishin Hosaka
泰臣 穂坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006184494A priority Critical patent/JP2008014705A/en
Publication of JP2008014705A publication Critical patent/JP2008014705A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nuclear reactor monitoring unit seldom giving a wrong alarm by a simple constitution. <P>SOLUTION: The nuclear reactor monitoring unit monitors a nuclear reactor (30) for an abnormality by output signals of a neutron detector of a start-up system installed inside the nuclear reactor (29), a neutron detector of an operation system and a γ-ray detector of a safety system. The unit includes detectors of the same types A1, A2 and B1, B2 symmetrically arranged with respect to a core 30 to obtain outputs of the same level, and has the function of making a judgment of an abnormality in a measuring system and giving an alarm if the outputs k1, k2 of the detectors of the same type satisfy the relationship of ¾(k1-k2)/(k1+k2)¾>α, wherein α represents a predetermined value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は小型の原子炉の異常を監視する原子炉モニタ装置に関する。   The present invention relates to a reactor monitoring apparatus for monitoring an abnormality of a small nuclear reactor.

試験研究用原子炉は試験研究用に設計・建設された原子炉で、大きく分けると研究炉と臨界試験装置に分けられる。研究炉は、核反応で発生する放射線を利用して原子炉の材料や燃料の照射試験、医療用や工業用の放射性同位元素の製造、学生や技術者の教育訓練等を行う原子炉である。臨界試験装置は、炉心構造を容易に変更することができる原子炉であって、核燃料物質の臨界量など原子炉の核特性を測定するために専ら供するものをいう。原子炉には中性子束を計測して原子炉出力を監視するモニタ装置が設けられている(特許文献1)。   Test and research reactors are reactors designed and constructed for test and research, and can be broadly divided into research reactors and critical test equipment. A research reactor is a reactor that performs radiation tests on nuclear materials and fuels, manufactures radioisotopes for medical and industrial use, education and training for students and engineers, etc. using radiation generated by nuclear reactions. . The criticality test apparatus is a nuclear reactor whose core structure can be easily changed, and is provided exclusively for measuring nuclear characteristics of the nuclear reactor, such as the critical amount of nuclear fuel material. The reactor is provided with a monitor device that measures the neutron flux and monitors the reactor output (Patent Document 1).

試験研究用原子炉のような小型の原子炉のモニタ装置は、測定系の数が少なく、発電用原子炉ほど信頼性が高くないため、安全をみて全ての測定系からの信号(設定値を超えた時の信号)のORで、警報信号を出し、スクラムするように構成されている。しかし、発電用原子炉に比べて、耐震性、耐ノイズ性、耐環境性などが簡易化されており、個々の測定系では、振動による誤信号、外来ノイズによる誤信号、湿気などによる微小放電による誤信号の可能性があり、また、複数の測定系の信号のORで警報信号が出るため誤信号によるスクラムの可能性が高い。
特開平1−301196号公報
Small reactor monitoring devices such as test and research reactors have a small number of measurement systems and are not as reliable as power generation reactors. The alarm signal is output with the OR of the signal at the time of exceeding) and scrammed. However, it has simplified earthquake resistance, noise resistance, environmental resistance, etc. compared to power reactors. In each measurement system, false signals due to vibration, false signals due to external noise, minute discharge due to moisture, etc. In addition, there is a possibility of an erroneous signal due to, and since an alarm signal is output by OR of a plurality of measurement system signals, there is a high possibility of scram due to an erroneous signal.
JP-A-1-301196

上記のように試験研究用原子炉のモニタ装置は、発電用原子炉の場合と異なりシステムが簡易で、測定系の数も少ないため、全ての測定系の異常信号のOR条件で警報を出すため、誤警報によりスクラムする可能性が高い。スクラムが発生した場合、地方自治体や国への迅速な報告と、その後の発生原因の特定などに多大な労力を必要とする。   As described above, the monitoring device for the test and research reactor is different from the power generation reactor in that the system is simple and the number of measurement systems is small. There is a high possibility of scramming due to false alarms. When a scrum occurs, a great deal of effort is required to promptly report it to local governments and countries, and then identify the cause of the occurrence.

本発明はこのような状況に鑑みてなされたものであり、簡素な構成によって誤警報の少ない原子炉モニタ装置を提供することを目的とする。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a reactor monitoring apparatus with a simple configuration and few false alarms.

上記課題を解決するために、本発明の請求項1は、原子炉内に設置された起動系の中性子検出器、運転系の中性子検出器および安全系のγ線検出器の出力信号によって前記原子炉の異常を監視する原子炉モニタ装置において、炉心に対して対称な位置に同種類の検出器を配置して同程度の出力が出るようにし、前記同種類の検出器の出力k1,k2が所定値αに対して|(k1−k2)/(k1+k2)|>αであるとき、測定系の異常と判断し警報を出す機能を有する構成とする。   In order to solve the above-mentioned problems, claim 1 of the present invention is characterized in that the atomic neutron detector, the neutron detector for the operating system, and the γ-ray detector for the safety system installed in the nuclear reactor are used to output the atoms. In a reactor monitoring device that monitors reactor abnormalities, the same kind of detectors are arranged at symmetrical positions with respect to the core so that the same level of output can be obtained, and the outputs k1 and k2 of the same kind of detectors are When | (k1−k2) / (k1 + k2) |> α with respect to the predetermined value α, the measurement system is judged to be abnormal and has a function of issuing an alarm.

請求項2は、原子炉内に設置された起動系の中性子検出器、運転系の中性子検出器および安全系のγ線検出器の出力信号によって前記原子炉の異常を監視する原子炉モニタ装置において、前記検出器の出力信号が設定値を所定時間継続してオーバした場合に異常信号を出す第1の比較回路と、前記設定値より大きい値を設定値とし前記所定時間よりも短い判別時間を有して前記出力信号を分岐して入力される第2の比較回路とを備えている構成とする。   Claim 2 is a reactor monitoring apparatus for monitoring an abnormality of the reactor by output signals of an activation system neutron detector, an operation system neutron detector and a safety system γ-ray detector installed in the reactor. A first comparison circuit for outputting an abnormal signal when the output signal of the detector continuously exceeds a set value for a predetermined time, and a determination time shorter than the predetermined time with a value larger than the set value as a set value. And a second comparison circuit that branches and inputs the output signal.

請求項3は、原子炉内に設置された起動系の中性子検出器、運転系の中性子検出器および安全系のγ線検出器の出力信号によって前記原子炉の異常を監視する原子炉モニタ装置において、前記運転系の中性子測定系に、中性子検出信号パルスを計数するパルス計数回路と、前記パルスが所定の計数率を超えた場合に信号を出力する判定回路とを備えている構成とする。   According to a third aspect of the present invention, there is provided a reactor monitoring apparatus for monitoring an abnormality of the nuclear reactor based on output signals of a starting neutron detector, an operating neutron detector, and a safety γ-ray detector installed in the nuclear reactor. The operating neutron measurement system includes a pulse counting circuit that counts neutron detection signal pulses and a determination circuit that outputs a signal when the pulses exceed a predetermined count rate.

本発明によれば、簡素な構成によって誤警報の少ない原子炉モニタ装置を提供することができる。   According to the present invention, it is possible to provide a reactor monitoring apparatus with few false alarms with a simple configuration.

試験研究用原子炉は発電用原子炉に比べて、稼働率は余り問題とならず、むしろ、誤信号によるスクラムの方が影響が大きい。このため、本発明の原子炉モニタ装置では、回路系の健全性の確認機能の強化、将来起こるであろう故障の前兆現象の測定による予防保全機能の強化を図り、問題がある時はアラームを出し、人間系によるシステムの停止および当該部分の点検などにより誤信号によるスクラムの発生を未然に防ぐ。また、各測定系での異常判定手段を導入し、誤信号による誤警報の防止とあわせて炉内中性子束の急激な増加による初期バースト信号に対しても有効に機能するようにする。   Compared to the nuclear power reactor, the utilization rate of the test and research reactor is not much of a problem. Rather, the scram caused by a false signal has a greater effect. For this reason, in the reactor monitoring device of the present invention, the soundness confirmation function of the circuit system is strengthened, the preventive maintenance function is strengthened by measuring the predictive phenomenon of a failure that will occur in the future, and an alarm is issued when there is a problem. Prevent the occurrence of scrum due to false signals by stopping the system by human system and checking the part. In addition, an abnormality determination means is introduced in each measurement system so that it functions effectively against an initial burst signal due to a rapid increase in the in-core neutron flux, in addition to preventing false alarms due to false signals.

本発明の実施の形態の原子炉モニタ装置の基本構成を図1に示す。本装置は、中性子検出器A1,A2,A3を備えた起動系3系統、中性子検出器B1,B2,B3を備えた運転系3系統、γ線検出器C1を備えた安全系1系統、警報発生装置15および警報発生器17を備えている。   FIG. 1 shows a basic configuration of a reactor monitoring apparatus according to an embodiment of the present invention. This system consists of 3 startup systems with neutron detectors A1, A2 and A3, 3 operating systems with neutron detectors B1, B2 and B3, 1 safety system with γ-ray detector C1, alarm A generator 15 and an alarm generator 17 are provided.

起動系は2系統(中性子検出器A1,A2)の中性子計数回路と1系統の中性子パルス対数ぺリオド回路(中性子検出器A3)で構成されている。運転系は2系統(中性子検出器B1,B2)の中性子微小直流増幅回路と1系統(中性子検出器B3)の中性子電流対数ペリオド回路で構成されている。安全系は炉心内のガンマ線量を測定する1系統(γ線検出器B3)のガンマ線検出器計数回路で構成されている。   The starting system is composed of two systems (neutron detectors A1 and A2) of neutron counting circuits and one system of neutron pulse logarithmic period circuits (neutron detector A3). The operation system is composed of two systems (neutron detectors B1 and B2) of neutron micro DC amplification circuits and one system (neutron detector B3) of neutron current log period circuits. The safety system is composed of a gamma ray detector counting circuit of one system (γ ray detector B3) for measuring the gamma dose in the core.

上記7系統の異常信号を、図2に示す警報発生装置15内のロジック回路22でOR条件で処理し、条件が成立したとき警報信号を発生し、制御棒駆動制御装置16にスクラム信号が出され、警報発生器駆動回路26から警報発生器17に信号が出される。   The above-mentioned seven systems of abnormal signals are processed by the logic circuit 22 in the alarm generator 15 shown in FIG. 2 under the OR condition. When the condition is satisfied, an alarm signal is generated and a scram signal is output to the control rod drive controller 16. Then, a signal is output from the alarm generator drive circuit 26 to the alarm generator 17.

起動系の2系統のパルス計数回路は計数率が所定の設定値以上のとき、1系統の対数ペリオド回路はペリオド値が所定の値(数秒)以下になったとき判定回路13−1,13−2あるいは13−3が警報信号を出す。運転系の場合も同様に、微小直流電流増幅回路2系統の電流値が所定の値以上のとき、電流対数ペリオド回路のペリオド値が所定の値以下になったときに、判定回路13−4,13−5あるいは13−6によって異常信号を出す。安全系は、γ線レベルがバックグランドの所定の倍数(数倍)以上になったときに判定回路13−7が異常信号を出す。なお、ペリオドとは中性子数が指数関数的に上昇するとき、e倍に達するまでの時間である。   When the counting rate of the two pulse counting circuits of the starting system is equal to or greater than a predetermined set value, the logarithmic period circuit of one system is determined by the determination circuits 13-1 and 13- when the period value falls below a predetermined value (several seconds). 2 or 13-3 gives an alarm signal. Similarly, in the case of the operation system, when the current values of the two micro DC current amplifier circuits are equal to or greater than a predetermined value, and when the period value of the current log period circuit is equal to or less than the predetermined value, the determination circuit 13-4, An abnormal signal is output by 13-5 or 13-6. In the safety system, the determination circuit 13-7 outputs an abnormal signal when the γ-ray level becomes a predetermined multiple (several times) or more of the background. The period is the time required to reach e times when the number of neutrons increases exponentially.

本装置の健全性の確認には、低電圧電源10−1〜10−7または高電圧電源3−1〜3−7の電源電圧が所定の範囲を逸脱した場合に、モニタ信号が警報発生装置15内のインターフェース23を介して計算機24に伝達され、アラームが表示部27に表示される。また、回路系のゲインなどの確認は、検出器A1〜C1と増幅器5−1,5−2,5−7,6−3,7−4,7−5,8−6の間に切換スイッチ2−1〜2−7を設けて、警報発生装置15内の計算機24から切替信号をインターフェース23を介して切換スイッチ2−1〜2−7に伝達し、定期的に、基準パルス発生器4−1,4−2,4−3(起動系)および基準微小電流発生器9−4,9−5,9−6(運転系)を駆動し、入力に対する測定系のゲインを確認し、所定の範囲を逸脱した場合にはアラームを出し、点検ができるようになっている。   In order to check the soundness of this apparatus, when the power supply voltage of the low voltage power supply 10-1 to 10-7 or the high voltage power supply 3-1 to 3-7 deviates from a predetermined range, the monitor signal is sent to the alarm generation device. 15 is transmitted to the computer 24 via the interface 23 in the system 15, and an alarm is displayed on the display unit 27. Further, the confirmation of the gain of the circuit system is made between the detectors A1 to C1 and the amplifiers 5-1, 5-2, 5-7, 6-3, 7-4, 7-5 and 8-6. 2-1 to 2-7 are provided, and a changeover signal is transmitted from the computer 24 in the alarm generation device 15 to the changeover switches 2-1 to 2-7 via the interface 23, and periodically, the reference pulse generator 4 -1,4-2,4-3 (starting system) and reference minute current generators 9-4, 9-5, 9-6 (operating system) are driven, the gain of the measuring system with respect to the input is confirmed, and predetermined If it deviates from the range, an alarm is issued and inspection can be performed.

(実施例1)
本実施の形態の原子炉モニタ装置はさらに、測定系の健全性のチェック機能を強化し、測定系のいずれかで健全性に問題がある段階でアラームを出し、炉を停止して当該測定系の点検を行う。このことにより測定系の信頼度が向上し、誤信号によるスクラムにいたる事象の発生を防止する。
(Example 1)
The reactor monitoring apparatus of the present embodiment further enhances the soundness check function of the measurement system, issues an alarm when there is a problem with soundness in any of the measurement systems, stops the reactor and stops the measurement system. Perform the inspection. This improves the reliability of the measurement system and prevents the occurrence of an event that leads to scram due to an error signal.

すなわち、図3に示すように、炉心30に対して対称な位置に同種類の検出器(A1とA2、B1とB2)を配置し、同程度の出力が出るようにし、起動系の2つの検出器A1,A2の出力a1,a2、あるいは運転系の2つの検出器B1,B2の出力b1,b2が下記の(1)式あるいは(2)式を満たすときに測定系の異常と判断しアラームを出し、炉の運転を停止し、基準パルス発生器、基準微小電流発生器により回路系のゲインを確認し、検出器A1,A2,B1,B2の感度校正を行い問題箇所を特定し修理を行う。   That is, as shown in FIG. 3, the same type of detectors (A1 and A2, B1 and B2) are arranged symmetrically with respect to the core 30 so that the same level of output can be obtained. When the outputs a1 and a2 of the detectors A1 and A2 or the outputs b1 and b2 of the two detectors B1 and B2 in the operating system satisfy the following expression (1) or (2), it is determined that the measurement system is abnormal. An alarm is issued, the furnace operation is stopped, the gain of the circuit system is confirmed by the reference pulse generator and the reference minute current generator, the sensitivity calibration of the detectors A1, A2, B1, and B2 is performed to identify and repair the problem. I do.

|(a1−a2)/(a1+a2)|>α …(1)
|(b1−b2)/(b1+b2)|>β …(2)
(α、βは装置及び試験方法に依存するが、例えば0.1などの値)
| (A1-a2) / (a1 + a2) |> α (1)
| (B1-b2) / (b1 + b2) |> β (2)
(Α and β depend on the device and test method, but values such as 0.1)

(実施例2)
同種類の検出器を炉心に対して対称な位置に置くことができず、信号レベルが相違する場合は、2台の検出器の信号レベルの比率が下記(2)式あるいは(3)式のような一定の範囲を逸脱した場合に測定系の異常と判断し、上記と同じように問題箇所の特定を行い修理を行う。
(Example 2)
If the same type of detectors cannot be placed symmetrically with respect to the core and the signal levels are different, the ratio of the signal levels of the two detectors is the following formula (2) or (3): If it deviates from such a certain range, it is determined that the measurement system is abnormal, and the problem is identified and repaired in the same manner as described above.

α1<a1/a2<α2 …(3)
β1<b1/b1<β2 …(4)
(α1、α2、β1、β2は装置試験方法に依存するが、例えばa1/a2が0.5であるときはα1=0.4、α2=0.6とする。β1、β2も同様)
α1 <a1 / a2 <α2 (3)
β1 <b1 / b1 <β2 (4)
(Although α1, α2, β1, and β2 depend on the apparatus test method, for example, when a1 / a2 is 0.5, α1 = 0.4 and α2 = 0.6. The same applies to β1 and β2.)

(実施例3)
原子炉モニタ装置は一般的に、複数の検出器信号レベルが設定値を超えた場合に信号が出るようになっており、ORで警報を発報しスクラムしている。そして誤警報を防止するために、所定の時間内に成立したOR条件で信号を発生している。また、外来ノイズなど一過性の信号(単パルスで継続しない)が測定系に侵入し設定値を超える場合があり、設定値を所定の時間継続してオーバした信号だけを、モニタすべき信号とし対策している。この場合の問題点は、比較的短時間で大きな中性子を発生する初期バーストについて、継続時間が短い場合見落とすことである。
(Example 3)
In general, a reactor monitor device outputs a signal when a plurality of detector signal levels exceed a set value, and issues a scram by scoring with an OR. In order to prevent false alarms, a signal is generated under an OR condition established within a predetermined time. In addition, transient signals such as external noise (does not continue with a single pulse) may enter the measurement system and exceed the set value. Only signals that have exceeded the set value for a predetermined time must be monitored. And measures are taken. The problem in this case is that the initial burst that generates large neutrons in a relatively short time is overlooked if the duration is short.

本実施の形態の原子炉モニタ装置では、この時間間隔を入力信号レベルに応じて可変とする。すなわち、図4に示すように、判定回路13−1〜13−7に通常の設定値の比較回路32のほかに例えば設定値の数倍(例えば3倍)の電圧の比較回路36を併設し、通常の設定値の継続時間条件を遅延時間ΔT1、設定値が数倍の比較回路36の継続時間条件を遅延時間ΔT2とした場合、例えばΔT1=4秒、ΔT2=0.5秒となるよう設定ができるようにする。   In the reactor monitoring apparatus of the present embodiment, this time interval is variable according to the input signal level. That is, as shown in FIG. 4, in addition to the normal setting value comparison circuit 32, for example, a voltage comparison circuit 36 several times (for example, three times) the setting value is added to the determination circuits 13-1 to 13-7. Assuming that the normal set value duration time condition is the delay time ΔT1, and the set time value is several times the duration time condition of the comparison circuit 36, the delay time ΔT2, for example, ΔT1 = 4 seconds and ΔT2 = 0.5 seconds. Allow setting.

具体的には、検出器からの信号を分岐し、例えば、通常の比較回路32の設定値を1V、後者は0.5秒以上継続した場合はじめて異常と判断する。継続時間条件は、設定値を超えたとき継続時間をパルス幅とするパルス信号を作り、設定値以下になった時に基準信号を発生し、基準信号と継続時間パルスとのANDをとり、AND信号が発生した場合、「異常」信号の発生を阻止する。   Specifically, the signal from the detector is branched, and for example, when the normal setting value of the comparison circuit 32 is 1 V and the latter continues for 0.5 seconds or more, it is determined that there is an abnormality. The duration condition creates a pulse signal whose duration is the pulse width when the set value is exceeded, generates a reference signal when the set value falls below the set value, and takes the AND of the reference signal and the duration pulse, and the AND signal If this occurs, the generation of an “abnormal” signal is prevented.

(実施例4)
スクラムにいたる事象の予兆現象としては、運転系の中性子検出器B1,B2の微小直流電流増幅器7−4,7−5の電流出力にパルス的な信号が現れる場合がある。原因は、環境条件(主に湿度)による検出器B1,B2およびケーブルコネクタの高電圧印加部分の沿面放電、高電圧電源3−4,3−5の出力の乱れ、外来ノイズなどである。
Example 4
As a predictive phenomenon of an event leading to a scrum, there may be a case where a pulse-like signal appears in the current output of the minute DC current amplifiers 7-4 and 7-5 of the neutron detectors B1 and B2 in the operating system. The cause is creepage discharge at the high voltage application portions of the detectors B1 and B2 and the cable connector due to environmental conditions (mainly humidity), disturbance of the outputs of the high voltage power supplies 3-4 and 3-5, external noise, and the like.

通常、電流アンプには、パルス測定系が具備されていないが、本実施例では、図5に示すように、電流増幅回路40に並列にパルス増幅回路41とパルス計数回路42を設けて、検出器信号を分岐しパルスを計数し、判定回路43で所定の計数率以上になった場合アラームを出し、炉を停止して当該部分の点検修理を行い、スクラム事象の発生を未然に防止する。   Normally, the current amplifier is not provided with a pulse measurement system. In this embodiment, as shown in FIG. 5, a pulse amplifier circuit 41 and a pulse counter circuit 42 are provided in parallel with the current amplifier circuit 40 to detect the current amplifier. The detector signal is branched and the pulses are counted. When the determination circuit 43 exceeds a predetermined count rate, an alarm is issued, the furnace is stopped, the relevant part is inspected and repaired, and the occurrence of a scram event is prevented.

本発明の実施の形態の原子炉モニタ装置の基本構成を示すブロック図。1 is a block diagram showing a basic configuration of a reactor monitoring apparatus according to an embodiment of the present invention. 本発明の実施の形態の原子炉モニタ装置に備えられる中性子検出器の炉内配置を示す水平断面図。The horizontal sectional view which shows the arrangement | positioning in the reactor of the neutron detector with which the reactor monitoring apparatus of embodiment of this invention is equipped. 本発明の実施の形態の原子炉モニタ装置に備えられる警報発生装置の構成を示すブロック図(a)、および動作を示すタイムチャート(b)。The block diagram (a) which shows the structure of the alarm generator with which the reactor monitoring apparatus of embodiment of this invention is equipped, and the time chart (b) which show operation | movement. 本発明の実施の形態の原子炉モニタ装置に備えられる判定回路の構成を示すブロック図。The block diagram which shows the structure of the determination circuit with which the reactor monitoring apparatus of embodiment of this invention is equipped. 本発明の実施の形態の原子炉モニタ装置に備えられる微小直流電流増幅器および判定回路の構成を示すブロック図。The block diagram which shows the structure of the micro direct current amplifier with which the nuclear reactor monitoring apparatus of embodiment of this invention is equipped, and the determination circuit.

符号の説明Explanation of symbols

A1,A2,A3,B1,B2,B3…中性子検出器、C1…γ線検出器、2−1〜2−7…切換スイッチ、3−1〜3−7…高電圧電源、4−1,4−2,4−3…基準パルス発生器、5−1,5−2,5−7…パルス増幅器、6−3…パルス対数ペリオド増幅器、7−4,7−5…微小直流電流増幅器、8−6…電流対数ペリオド増幅器、9−4,9−5,9−6…基準微小電流発生器、10−1〜10−7…低電圧電源、11−1,11−2…パルス計数回路、12−1〜12−7…電源電圧モニタ回路、13−1〜13−7…判定回路、15…警報発生装置、16…制御棒駆動制御装置、17…警報発生器、20,21…ADC(アナログ/ディジタル変換)回路、22…ロジック回路、23…インターフェース、24…計算機、25…基準パルス・電流発生器駆動回路、26…警報発生器駆動回路、27…表示部、29…原子炉圧力容器、30…炉心、31…水密パイプ、32,36…比較回路、33,37…設定電圧発生回路、34,38…遅延パルス発生回路、35…AND回路、40…電流増幅器、41…パルス増幅回路、42…パルス計数回路、43…判定回路。   A1, A2, A3, B1, B2, B3 ... neutron detector, C1 ... γ-ray detector, 2-1 to 2-7 ... changeover switch, 3-1 to 3-7 ... high voltage power supply, 4-1, 4-2, 4-3, reference pulse generator, 5-1, 5-2, 5-7, pulse amplifier, 6-3, pulse logarithmic period amplifier, 7-4, 7-5, minute DC current amplifier, 8-6... Current logarithmic period amplifier, 9-4, 9-5, 9-6... Reference minute current generator, 10-1 to 10-7... Low voltage power supply, 11-1, 11-2. , 12-1 to 12-7 ... power supply voltage monitor circuit, 13-1 to 13-7 ... determination circuit, 15 ... alarm generator, 16 ... control rod drive controller, 17 ... alarm generator, 20, 21 ... ADC (Analog / digital conversion) circuit, 22 ... logic circuit, 23 ... interface, 24 ... computer, 2 Reference pulse / current generator drive circuit, 26 Alarm generator drive circuit, 27 Display unit, 29 Reactor pressure vessel, 30 Core, 31 Water-tight pipe, 32, 36 Comparison circuit, 33, 37 Setting voltage generation circuit, 34, 38 ... delay pulse generation circuit, 35 ... AND circuit, 40 ... current amplifier, 41 ... pulse amplification circuit, 42 ... pulse counting circuit, 43 ... determination circuit.

Claims (3)

原子炉内に設置された起動系の中性子検出器、運転系の中性子検出器および安全系のγ線検出器の出力信号によって前記原子炉の異常を監視する原子炉モニタ装置において、炉心に対して対称な位置に同種類の検出器を配置して同程度の出力が出るようにし、前記同種類の検出器の出力k1,k2が所定値αに対して|(k1−k2)/(k1+k2)|>αであるとき、測定系の異常と判断し警報を出す機能を有することを特徴とする原子炉モニタ装置。   In a reactor monitoring apparatus that monitors abnormalities of the reactor by output signals of a starting neutron detector, an operating neutron detector, and a safety γ-ray detector installed in the reactor, The same kind of detectors are arranged at symmetrical positions so that the same level of output is obtained, and the outputs k1 and k2 of the same kind of detectors are | (k1−k2) / (k1 + k2) with respect to a predetermined value α. A reactor monitoring device characterized by having a function of judging that the measurement system is abnormal and issuing an alarm when |> α. 原子炉内に設置された起動系の中性子検出器、運転系の中性子検出器および安全系のγ線検出器の出力信号によって前記原子炉の異常を監視する原子炉モニタ装置において、前記検出器の出力信号が第1の設定値を所定時間継続してオーバした場合に異常信号を出す第1の比較回路と、前記第1の設定値より大きい値を第2の設定値とし前記所定時間よりも短い判別時間を有して前記出力信号を分岐して入力される第2の比較回路とを備えていることを特徴とする原子炉モニタ装置。   In a reactor monitoring apparatus that monitors an abnormality of the reactor by output signals of a starting neutron detector, an operating neutron detector, and a safety γ-ray detector installed in a nuclear reactor, the detector A first comparison circuit that outputs an abnormal signal when the output signal continuously exceeds the first set value for a predetermined time, and a value larger than the first set value is set as a second set value, which is longer than the predetermined time. A reactor monitoring apparatus comprising: a second comparison circuit that branches and outputs the output signal with a short discrimination time. 原子炉内に設置された起動系の中性子検出器、運転系の中性子検出器および安全系のγ線検出器の出力信号によって前記原子炉の異常を監視する原子炉モニタ装置において、前記運転系の中性子測定系に、中性子検出信号パルスを計数するパルス計数回路と、前記パルスが所定の計数率を超えた場合に信号を出力する判定回路とを備えていることを特徴とする原子炉モニタ装置。   In a reactor monitoring apparatus that monitors an abnormality of the reactor by output signals of a starting neutron detector, an operating neutron detector, and a safety γ-ray detector installed in a nuclear reactor, the operating system A reactor monitoring apparatus comprising: a pulse counting circuit that counts neutron detection signal pulses in a neutron measurement system; and a determination circuit that outputs a signal when the pulses exceed a predetermined count rate.
JP2006184494A 2006-07-04 2006-07-04 Nuclear reactor monitoring unit Pending JP2008014705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184494A JP2008014705A (en) 2006-07-04 2006-07-04 Nuclear reactor monitoring unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184494A JP2008014705A (en) 2006-07-04 2006-07-04 Nuclear reactor monitoring unit

Publications (1)

Publication Number Publication Date
JP2008014705A true JP2008014705A (en) 2008-01-24

Family

ID=39071866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184494A Pending JP2008014705A (en) 2006-07-04 2006-07-04 Nuclear reactor monitoring unit

Country Status (1)

Country Link
JP (1) JP2008014705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066210A (en) * 2008-09-12 2010-03-25 Japan Atomic Energy Agency Nuclear yield measurement device, and method of controlling the same
JP2020153748A (en) * 2019-03-19 2020-09-24 住友重機械イオンテクノロジー株式会社 Ion implantation apparatus and ion implantation method
US11901089B2 (en) * 2017-07-12 2024-02-13 Société Technique Pour L'energie Atomique Nuclear reactor with in-vessel ex-core neutron detectors and corresponding control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066210A (en) * 2008-09-12 2010-03-25 Japan Atomic Energy Agency Nuclear yield measurement device, and method of controlling the same
US11901089B2 (en) * 2017-07-12 2024-02-13 Société Technique Pour L'energie Atomique Nuclear reactor with in-vessel ex-core neutron detectors and corresponding control method
JP2020153748A (en) * 2019-03-19 2020-09-24 住友重機械イオンテクノロジー株式会社 Ion implantation apparatus and ion implantation method
JP7195983B2 (en) 2019-03-19 2022-12-26 住友重機械イオンテクノロジー株式会社 Ion implanter and ion implantation method
US11569058B2 (en) 2019-03-19 2023-01-31 Sumitomo Heavy Industries Ion Technology Co., Ltd. Ion implanter and ion implantation method
US11923167B2 (en) 2019-03-19 2024-03-05 Sumitomo Heavy Industries Ion Technology Co., Ltd. Ion implanter and ion implantation method

Similar Documents

Publication Publication Date Title
JP3128832B2 (en) Plant diagnostic apparatus and plant diagnostic method
US9280516B2 (en) Method and system to validate wired sensors
JP6072977B2 (en) Radiation monitor
JP2008014705A (en) Nuclear reactor monitoring unit
JP6066835B2 (en) Radiation measurement equipment
JP6523877B2 (en) Reactor instrumentation system and reactor
JP2007225507A (en) Radioactivity inspection method and device
JPS6112236B2 (en)
KR101178707B1 (en) Boron Dilution Accident Alarm System using CUSUMCumulative Sum Control Chart and Method Thereof
Nystad et al. Crew decision-making in situations with degraded information
JP2004212337A (en) Radiation measuring system
JP7499734B2 (en) Radiation Monitor
Reddy et al. Design and development of enhanced criticality alarm system for nuclear applications
JPH1130689A (en) Leakage fuel assembly detector
JP2006133193A (en) Apparatus for monitoring control rod withdrawal
JP2012073874A (en) Alarm processing system
Shokr et al. Operating experience feedback from incidental fluctuations of the power measurement channel at ETRR-2
Ahn et al. Development of Failed Fuel Detection System for HANARO Fuel Test Loop
Kabra et al. Dependability analysis of proposed I&C architecture for safety systems of a large PWR
JP2022073439A (en) Radiation monitoring system and radiation monitoring method
JP2005164377A (en) Maintenance system for reactor output monitor
Burton et al. The use of boiling noise detection as a protection against faults in sub-assemblies in LMFBRs. Status report of work in the United Kingdom
Shin et al. Development of Digital Boron Dilution Alarm System (DBDAS)
Sakakibara et al. Off-Gas Nuclide Analysis System
KR101469177B1 (en) A method for managing digital output module of simulator for nuclear power generation protection system