JPH05346462A - Underwater acoustic simulation equipment - Google Patents

Underwater acoustic simulation equipment

Info

Publication number
JPH05346462A
JPH05346462A JP15456992A JP15456992A JPH05346462A JP H05346462 A JPH05346462 A JP H05346462A JP 15456992 A JP15456992 A JP 15456992A JP 15456992 A JP15456992 A JP 15456992A JP H05346462 A JPH05346462 A JP H05346462A
Authority
JP
Japan
Prior art keywords
underwater acoustic
calculation
underwater
computation
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15456992A
Other languages
Japanese (ja)
Inventor
Koji Uda
康治 右田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15456992A priority Critical patent/JPH05346462A/en
Publication of JPH05346462A publication Critical patent/JPH05346462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain underwater acoustic silulation equipment which can execute a high-speed arithmetic processing by saving energy of computation and by making the computation efficient, in the underwater acoustic simulation equipment generating an underwater acoustic simulation signal in a sonar system of an underwater running body. CONSTITUTION:Correlative phase computation for each vibrator 02 and underwater acoustic waveform computation not containing phase information among vibrators are executed separately from each other, and a correlative phase is given by a random number in compliance with a Rician distribution, while an offset value of the Rician distribution is determined by the position and the direction of an underwater acoustic source. By synthesizing the result of the correlative phase computation for each vibrator 02 with the result of the underwater acoustic waveform computation not containing the correlative phase information on each vibrator, an underwater acoustic signal for each vibrator is generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水中航行体のソーナー
システムにおける水中音響の模擬信号を発生する水中音
響模装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater acoustic simulation apparatus for generating a simulated underwater acoustic signal in a sonar system for underwater vehicles.

【0002】[0002]

【従来の技術】図1に水中航行体のソーナーシステムの
概略を示す。同図に示すように、水中音響は、受波器0
1に設けられた複数の振動子02を介して水中の圧力波
から電気信号へ変換される。振動子02は、水中へ音響
信号を出力し、又は、水中の音響信号を受け取る電気音
響変換器として使用される。振動子02は、例えば、図
2に示すように平面的に縦横に配列している。
2. Description of the Related Art FIG. 1 schematically shows a sonar system for underwater vehicles. As shown in the figure, underwater sound is
The pressure wave in the water is converted into an electric signal through the plurality of vibrators 02 provided in 1. The vibrator 02 is used as an electroacoustic transducer that outputs an acoustic signal into water or receives an acoustic signal in water. The oscillators 02 are arranged vertically and horizontally in a plane as shown in FIG. 2, for example.

【0003】電気信号に変換された水中音響は、受信器
03で、増幅及びビーム合成される。ビーム合成とは、
各振動子02からの出力に対し、位相シフト及び重み付
けを施し、指向特性を持った信号を形成することであ
る。ビーム形成後の水中音響は、信号処理器04に入力
され、様々な信号処理、例えば、フィルタリング等が行
われる。
The underwater sound converted into an electric signal is amplified and beam-synthesized by the receiver 03. What is beam synthesis?
The phase shift and weighting are applied to the output from each transducer 02 to form a signal having a directional characteristic. The underwater sound after beam formation is input to the signal processor 04, and various signal processes such as filtering are performed.

【0004】従来、このような水中航行体のソーナーシ
ステムに対し、水中音響を模擬してソーナーシステムの
応答性を評価する場合、ビーム合成に対応した模擬信号
を信号処理器04へ入力していた。
Conventionally, in the case of evaluating the response of the sonar system by simulating the underwater sound with respect to the sonar system of such an underwater vehicle, a simulated signal corresponding to beam synthesis is input to the signal processor 04. ..

【0005】その模擬信号を生成するための計算アルゴ
リズムを図3に示す。同図に示すように、プロセッサ1
でレーレー分布に従う乱数を発生して残響波形をランダ
ム化すると共にプロセッサ2で残響(体積、海面、海
底)のレベル計算及び各ビームの相関位相を計算し、更
に、プロセッサ3でそれらを合成して残響波形を計算し
出力している。残響とは、アクティブソーナーにおい
て、主として海面、海底又は海中の散乱体による散乱音
がある時間受音点で継続して観測されることをいう。
A calculation algorithm for generating the simulated signal is shown in FIG. As shown in FIG.
, A random number according to the Rayleigh distribution is generated to randomize the reverberation waveform, and the processor 2 calculates the level of reverberation (volume, sea surface, seabed) and the correlation phase of each beam, and further synthesizes them by the processor 3. The reverberation waveform is calculated and output. Reverberation refers to continuous observation mainly by the active sonar at the sound receiving point where there is sound scattered mainly by the sea surface, the sea floor, or the underwater scatterer.

【0006】図4に計算のタイムチャートを示す。同図
に示すように、各プロセッサ1,2,3は、第1回目、
第2回目、第3回目…の計算を計算を繰り返しており、
その計算周期tsは、最大でも数10msecである。
FIG. 4 shows a calculation time chart. As shown in the figure, each processor 1, 2, 3
The calculation of the second time, the third time ... Is repeated,
The calculation cycle t s is several tens of msec at the maximum.

【0007】[0007]

【発明が解決しようとする課題】近年、ソーナーシステ
ムの新しい技術として、振動子に入力される水中音響に
対して任意の指向性を持つ音響信号を生成するアダプタ
ビームフォーミング(ABFと略される)が開発されて
いる。
In recent years, as a new technology of a sonar system, adapter beamforming (abbreviated as ABF) which generates an acoustic signal having arbitrary directivity with respect to underwater acoustic input to an oscillator. Is being developed.

【0008】しかし、上述した従来の模擬方法は、ビー
ムに対応した模擬信号を信号処理器04へ入力している
ため、そのような新しいソーナーシステムであるアダプ
タビームフォーミングを模擬することはできなかった。
そこで、振動子02に対応した模擬信号を受信器03へ
入力する模擬方法が検討されている。
However, in the above-described conventional simulation method, since the simulation signal corresponding to the beam is input to the signal processor 04, it is not possible to simulate the adapter beamforming which is such a new sonar system. ..
Therefore, a simulation method of inputting a simulation signal corresponding to the oscillator 02 to the receiver 03 is being studied.

【0009】ところが、この模擬方法は、振動子02の
相関位相を考慮する必要があるため上記模擬方法に比較
し、10倍近い演算量が必要となると予想されている。
従って、この模擬方法では、高速演算処理が重要課題と
なっていた。
However, since it is necessary to consider the correlation phase of the oscillator 02, this simulation method is expected to require a calculation amount that is about 10 times that of the above simulation method.
Therefore, in this simulation method, high-speed arithmetic processing has been an important issue.

【0010】本発明は、上記従来技術に鑑みてなされた
ものであり、計算の省力化及び効率化を図ることにより
高速演算処理を行うことのできる水中音響模擬装置を提
供することを目的とするものである。
The present invention has been made in view of the above prior art, and an object of the present invention is to provide an underwater acoustic simulation apparatus capable of performing high-speed arithmetic processing by saving labor and efficiency of calculation. It is a thing.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するため、次のような手段を採用した。 (1)各振動子それぞれの相関位相計算と、各振動子間
の位相情報を含まない水中音響波形計算とに分ける。 (2)相関位相は、Rician分布(オフセットガウ
ス分布)に従う乱数によって与える。Rician分布
のオフセット値は、水中音響の音源位置と方向によって
決まる。 (3)各振動子それぞれの相関位相計算結果と、各振動
子それぞれの相関位相情報を含まない水中音響波形計算
結果を合成して、各振動子それぞれの水中音響信号を生
成する。
In order to achieve the above object, the present invention employs the following means. (1) The calculation is divided into the correlation phase calculation of each transducer and the underwater acoustic waveform calculation that does not include the phase information between the transducers. (2) The correlation phase is given by a random number that follows the Rician distribution (offset Gaussian distribution). The offset value of the Rician distribution is determined by the sound source position and direction of the underwater sound. (3) The correlation phase calculation result of each transducer and the underwater acoustic waveform calculation result that does not include the correlation phase information of each transducer are combined to generate the underwater acoustic signal of each transducer.

【0012】[0012]

【作用】本発明では、計算の省力化としては、振動子は
それぞれ指向特性が同じであると見做して、水中音響の
波形計算を共通化した。これにより、そのまま計算する
場合に比較して、計算量は1/振動子数に省力化され
る。また、計算の効率化としては、残響レベル計算と各
振動子のそれぞれの相関位相計算を独立に行う並列計算
アルゴリズムとし、並列演算を可能とした。
In the present invention, in order to save the calculation labor, it is considered that the vibrators have the same directional characteristics, and the waveform calculation of the underwater sound is made common. As a result, the amount of calculation is reduced to 1 / number of transducers, as compared with the case where calculation is performed as it is. In order to improve the efficiency of the calculation, a parallel calculation algorithm that performs the reverberation level calculation and the correlation phase calculation for each transducer independently is used, and parallel calculation is enabled.

【0013】[0013]

【実施例】以下、本発明について、図面に示す実施例を
参照して詳細に説明する。図5に本発明の一実施例を示
す。同図に示すようにプロセッサ1はレーレー分布に従
う乱数を発生して残響波形をランダム化すると共にプロ
セッサ2は残響(体積、海面、海底)のレベル計算及び
各ビームの相関位相を計算し、更に、プロセッサ3はそ
れらを合成して残響波形を計算する。つまり、プロセッ
サ1,2,3で各振動子共通の残響波形を計算するので
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. FIG. 5 shows an embodiment of the present invention. As shown in the figure, the processor 1 generates random numbers according to the Rayleigh distribution to randomize the reverberation waveform, and the processor 2 calculates the level of reverberation (volume, sea surface, sea bottom) and the correlation phase of each beam, and further, The processor 3 synthesizes them and calculates the reverberation waveform. That is, the reverberation waveform common to each transducer is calculated by the processors 1, 2, and 3.

【0014】一方、プロセッサ4は、相関位相オフセッ
ト量を各振動子毎に計算すると共にプロセッサ5はガウ
ス乱数を発生させ、更にプロセッサ6はそれらを合成し
てRician分布乱数を発生させる。つまり、プロセ
ッサ4,5,6で各振動子間の相関位相を計算するので
ある。
On the other hand, the processor 4 calculates the correlation phase offset amount for each transducer, the processor 5 generates a Gaussian random number, and the processor 6 synthesizes them to generate a Rician distributed random number. That is, the processors 4, 5 and 6 calculate the correlation phase between the transducers.

【0015】更に、プロセッサ7は、プロセッサ3の出
力とプロセッサ6の出力を合成して位相シフトが各振動
子毎に計算する。つまり、プロセッサ7では、残響波形
と相関位相を合成し、各振動子の残響波形の模擬信号を
生成するのである。プロセッサ7は、下式に示すように
残響波形と相関位相を合成する。 Si(t)= RV(t)exp(j(θi(δv(t)))) +Rs(t)exp(j(θi(δs(t)))) +RB(t)exp(j(θi(δB(t)))) 但し、Si:i番目の振動子の残響波形模擬信号 θi:i番目の振動子のRician分布の位相発生関
数 RV,Rs,RB:体積、海面、海底の残響の複素波形 δv(t),δs(t),δB(t):Rician分布
のオフセット値 (音源位置と向きにより決まる。)
Further, the processor 7 synthesizes the output of the processor 3 and the output of the processor 6 and calculates the phase shift for each transducer. That is, the processor 7 synthesizes the reverberation waveform and the correlation phase to generate a simulated signal of the reverberation waveform of each transducer. The processor 7 synthesizes the reverberation waveform and the correlation phase as shown in the following equation. S i (t) = R V (t) exp (j (θ iv (t)))) + R s (t) exp (j (θ is (t)))) + R B (t ) Exp (j (θ iB (t)))) where S i : Reverberation waveform simulated signal of the i-th oscillator θ i : Phase generation function R V , R of the Riian distribution of the i-th oscillator s, R B: volume, sea level, the complex waveform of the reverberation of the seabed δ v (t), δ s (t), δ B (t): offset value Rician distribution (determined by the sound source position and orientation.)

【0016】図6に、計算のタイムチャートを示す。同
図に示すように、プロセッサ1,2,3による残響レベ
ル計算と、プロセッサ4,5,6による各振動子それぞ
れの相関位相計算が独立に且つ並列に行われる。この
為、計算の効率化が図られ、計算周期tsは、比較的短
期間となっている。
FIG. 6 shows a calculation time chart. As shown in the figure, the reverberation level calculation by the processors 1, 2, 3 and the correlation phase calculation of each transducer by the processors 4, 5, 6 are performed independently and in parallel. Therefore, the efficiency of calculation is improved, and the calculation cycle t s is relatively short.

【0017】このように生成された模擬信号は、振動子
に対応したものであり、図1に示す受信器03に入力す
ることにより、アダプタビームフォーミングによるソー
ナーシステムに対しても模擬可能となる。
The simulated signal generated in this manner corresponds to the oscillator, and by inputting to the receiver 03 shown in FIG. 1, it becomes possible to simulate the sonar system by adapter beamforming.

【0018】このように本実施例では、計算の省力化と
して振動子はそれぞれ指向特性が同じであると見做し
て、水中音響の波形計算を共通化した。これにより、そ
のまま計算する場合に比較して、計算量は1/振動子数
に省力化される。また、計算の効率化として残響レベル
計算と各振動子のそれぞれの相関位相計算を独立に行う
並列計算アルゴリズムとし、並列演算を可能とした。
As described above, in the present embodiment, in order to save the calculation labor, it is considered that the vibrators have the same directional characteristics, and the waveform calculation of the underwater sound is made common. As a result, the amount of calculation is reduced to 1 / number of transducers, as compared with the case where calculation is performed as it is. In addition, as a calculation efficiency, a parallel calculation algorithm that performs the reverberation level calculation and the correlation phase calculation of each transducer independently has been made possible.

【0019】[0019]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明は、ソーナーシステムの新技術に対応
した水中音響の模擬信号を生成可能となり、水中航行体
の機能評価の範囲が拡大した。
As described above in detail based on the embodiments, the present invention makes it possible to generate a simulated signal of underwater acoustic corresponding to the new technology of the sonar system, and the range of the function evaluation of the underwater vehicle. Has expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】ソーナーシステムの概略説明図である。FIG. 1 is a schematic explanatory diagram of a sonar system.

【図2】振動子の配列を示す説明図である。FIG. 2 is an explanatory diagram showing an array of transducers.

【図3】従来の計算アルゴリズムを示す説明図である。FIG. 3 is an explanatory diagram showing a conventional calculation algorithm.

【図4】従来の計算タイムチャートである。FIG. 4 is a conventional calculation time chart.

【図5】本発明の一実施例に係る計算アルゴリズムを示
す説明図である。
FIG. 5 is an explanatory diagram showing a calculation algorithm according to an embodiment of the present invention.

【図6】本発明の一実施例に係る計算タイムチャートで
ある。
FIG. 6 is a calculation time chart according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2,3,4,5,6,7 プロセッサ 01 受波器 02 振動子 03 受信器 04 信号処理器 1,2,3,4,5,6,7 Processor 01 Receiver 02 Transducer 03 Receiver 04 Signal Processor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 各振動子それぞれの相関位相計算と、各
振動子間の位相情報を含まない水中音響波形計算とに分
けて計算し、相関位相はRician分布に従う乱数に
よって与え、Rician分布のオフセット値は水中音
響の音源位置と方向によって決め、且つ、各振動子それ
ぞれの相関位相計算結果と、各振動子それぞれの相関位
相情報を含まない水中音響波形計算結果を合成して、各
振動子それぞれの水中音響信号を生成することを特徴と
する水中音響模擬装置。
1. A correlation phase calculation for each transducer and a hydroacoustic waveform calculation that does not include phase information between the transducers are performed separately, and the correlation phase is given by a random number according to the Rician distribution, and the offset of the Rician distribution is calculated. The value is determined by the sound source position and direction of the underwater sound, and the correlation phase calculation result of each transducer and the underwater acoustic waveform calculation result that does not include the correlation phase information of each transducer are combined, and each transducer is calculated. An underwater acoustic simulator that generates the underwater acoustic signal.
JP15456992A 1992-06-15 1992-06-15 Underwater acoustic simulation equipment Pending JPH05346462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15456992A JPH05346462A (en) 1992-06-15 1992-06-15 Underwater acoustic simulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15456992A JPH05346462A (en) 1992-06-15 1992-06-15 Underwater acoustic simulation equipment

Publications (1)

Publication Number Publication Date
JPH05346462A true JPH05346462A (en) 1993-12-27

Family

ID=15587107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15456992A Pending JPH05346462A (en) 1992-06-15 1992-06-15 Underwater acoustic simulation equipment

Country Status (1)

Country Link
JP (1) JPH05346462A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234271A (en) * 1994-02-24 1995-09-05 Tech Res & Dev Inst Of Japan Def Agency Navigation system for unmanned, submerged cruise body
JP2002082161A (en) * 2000-09-08 2002-03-22 Mitsubishi Heavy Ind Ltd Vibrator-adaptive sound simulating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234271A (en) * 1994-02-24 1995-09-05 Tech Res & Dev Inst Of Japan Def Agency Navigation system for unmanned, submerged cruise body
JP2002082161A (en) * 2000-09-08 2002-03-22 Mitsubishi Heavy Ind Ltd Vibrator-adaptive sound simulating device
JP4568413B2 (en) * 2000-09-08 2010-10-27 三菱重工業株式会社 Sound simulator for transducers

Similar Documents

Publication Publication Date Title
Wilcox Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structures
US4270191A (en) Doppler current meter for use at great depths
CN104656073B (en) Three-dimensional imaging sonar wave beam forming method and implementation method on multi-core processor
CN114779170A (en) Shallow sea near-field sound source positioning method
KR100928249B1 (en) Device and method for simulation of the presence of one or more sound sources in virtual positions in three-dimensional acoustic space
JP2866930B2 (en) Underwater sound simulator
JPH06149275A (en) Three-dimensional virtual sound image forming device in consideration of three-dimensional virtual space information
JPH05346462A (en) Underwater acoustic simulation equipment
JP4568413B2 (en) Sound simulator for transducers
JP2679192B2 (en) Undersea terrain display
JP2976016B2 (en) High-speed simulation of underwater reverberation
CN113253284A (en) Active sonar interference fringe generation method based on target scattering characteristics
JPH1114443A (en) Method for measuring characteristic value of mode
JPH0660841B2 (en) Reverberation simulation method
Au Acoustic backscatter from a dolphin
JP3011584B2 (en) Initial sound field setting method
Farina et al. Numerical model of the sound field inside cars for the creation of virtual audible reconstructions
Hotkani et al. Underwater Target Localization using the Generalized Lloyd-Mirror Pattern
JPH0627227A (en) Simulation circuit for sonar echo
JPH03140887A (en) Simulating system of underwater reverberation
WO2004032744A1 (en) Ultrasonic diagnosis device
Kuroda et al. Model-based design of multibeam sonar system
Mellinger et al. Measuring regular whale call intervals with the summed autocorrelation
JPH06110484A (en) Reverberation adding method
Elias et al. Scattering by an open sphere: Exact solution and comparison with a boundary integral method.

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990608