JPH05346353A - Optical fiber temperature distribution sensor - Google Patents

Optical fiber temperature distribution sensor

Info

Publication number
JPH05346353A
JPH05346353A JP4155523A JP15552392A JPH05346353A JP H05346353 A JPH05346353 A JP H05346353A JP 4155523 A JP4155523 A JP 4155523A JP 15552392 A JP15552392 A JP 15552392A JP H05346353 A JPH05346353 A JP H05346353A
Authority
JP
Japan
Prior art keywords
temperature
intensity ratio
optical fiber
relationship
stokes light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4155523A
Other languages
Japanese (ja)
Other versions
JP2977373B2 (en
Inventor
Yuji Miyane
裕司 宮根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4155523A priority Critical patent/JP2977373B2/en
Publication of JPH05346353A publication Critical patent/JPH05346353A/en
Application granted granted Critical
Publication of JP2977373B2 publication Critical patent/JP2977373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To accurately calculate temperature by compensating the attenuation rate difference between anti-stokes light and stokes light and a temperature error by obtaining the temperature when an ideal intensity ratio is calculated using the relationship between the ideal intensity ratio and temperature. CONSTITUTION:Pulse light from a pulse light generator 1 passes through a directional property coupler 2 and then enters an optical fiber probe 3 for measuring temperature. Pulse light passing through the probe 3 is partially subjected to Raman scattering and then returns as rear scattering light. The rear scattering light passes through the coupler 3 again and then anti-stokes light and stokes light are taken out by an optical filter 4. The intensities of both lights are detected by a signal detector 4 and are converted into a time-series digital signal train. Then, temperature is calculated from the digital signal train by a signal processor 6. The temperatures of all measurement points are calculated by successively calculating the temperatures of near-by points whose temperatures were not calculated yet according to a point whose temperature was obtained using a known reference temperature and a specific function. The signal processor 6 is provided with the function.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバにパルス光
を入射し、光ファイバ内のラマン効果によって生じる後
方散乱光のアンチストークス光とストークス光の強度を
サンプリングして時系列データとして測定し、この時系
列データの順序が光ファイバに沿った距離に対応するこ
とを利用して、これらの強度データから光ファイバに沿
った温度分布を求める光ファイバ温度分布センサに係
り、特にアンチストークス光とストークス光の減衰率差
およびその温度依存性に起因する温度誤差を補償して、
正確な温度を算出し得るようにした極めて高精度の光フ
ァイバ温度分布センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the time-series data by injecting pulsed light into an optical fiber and sampling the intensity of anti-Stokes light and Stokes light of backscattered light generated by the Raman effect in the optical fiber. , The order of the time-series data corresponds to the distance along the optical fiber, and relates to the optical fiber temperature distribution sensor that obtains the temperature distribution along the optical fiber from these intensity data, especially with anti-Stokes light. By compensating for the temperature error caused by the Stokes' light attenuation difference and its temperature dependence,
The present invention relates to an extremely high-precision optical fiber temperature distribution sensor capable of calculating accurate temperature.

【0002】[0002]

【従来の技術】最近、光応用センシングの分野において
は、光ファイバ内のラマン効果を利用して、光ファイバ
に沿った温度分布を求める光ファイバ温度分布センサが
知られてきている。
2. Description of the Related Art Recently, in the field of optical sensing, there has been known an optical fiber temperature distribution sensor for obtaining a temperature distribution along an optical fiber by utilizing Raman effect in the optical fiber.

【0003】すなわち、この種の光ファイバ温度分布セ
ンサは、パルス光発生装置から発せられたパルス光を、
方向性結合器を通して、温度測定用の光ファイバプロー
ブに導く。光ファイバプローブを通るパルス光は、その
一部がラマン散乱され、後方散乱光として戻ってくる。
そして、後方散乱光は、もう一度方向性結合器を通り、
光フィルタによりアンチストークス光とストークス光を
取り出す。アンチストークス光とストークス光の強度
は、それぞれ信号検出装置で検出され、時系列のデジタ
ル信号列に変換する。最後に、信号処理装置によりデジ
タル信号列から温度を算出する。この場合、従来の光フ
ァイバ温度分布センサでは、強度信号を温度に変換する
際に、次のような方法を用いている。
That is, an optical fiber temperature distribution sensor of this type uses the pulsed light emitted from the pulsed light generator,
Through a directional coupler, it leads to an optical fiber probe for temperature measurement. Part of the pulsed light passing through the optical fiber probe is Raman-scattered and returns as backscattered light.
The backscattered light then passes through the directional coupler again,
The optical filter extracts the anti-Stokes light and the Stokes light. The intensities of the anti-Stokes light and the Stokes light are respectively detected by the signal detection device and converted into a time-series digital signal sequence. Finally, the signal processing device calculates the temperature from the digital signal sequence. In this case, the conventional optical fiber temperature distribution sensor uses the following method when converting the intensity signal into temperature.

【0004】すなわち、まず、アンチストークス光とス
トークス光の強度比をとる。Long(D.A.Long,"Raman Spe
ctroscopy",McGraw-Hi11,London,1977) によれば、アン
チストークス光とストークス光の強度比は、次の式
(1)で表わされる。 R(T)=(λs /λa 4 exp(−hcν/kT)・・・・・・(1)
That is, first, the intensity ratio of anti-Stokes light and Stokes light is taken. Long (DALong, "Raman Spe
ctroscopy ", McGraw-Hi11, London, 1977), the intensity ratio of anti-Stokes light and Stokes light is expressed by the following equation (1): R (T) = (λ s / λ a ) 4 exp (-hcν / kT) ・ ・ ・ ・ ・ ・ (1)

【0005】ただし、(1)式において、Tは温度、R
(T)はアンチストークス光とストークス光の強度比、
λs はストークス光の波長、λa はアンチストークス光
の波長、hはプランク定数、cは光速、νはラマンシフ
ト、kはボルツマン定数である。理想的には、この
(1)式の関係から温度を求めることができる。
In the equation (1), T is temperature and R is
(T) is the intensity ratio of anti-Stokes light and Stokes light,
λ s is the wavelength of Stokes light, λ a is the wavelength of anti-Stokes light, h is Planck's constant, c is the speed of light, ν is Raman shift, and k is Boltzmann's constant. Ideally, the temperature can be calculated from the relation of this equation (1).

【0006】しかしながら、実際の測定では、強度比は
光検出装置の性能にばらつきが存在するため、絶対的な
強度比を測定することは困難であり、実際の装置で測定
される量は相対的な強度比になる。
However, in the actual measurement, it is difficult to measure the absolute intensity ratio because the intensity ratio varies in the performance of the photodetector, and the amount measured by the actual device is relatively small. The intensity ratio is

【0007】そこで、温度参照点を設定し、そこでの温
度を別手段によって求めることにより、全体の温度分布
を求める方法がよく知られている。通常は、上記(1)
式から導いたDakin(J.P.Dakin,D.J.Pratt,G.W.Bibby,an
d J.N.Ross,"Temperature Distribution Measurement U
sing Raman Ratio Thermometry",SPIE Vo1.566 Fiber O
pticand Laser Sensors III 249,1985) による、以下の
ような関係式を用いて温度を算出する。
Therefore, a method is well known in which a temperature reference point is set and the temperature thereat is obtained by another means to obtain the entire temperature distribution. Usually, the above (1)
Dakin (JPDakin, DJPratt, GWBibby, an derived from the formula
d JNRoss, "Temperature Distribution Measurement U
sing Raman Ratio Thermometry ", SPIE Vo1.566 Fiber O
pticand Laser Sensors III 249, 1985) to calculate the temperature using the following relational expression.

【0008】[0008]

【数4】 ただし、(2)式において、θは温度参照点での強度、
R´(θ)は温度参照点での観測強度比、R(T)は温
度を算出する点での観測強度比である。
[Equation 4] However, in the equation (2), θ is the strength at the temperature reference point,
R ′ (θ) is the observed intensity ratio at the temperature reference point, and R (T) is the observed intensity ratio at the temperature calculation point.

【0009】この(2)式を用いた方法では、アンチス
トークス光とストークス光の減衰率が等しいことを仮定
している。そのため、アンチストークス光、ストークス
光それぞれの減衰率の寄与は、(2)式には含まれてい
ない。
In the method using the equation (2), it is assumed that the attenuation rates of the anti-Stokes light and the Stokes light are equal. Therefore, the contributions of the respective attenuation rates of the anti-Stokes light and the Stokes light are not included in the equation (2).

【0010】しかしながら、実際には、アンチストーク
ス光とストークス光は波長が異なるため、減衰率は一般
に異なる。さらに、アンチストークス光とストークス光
の減衰率差は、実際には温度依存性を持っており、減衰
率差は一般には温度によって異なる。従って、かかる方
式により温度を算出すると、アンチストークス光とスト
ークス光の減衰率差、および減衰率差の温度依存性によ
る温度誤差を生じ、温度を正しく測定することができな
い。
However, in reality, since the wavelengths of anti-Stokes light and Stokes light are different, the attenuation factors are generally different. Further, the difference in attenuation rate between anti-Stokes light and Stokes light actually has temperature dependence, and the difference in attenuation rate generally differs depending on temperature. Therefore, when the temperature is calculated by such a method, a temperature error cannot be accurately measured due to a temperature error due to the difference in the attenuation rate between the anti-Stokes light and the Stokes light and the temperature dependence of the difference in the attenuation rate.

【0011】[0011]

【発明が解決しようとする課題】以上のように、従来の
光ファイバ温度分布センサにおいては、アンチストーク
ス光とストークス光の減衰率差、および減衰率差の温度
依存性による温度誤差を生じ、正確な温度を算出するこ
とができないという問題があった。
As described above, in the conventional optical fiber temperature distribution sensor, the temperature error due to the difference in the attenuation rate between the anti-Stokes light and the Stokes light and the temperature dependence of the difference in the attenuation rate occurs, and There was a problem that it was not possible to calculate the proper temperature.

【0012】本発明の目的は、アンチストークス光とス
トークス光の減衰率差およびその温度依存性に起因する
温度誤差を補償して、正確な温度を算出することが可能
な極めて高精度の光ファイバ温度分布センサを提供する
ことにある。
An object of the present invention is to provide an extremely high-precision optical fiber capable of calculating an accurate temperature by compensating for a temperature error caused by a difference in attenuation rate between anti-Stokes light and Stokes light and its temperature dependence. It is to provide a temperature distribution sensor.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めに、光ファイバにパルス光を入射し、光ファイバ内の
ラマン効果によって生じる後方散乱光のアンチストーク
ス光とストークス光の強度をサンプリングして時系列デ
ータとして測定し、当該時系列データの順序が光ファイ
バに沿った距離に対応することを利用して、これらの強
度データから光ファイバに沿った温度分布を求めるよう
にした光ファイバ温度分布センサにおいて、
In order to achieve the above object, pulsed light is incident on an optical fiber and the intensity of the backscattered anti-Stokes light and Stokes light generated by the Raman effect in the optical fiber is sampled. The temperature of the optical fiber is measured as time series data, and the temperature distribution along the optical fiber is calculated from these intensity data by utilizing the fact that the order of the time series data corresponds to the distance along the optical fiber. In the distribution sensor,

【0014】まず、請求項1に記載の発明では、アンチ
ストークス光とストークス光の強度比をサンプリングに
よる時系列データとして測定すると共に、少なくとも1
点の温度参照点の温度を別手段により求め、あらかじめ
求められた後方散乱された地点におけるアンチストーク
ス光とストークス光の理想的強度比と温度の関係を用い
て温度参照点での理想的強度比を求め、温度が既知であ
る測定点近傍の複数個の測定点のそれぞれの強度比デー
タと、理想的強度比と温度の関係との間に成り立つあら
かじめ求められた光ファイバ中のアンチストークス光と
ストークス光の減衰率差と温度の関係を含む関係式を用
いて、既に温度と理想的強度比が算出されているかまた
は別手段により求められている測定点での強度比データ
からその近傍のまだ温度を算出していない測定点での理
想的強度比を算出し、当該算出した理想的強度比から理
想的強度比と温度の関係を用いて理想的強度比を算出し
た点での温度を求める温度算出手段を備えて構成してい
る。
In the first aspect of the present invention, the intensity ratio of anti-Stokes light and Stokes light is measured as time-series data by sampling, and at least 1
The temperature of the reference point is obtained by another means, and the ideal intensity ratio at the temperature reference point is calculated by using the relationship between the ideal intensity ratio of anti-Stokes light and Stokes light at the back-scattered point obtained in advance and the temperature. The intensity ratio data of each of a plurality of measurement points in the vicinity of the measurement point where the temperature is known, and the anti-Stokes light in the optical fiber obtained in advance that holds between the ideal intensity ratio and the relationship between temperature and Using the relational expression including the relationship between the Stokes' light attenuation difference and temperature, the temperature-ideal intensity ratio has already been calculated or is calculated by another means. Calculate the ideal intensity ratio at the measurement point where the temperature is not calculated, and calculate the temperature at the point where the ideal intensity ratio is calculated from the calculated ideal intensity ratio using the relationship between the ideal intensity ratio and temperature. It is configured to include a temperature calculation section that.

【0015】ここで、特に上記温度算出手段としては、
測定点の個数をN 、各測定点での強度比データを{R’
i ;i=1,2,…,N} 、理想的強度比の組を{Ri ;i=
1,2,…,N} 、各測定点での温度を{Ti ;i=1,2,…,
N} 、理想的強度比をR、温度をTとした時の理想的強
度比と温度の関係を表わす関数をR(T)、減衰率差を
α、温度をTとした時の減衰率差と温度の関係を表わす
関数をα(T)、隣り合った強度比データの間の距離を
△xとした場合、温度が既知である測定点近傍の複数個
の測定点のそれぞれの強度比データと、理想的強度比と
温度の関係との間に成り立つ減衰率差と温度の関係を含
む関係式として、
Here, in particular, as the temperature calculating means,
The number of measurement points is N, and the intensity ratio data at each measurement point is {R '
i ; i = 1,2, ..., N}, and the set of ideal intensity ratios is {R i ; i =
1,2, ..., N}, the temperature at each measurement point is {T i ; i = 1,2, ...,
N}, R is the ideal intensity ratio, R (T) is the function that represents the relationship between the ideal intensity ratio and temperature when T is the temperature, T is the attenuation rate difference, and α is the attenuation rate difference when the temperature is T. Where α (T) is a function representing the relationship between temperature and temperature, and Δx is the distance between adjacent intensity ratio data, the intensity ratio data of each of a plurality of measurement points near the measurement point whose temperature is known. And as a relational expression including the relationship between the attenuation rate difference and the temperature, which holds between the ideal intensity ratio and the temperature,

【0016】[0016]

【数5】 のうちの少なくとも1つを用いて温度を求めるようにし
ている。
[Equation 5] At least one of them is used to determine the temperature.

【0017】また、上記温度算出手段としては、測定点
の個数をN 、各測定点での強度比データを{R’i ;i
=1,2,…,N} 、理想的強度比の組を{Ri ;i=1,2,
…,N}、各測定点での温度を{Ti ;i=1,2,…,N} 、
理想的強度比をR、温度をTとした時の理想的強度比と
温度の関係を表わす関数をR(T)、減衰率差をα、温
度をTとした時の減衰率差と温度の関係を表わす関数を
α(T)、隣り合った強度比データの間の距離を△xと
した場合、温度が既知である測定点近傍の複数個の測定
点のそれぞれの強度比データと、理想的強度比と温度の
関係との間に成り立つ減衰率差と温度の関係を含む関係
式として、
As the temperature calculation means, the number of measurement points is N, and the intensity ratio data at each measurement point is {R 'i; i.
= 1,2, ..., N}, the set of ideal intensity ratios is {R i ; i = 1,2,
…, N}, the temperature at each measurement point is {T i ; i = 1,2, ..., N},
R (T) is a function that represents the relationship between the ideal intensity ratio and temperature when R is the ideal intensity ratio and T is the temperature, and α is the attenuation rate difference and α is the attenuation rate difference when the temperature is T. When the function representing the relationship is α (T) and the distance between adjacent intensity ratio data is Δx, the intensity ratio data of each of a plurality of measurement points near the measurement point where the temperature is known and the ideal As a relational expression including the relationship between the attenuation rate difference and the temperature, which holds between the relative intensity ratio and the temperature,

【0018】[0018]

【数6】 のうちの少なくとも1つを用いて温度を求めるようにし
ている。
[Equation 6] At least one of them is used to determine the temperature.

【0019】一方、請求項4に記載の発明では、アンチ
ストークス光とストークス光の強度比をサンプリングに
よる時系列データとして測定すると共に、少なくとも1
点の温度参照点の温度を別手段により求め、温度が既知
である測定点近傍の複数個の測定点のそれぞれの強度比
データと、温度と、あらかじめ求められた後方散乱され
た地点におけるアンチストークス光とストークス光の理
想的強度比と温度の関係との間に成り立つあらかじめ求
められた光ファイバ中のアンチストークス光とストーク
ス光の減衰率差と温度の関係を含む関係式を用いて、既
に温度が算出されているかまたは別手段により求められ
ている測定点での温度からその近傍のまだ温度を算出し
ていない測定点での温度を求める温度算出手段を備えて
構成している。
On the other hand, in the invention described in claim 4, the intensity ratio of anti-Stokes light and Stokes light is measured as time-series data by sampling, and at least 1
Temperature of the point The temperature of the reference point is obtained by another means, and the intensity ratio data of each of the multiple measurement points near the measurement point where the temperature is known, the temperature, and the anti-Stokes at the previously determined backscattered point The relationship between the ideal intensity ratio of light and Stokes light and the relationship between temperature and the relationship between temperature and the relationship between temperature and the anti-Stokes light and Stokes light in the optical fiber obtained in advance is used to calculate the temperature. Is calculated or is obtained by another means from the temperature at the measurement point, the temperature calculation means for obtaining the temperature at the measurement point in the vicinity where the temperature has not been calculated yet is provided.

【0020】ここで、特に上記温度算出手段としては、
測定点の個数をN 、各測定点での強度比データを{R’
i ;i=1,2,…,N} 、理想的強度比の組を{Ri ;i=
1,2,…,N} 、各測定点での温度を{Ti ;i=
1,2,…,N} 、理想的強度比をR、温度をTとした時の理
想的強度比と温度の関係を表わす関数をR(T)、減衰
率差をα、温度をTとした時の減衰率差と温度の関係を
表わす関数をα(T)、隣り合った強度比データの間の
距離を△xとした場合、温度が既知である測定点近傍の
複数個の測定点のそれぞれの強度比データと、温度と、
理想的強度比と温度の関係との間に成り立つ減衰率差と
温度の関係を含む関係式として、
Here, particularly as the temperature calculating means,
The number of measurement points is N, and the intensity ratio data at each measurement point is {R '
i ; i = 1,2, ..., N}, and the set of ideal intensity ratios is {R i ; i =
1, 2, ..., N}, the temperature at each measurement point is {T i ; i =
1,2, ..., N}, where R is the ideal intensity ratio and R is the temperature, and T is the function that represents the relationship between the ideal intensity ratio and temperature, the attenuation rate difference is α, and the temperature is T. When α (T) is the function that expresses the relationship between the temperature difference and the attenuation rate difference, and Δx is the distance between adjacent intensity ratio data, a plurality of measurement points near the temperature measurement point are known. Each intensity ratio data, temperature,
As a relational expression including the relationship between the attenuation rate difference and the temperature that holds between the ideal intensity ratio and the temperature,

【0021】[0021]

【数7】 のうちの少なくとも1つを用いて温度を求めるようにし
ている。
[Equation 7] At least one of them is used to determine the temperature.

【0022】[0022]

【作用】従って、まず、請求項1に記載の発明の光ファ
イバ温度分布センサにおいては、アンチストークス光と
ストークス光の強度比がサンプリングによる時系列デー
タとして測定されると共に、少なくとも1点の温度参照
点の温度が別手段により求められ、あらかじめ求めた後
方散乱された地点におけるアンチストークス光とストー
クス光の理想的強度比と温度の関係を用いて温度参照点
での理想的強度比が求められる。そして、温度が既知で
ある測定点近傍の複数個の測定点のそれぞれの強度比デ
ータと、理想的強度比と温度の関係との間に成り立つあ
らかじめ求めた光ファイバ中のアンチストークス光とス
トークス光の減衰率差と温度の関係を含む関係式を用い
て、既に温度と理想的強度比が算出されているかまたは
別手段により求められている測定点での強度比データか
らその近傍のまだ温度を算出していない測定点での理想
的強度比が算出され、この算出した理想的強度比から理
想的強度比と温度の関係を用いて理想的強度比を算出し
た点での温度が求められることにより、アンチストーク
ス光とストークス光の減衰率差、およびその温度依存性
に起因する温度誤差を補償し、正確な温度を算出するこ
とができる。
Therefore, first, in the optical fiber temperature distribution sensor according to the first aspect of the present invention, the intensity ratio of the anti-Stokes light and the Stokes light is measured as time series data by sampling, and at least one temperature reference is made. The temperature of the point is obtained by another means, and the ideal intensity ratio at the temperature reference point is obtained by using the relationship between the ideal intensity ratio of the anti-Stokes light and the Stokes light at the previously backscattered point and the temperature. Then, the intensity ratio data of each of a plurality of measurement points in the vicinity of the measurement point where the temperature is known, and the anti-Stokes light and the Stokes light in the optical fiber obtained in advance that holds between the relationship between the ideal intensity ratio and the temperature. Using the relational expression including the relationship between the attenuation rate difference and the temperature, the temperature and the ideal intensity ratio have already been calculated or the intensity ratio data at the measurement point obtained by another means can be used to calculate The ideal intensity ratio at the measurement points that have not been calculated is calculated, and the temperature at the point where the ideal intensity ratio is calculated using the relationship between the ideal intensity ratio and temperature is calculated from this calculated ideal intensity ratio. With this, it is possible to compensate the temperature error due to the difference between the attenuation rates of the anti-Stokes light and the Stokes light and the temperature dependence thereof, and calculate the accurate temperature.

【0023】一方、請求項4に記載の発明の光ファイバ
温度分布センサにおいては、アンチストークス光とスト
ークス光の強度比がサンプリングによる時系列データと
して測定されると共に、少なくとも1点の温度参照点の
温度が別手段により求められ、温度が既知である測定点
近傍の複数個の測定点のそれぞれの強度比データと、温
度と、あらかじめ求めた後方散乱された地点におけるア
ンチストークス光とストークス光の理想的強度比と温度
の関係との間に成り立つあらかじめ求めた光ファイバ中
のアンチストークス光とストークス光の減衰率差と温度
の関係を含む関係式を用いて、既に温度が算出されてい
るかまたは別手段により求められている測定点での温度
からその近傍のまだ温度を算出していない測定点での温
度が求められることにより、アンチストークス光とスト
ークス光の減衰率差、およびその温度依存性に起因する
温度誤差を補償し、正確な温度を算出することができ
る。
On the other hand, in the optical fiber temperature distribution sensor of the fourth aspect of the present invention, the intensity ratio of anti-Stokes light and Stokes light is measured as time-series data by sampling, and at least one temperature reference point The temperature is obtained by another means, and the intensity ratio data for each of the multiple measurement points near the measurement point where the temperature is known, the temperature, and the ideal anti-Stokes light and Stokes light at the backscattered point obtained in advance The temperature has already been calculated or calculated using a relational expression that includes the relationship between the temperature difference between the anti-Stokes light and the Stokes light in the optical fiber, which is obtained in advance, and that holds between the dynamic intensity ratio and the temperature. The temperature at the measurement point that has not yet been calculated can be calculated from the temperature at the measurement point obtained by the method. The attenuation index difference of the anti-Stokes light and the Stokes light, and to compensate for temperature errors due to the temperature dependence, it is possible to calculate an accurate temperature.

【0024】[0024]

【実施例】以下、本発明の実施例について図面を参照し
て詳細に説明する。図1は、第1の発明の実施例による
光ファイバ温度分布センサの全体構成例を示すブロック
図である。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an example of the overall configuration of an optical fiber temperature distribution sensor according to the embodiment of the first invention.

【0025】すなわち、本第1の発明の実施例の光ファ
イバ温度分布センサは、図1に示すように、パルス光を
発生するパルス光発生装置1と、パルス光発生装置1か
らのパルス光を受光する方向性結合器2と、方向性結合
器2からのパルス光を受光する温度測定用の光ファイバ
プローブ3と、光ファイバプローブ3でラマン散乱され
て戻ってくる一部のパルス光を方向性結合器2を通して
受光し、アンチストークス光とストークス光を取り出す
光フィルタ4と、光フィルタ4からのアンチストークス
光とストークス光の強度をそれぞれ検出し、時系列のデ
ジタル信号列に変換する2つの信号検出装置5と、信号
検出装置5からのデジタル信号列より温度を算出する信
号処理装置6とから構成している。
That is, as shown in FIG. 1, the optical fiber temperature distribution sensor according to the first embodiment of the present invention provides a pulsed light generator 1 for generating pulsed light and a pulsed light from the pulsed light generator 1. Directional coupler 2 for receiving light, optical fiber probe 3 for temperature measurement for receiving pulsed light from directional coupler 2, and a part of pulsed light returned by Raman scattering by optical fiber probe 3 The optical filter 4 that receives the Stokes light and the anti-Stokes light through the rectifier 2, and the intensities of the anti-Stokes light and the Stokes light from the optical filter 4 are respectively detected and converted into a time series digital signal sequence. The signal detection device 5 and the signal processing device 6 that calculates the temperature from the digital signal train from the signal detection device 5 are included.

【0026】ここで、信号処理装置6は、アンチストー
クス光とストークス光の強度比をサンプリングによる時
系列データとして測定すると共に、少なくとも1点の温
度参照点の温度を別手段により求め、あらかじめ求めら
れた後方散乱された地点におけるアンチストークス光と
ストークス光の理想的強度比と温度の関係を用いて温度
参照点での理想的強度比を求め、温度が既知である測定
点近傍の複数個の測定点のそれぞれの強度比データと、
理想的強度比と温度の関係との間に成り立つあらかじめ
求められた光ファイバ中のアンチストークス光とストー
クス光の減衰率差と温度の関係を含む関係式を用いて、
既に温度と理想的強度比が算出されているかまたは別手
段により求められている測定点での強度比データからそ
の近傍のまだ温度を算出していない測定点での理想的強
度比を算出し、当該算出した理想的強度比から理想的強
度比と温度の関係を用いて理想的強度比を算出した点で
の温度を求める温度算出機能を有するものである。次
に、以上のように構成した本実施例の光ファイバ温度分
布センサの作用について説明する。
Here, the signal processing device 6 measures the intensity ratio of the anti-Stokes light and the Stokes light as time-series data by sampling, and at the same time obtains the temperature of at least one temperature reference point by another means and obtains it in advance. Using the relationship between the ideal intensity ratio of anti-Stokes light and Stokes light at the backscattered point and the temperature, the ideal intensity ratio at the temperature reference point is obtained, and a plurality of measurements near the measurement point where the temperature is known are obtained. Intensity ratio data for each point,
Using a relational expression that includes the relationship between the temperature difference between the anti-Stokes light and the Stokes light in the optical fiber, which is obtained in advance and holds between the ideal intensity ratio and the temperature,
Calculate the ideal intensity ratio at the measurement point where the temperature and the ideal intensity ratio have already been calculated or the intensity ratio data at the measurement point that has been obtained by another means have not yet calculated the temperature in the vicinity, It has a temperature calculation function for obtaining the temperature at the point where the ideal intensity ratio is calculated from the calculated ideal intensity ratio using the relationship between the ideal intensity ratio and the temperature. Next, the operation of the optical fiber temperature distribution sensor of the present embodiment configured as above will be described.

【0027】図1において、パルス光発生装置1から発
せられたパルス光は、方向性結合器2を通して、温度測
定用の光ファイバプローブ3に導かれる。光ファイバプ
ローブ3を通るパルス光は、その一部がラマン散乱さ
れ、後方散乱光として戻ってくる。この後方散乱光は、
もう一度方向性結合器2を通し、光フィルタ4によりア
ンチストークス光とストークス光が取り出される。この
アンチストークス光とストークス光の強度は、それぞれ
信号検出装置5で検出されて、時系列のデジタル信号列
に変換される。そして、信号処理装置6により、このデ
ジタル信号列から温度が算出される。この場合、信号処
理装置6では、次のような方法によって温度の算出が行
なわれる。 (a)第1の算出方法
In FIG. 1, the pulsed light emitted from the pulsed light generator 1 is guided to an optical fiber probe 3 for temperature measurement through a directional coupler 2. Part of the pulsed light passing through the optical fiber probe 3 is Raman-scattered and returns as backscattered light. This backscattered light is
The anti-Stokes light and the Stokes light are extracted by the optical filter 4 through the directional coupler 2 again. The intensities of the anti-Stokes light and the Stokes light are respectively detected by the signal detection device 5 and converted into a time-series digital signal sequence. Then, the signal processing device 6 calculates the temperature from the digital signal sequence. In this case, the signal processing device 6 calculates the temperature by the following method. (A) First calculation method

【0028】測定点の個数をN 、各測定点での強度比デ
ータを{R’i ;i=1,2,…,N} 、理想的強度比の組を
{Ri ;i=1,2,…,N} 、各測定点での温度を{Ti
i=1,2,…,N} 、理想的強度比をR、温度をTとした時
の理想的強度比と温度の関係を表わす関数をR(T)、
減衰率差をα、温度をTとした時の減衰率差と温度の関
係を表わす関数をα(T)、隣り合った強度比データの
間の距離を△xとした場合、温度が既知である測定点近
傍の複数個の測定点のそれぞれの強度比データと、理想
的強度比と温度の関係との間に成り立つ減衰率差と温度
の関係を含む関係式として、
The number of measurement points is N, the intensity ratio data at each measurement point is {R 'i; i = 1,2, ..., N}, and the set of ideal intensity ratios is {R i ; i = 1, 2, ..., N}, the temperature at each measurement point is {T i ;
i = 1,2, ..., N}, where R is the ideal intensity ratio and T is the temperature, a function representing the relationship between the ideal intensity ratio and temperature is R (T),
If the attenuation rate difference is α and the temperature is T, the function expressing the relationship between the attenuation rate difference and temperature is α (T), and the distance between adjacent intensity ratio data is Δx, the temperature is known. As a relational expression including the relationship between the attenuation rate difference and the temperature that holds between the intensity ratio data of a plurality of measurement points near a certain measurement point and the ideal intensity ratio and the temperature,

【0029】[0029]

【数8】 のうちの少なくとも1つを用いて温度が求められる。こ
こで、(3)式、(4)式は以下のような方法で導かれ
るものである。
[Equation 8] The temperature is determined using at least one of Here, the expressions (3) and (4) are derived by the following method.

【0030】距離x、温度T(x)で後方散乱されたア
ンチストークス光、ストークス光の散乱地点での強度を
それぞれIa (T(x ))、Is (T(x ))とする。
散乱地点での強度比R(T(x ))は、次式で求められ
る。
The intensities of the anti-Stokes light and the Stokes light back-scattered at the distance x and the temperature T (x) at the scattering points are Ia (T (x)) and Is (T (x)), respectively.
The intensity ratio R (T (x)) at the scattering point is calculated by the following equation.

【0031】[0031]

【数9】 [Equation 9]

【0032】実際の観測量は減衰の影響を受けたアンチ
ストークス光、ストークス光の強度、およびその強度比
である。これらをそれぞれIa ’(x )、Is ’(x
)、R’(x)とする。またアンチストークス光、スト
ークス光の減衰率を温度の関数としてそれぞれμ
a (T)、μs (T)とし、その減衰率差をα(T)と
すると、次の諸関係が成り立つ。
The actual observed quantities are the intensity of anti-Stokes light and Stokes light affected by the attenuation, and their intensity ratio. These are I a '(x), I s ' (x
), R ′ (x). Also, the attenuation factor of anti-Stokes light and Stokes light is μ as a function of temperature, respectively.
Letting a (T) and μ s (T) and the attenuation rate difference be α (T), the following relationships are established.

【0033】[0033]

【数10】 この(5)式を変換すると、次式が得られる。[Equation 10] By converting this equation (5), the following equation is obtained.

【0034】[0034]

【数11】 この式をxについて微分すると、次の式が得られる。[Equation 11] Differentiating this expression with respect to x gives the following expression.

【0035】[0035]

【数12】 [Equation 12]

【0036】ここでR’(x)は観測量であり、R
(T)とα(T)は関数形が与えられているものとする
と、(6)式はT(x)についての方程式として解け
ば、温度分布を求めることができる。しかし、(6)式
はT(x)を複雑な形で含んでいるため、解析的に解く
ことは困難である。そこで、より実状にあった解法とし
て以下の手法が用いられる。
Where R '(x) is the observed quantity, and R'
Assuming that functional forms of (T) and α (T) are given, the temperature distribution can be obtained by solving equation (6) as an equation for T (x). However, since equation (6) includes T (x) in a complicated form, it is difficult to solve analytically. Therefore, the following method is used as a more realistic solution method.

【0037】すなわち、実際に測定される強度比R’
(x)は連続ではなく、離散値R’i;i=1,2,…,N}
として与えられる。そこで、微分を差分に置き換え、
(6)式が離散値系の式に直される。実際には、(6)
式に対して以下の置き換えが行なわれ。
That is, the actually measured intensity ratio R '
(X) is not continuous, but discrete values R'i ; i = 1,2, ..., N}
Given as. So replace the derivative with the difference,
Equation (6) is converted into a discrete value type equation. In fact, (6)
The following substitutions are made to the expression:

【0038】[0038]

【数13】 以上の置き換えが行なわれ、これを変形すると上記
(3)式が得られる。また、(4)式についても、上記
と同様の方法で得られる。以上の(3)式、(4)式を
用いて温度を算出する具体的方法は、次の通りである。
[Equation 13] The above replacement is carried out, and by modifying this, the above equation (3) is obtained. The equation (4) can also be obtained by the same method as above. The specific method of calculating the temperature using the above equations (3) and (4) is as follows.

【0039】まず、測定点の内の任意の1点以上を温度
参照点とし、そこでの温度を別手段により求めておく。
また、理想的強度比と温度の関係を表わす関数R
(T)、減衰率差と温度の関係を表わす関数α(T)を
与えておく。ここで、R(T)は絶対強度比である必要
はなく、相対強度比でよいが、逆関数R-1(R)を一義
的に求められることが必要である。
First, any one or more of the measurement points is set as a temperature reference point, and the temperature at that point is obtained by another means.
Also, a function R representing the relationship between the ideal intensity ratio and temperature
(T), a function α (T) representing the relationship between the attenuation rate difference and temperature is given. Here, R (T) does not have to be an absolute intensity ratio but may be a relative intensity ratio, but it is necessary that the inverse function R −1 (R) be uniquely obtained.

【0040】いま、r番目の測定点が温度参照点であ
り、温度がTr であるとする。すると、そこでの理想的
強度比Rr は、Rr =R(Tr )により求められる。次
に、r+1 番目の測定点での理想的強度比Rr+1 を(3)
式を用いて求める。そして、r+1 番目の測定点の温度
は、式逆関数を用いてTr+1 =R-1(Rr+1 )により求
められる。同様に、(4)式を用いて、r-1 番目の温度
r-1 を求めることもできる。
It is now assumed that the r-th measurement point is the temperature reference point and the temperature is T r . Then, the ideal intensity ratio R r there is determined by R r = R (T r ). Next, the ideal intensity ratio R r + 1 at the r + 1-th measurement point is calculated by (3)
Calculate using an equation. Then, the temperature at the r + 1-th measurement point is obtained by T r + 1 = R −1 (R r + 1 ) using the inverse equation. Similarly, the r-1 th temperature T r-1 can be obtained by using the equation (4).

【0041】以後は、上述の方法を繰り返し適用して、
温度が求められた点からその1つ前あるいは1つ後のま
だ温度を算出していない点での温度を順番に算出するこ
とにより、全測定点での温度を算出することができる。 (b)第2の算出方法
Thereafter, the above method is repeatedly applied to
The temperatures at all the measurement points can be calculated by sequentially calculating the temperature at the point where the temperature has not been calculated yet one point before or after the point where the temperature was obtained. (B) Second calculation method

【0042】測定点の個数をN 、各測定点での強度比デ
ータを{R’i ;i=1,2,…,N} 、理想的強度比の組を
{Ri ;i=1,2,…,N} 、各測定点での温度を{Ti
i=1,2,…,N} 、理想的強度比をR、温度をTとした時
の理想的強度比と温度の関係を表わす関数をR(T)、
減衰率差をα、温度をTとした時の減衰率差と温度の関
係を表わす関数をα(T)、隣り合った強度比データの
間の距離を△xとした場合、温度が既知である測定点近
傍の複数個の測定点のそれぞれの強度比データと、理想
的強度比と温度の関係との間に成り立つ減衰率差と温度
の関係を含む関係式として、
[0042] The number of measurement points N, the intensity ratio data at each measurement point {R 'i; i = 1,2 , ..., N}, a set of ideal intensity ratio {R i; i = 1, 2, ..., N}, the temperature at each measurement point is {T i ;
i = 1,2, ..., N}, where R is the ideal intensity ratio and T is the temperature, a function representing the relationship between the ideal intensity ratio and temperature is R (T),
If the attenuation rate difference is α and the temperature is T, the function expressing the relationship between the attenuation rate difference and temperature is α (T), and the distance between adjacent intensity ratio data is Δx, the temperature is known. As a relational expression including the relationship between the attenuation rate difference and the temperature that holds between the intensity ratio data of a plurality of measurement points near a certain measurement point and the ideal intensity ratio and the temperature,

【0043】[0043]

【数14】 のうちの少なくとも1つを用いて温度が求められる。こ
こで、(7)式、(8)式は以下のような方法で導かれ
るものである。
[Equation 14] The temperature is determined using at least one of Here, the equations (7) and (8) are derived by the following method.

【0044】まず、前記(5)式は、光ファイバ内の任
意の位置で成り立つ。そこで、i番目の測定強度比R’
i を与える光が散乱された位置をxi 、そこでi+1 番目
の測定強度比R’i+1 を与える光が散乱された位置をx
i+1 とすると、(5)式よりそれぞれの次の関係が成り
立つ。
First, the expression (5) is established at an arbitrary position in the optical fiber. Therefore, the i-th measured intensity ratio R '
The position where the light giving i is scattered is x i , and the position where the light giving the i + 1-th measurement intensity ratio R ′ i + 1 is scattered is x
If i + 1 , the following relations are established from the equation (5).

【0045】[0045]

【数15】 これら2つの式の両辺の比をとると、次の式が得られ
る。
[Equation 15] Taking the ratio of both sides of these two equations, the following equation is obtained.

【0046】[0046]

【数16】 [Equation 16]

【0047】ここで、指数関数の中の積分に注意する。
上式の積分範囲で実際に強度比を観測している点はxi
とxi+1 だけであり、その間の領域での強度比は測定さ
れない。そこで、積分が台形公式による和に置き換えが
行なわれる。
Attention is now paid to the integral in the exponential function.
The point where the intensity ratio is actually observed in the integration range of the above equation is x i
And x i + 1 only, and the intensity ratio in the region between them is not measured. Therefore, the integral is replaced by the sum of trapezoidal formulas.

【0048】[0048]

【数17】 この式を(9)式に代入すると、上記(7)式が得られ
る。また、(8)式についても、上記と同様の方法で得
られる。以上の(7)式、(8)式を用いて温度を算出
する具体的方法は、次の通りである。
[Equation 17] By substituting this equation into the equation (9), the above equation (7) is obtained. The equation (8) can also be obtained by the same method as above. The specific method of calculating the temperature using the above equations (7) and (8) is as follows.

【0049】まず、測定点の内の任意の1点以上を温度
参照点とし、そこでの温度を別手段により求めておく。
また、理想的強度比と温度の関係を表わす関数R
(T)、減衰率差と温度の関係を表す関数α(T)を与
えておく。ここで、R(T)は絶対強度比である必要は
なく、相対強度比でよいが、逆関数R-1(R)を一義的
に求められることが必要である。
First, any one or more of the measurement points is set as a temperature reference point, and the temperature at that point is obtained by another means.
Also, a function R representing the relationship between the ideal intensity ratio and temperature
(T), a function α (T) representing the relationship between the attenuation rate difference and the temperature is given. Here, R (T) does not have to be an absolute intensity ratio but may be a relative intensity ratio, but it is necessary that the inverse function R −1 (R) be uniquely obtained.

【0050】温度を求める方法は、前述した(3)式、
(4)式から温度を導く具体的方法と似ている。すなわ
ち、(3)式と(7)式の形式的な違いは、(7)式の
右辺にTi+1 が含まれていることである。
The method for obtaining the temperature is as described above in equation (3),
It is similar to the specific method of deriving the temperature from the equation (4). That is, the formal difference between the expressions (3) and (7) is that T i + 1 is included on the right side of the expression (7).

【0051】そこで、第1近似として、右辺のTi+1
i に置き換えると、前述した(3)式、(4)式から
温度を導く具体的方法と同じ手法で温度を算出すること
ができる。通常は、これだけで十分な精度が得られる。
より高い精度を必要とする時は、次のような方法を用い
る。
Therefore, as a first approximation, when T i + 1 on the right side is replaced with T i , the temperature is calculated by the same method as the concrete method for deriving the temperature from the above-mentioned equations (3) and (4). You can Usually, this is enough accuracy.
When higher accuracy is required, the following method is used.

【0052】すなわち、i番目の温度Ti が既に求めら
れているものとし、そこからまだ算出していないi+1 番
目の温度Ti+1 を求めることを考える。まず、前述の方
法で第1の近似温度T(1) i+1 を求める。そして、
(7)式の右辺のTi+1 をT(1) i+1 に置き換えて計算
し、第2の近似温度T(2) i+1 を求める。以下、上記の
方法を繰り返し適用して、第nの近似温度T(n) i+1
求める。この繰り返しは何回行なってもよいが、通常は
第2の近似温度まで算出すれば、十分に高い精度が得ら
れる。また、繰り返しの収束を判定する手段を設けても
よい。また、(3)式、(4)式の指数関数の指数部
は、通常、その絶対値が1よりも小さいことを用いて、
指数関数を公式
That is, it is assumed that the i-th temperature T i has already been calculated, and the i + 1-th temperature T i + 1 that has not yet been calculated is calculated. First, the first approximate temperature T (1) i + 1 is obtained by the method described above. And
The second approximate temperature T (2) i + 1 is calculated by replacing T i + 1 on the right side of the equation (7) with T (1) i + 1 . Hereinafter, the above method is repeatedly applied to obtain the nth approximate temperature T (n) i + 1 . This repetition may be performed any number of times, but normally sufficiently high accuracy can be obtained by calculating up to the second approximate temperature. Further, a means for determining the repeated convergence may be provided. Further, the exponent part of the exponential function of the equations (3) and (4) usually has an absolute value smaller than 1,
Formula of exponential function

【0053】[0053]

【数18】 により任意の次数まで展開して、算出を高速化すること
もできる。
[Equation 18] Thus, the calculation can be speeded up by expanding to an arbitrary order.

【0054】なお、以上の例では、i番目の温度からi+
1 番目の温度を算出する方法を示したが、全く同様の方
法によりi番目の温度からi-1 番目の温度を算出するこ
ともできる。あとは、前述した(3)式、(4)式から
温度を導く具体的方法と同様にして、全測定点の温度を
求めることができる。次に、第2の発明の実施例につい
て説明する。本第2の発明の実施例の光ファイバ温度分
布センサは、前述した図1に示す構成と全く同様であ
り、信号処理装置6が有する温度算出機能のみである。
In the above example, from the i-th temperature to i +
Although the method of calculating the first temperature has been described, the i-1th temperature can be calculated from the i-th temperature by the completely same method. After that, the temperatures at all measurement points can be obtained in the same manner as in the specific method of deriving the temperature from the above-described equations (3) and (4). Next, an embodiment of the second invention will be described. The optical fiber temperature distribution sensor of the second embodiment of the present invention has exactly the same configuration as that shown in FIG. 1 and has only the temperature calculation function of the signal processing device 6.

【0055】すなわち、本第2の発明の実施例の信号処
理装置6は、アンチストークス光とストークス光の強度
比をサンプリングによる時系列データとして測定すると
共に、少なくとも1点の温度参照点の温度を別手段によ
り求め、温度が既知である測定点近傍の複数個の測定点
のそれぞれの強度比データと、温度と、あらかじめ求め
られた後方散乱された地点におけるアンチストークス光
とストークス光の理想的強度比と温度の関係との間に成
り立つあらかじめ求められた光ファイバ中のアンチスト
ークス光とストークス光の減衰率差と温度の関係を含む
関係式を用いて、既に温度が算出されているかまたは別
手段により求められている測定点での温度からその近傍
のまだ温度を算出していない測定点での温度を求める温
度算出機能を有するものである。
That is, the signal processing device 6 of the second embodiment of the present invention measures the intensity ratio of the anti-Stokes light and the Stokes light as time-series data by sampling, and at least the temperature of at least one temperature reference point. Intensity ratio data for multiple measurement points in the vicinity of the measurement point where temperature is known by different means, temperature, and ideal intensity of anti-Stokes light and Stokes light at the backscattered point obtained in advance The temperature has already been calculated by using a relational expression including the relationship between the temperature and the attenuation factor difference between the anti-Stokes light and the Stokes light in the optical fiber, which is obtained in advance and holds between the ratio and the temperature. It has a temperature calculation function that calculates the temperature at the measurement point that has not yet been calculated from the temperature at the measurement point calculated by It is intended.

【0056】次に、以上のように構成した本実施例の光
ファイバ温度分布センサの作用について説明する。な
お、上記実施例と同一作用についてはその説明を省略
し、ここでは異なる部分についてのみ述べる。すなわ
ち、信号処理装置6では、次のような方法によって温度
の算出が行なわれる。
Next, the operation of the optical fiber temperature distribution sensor of the present embodiment constructed as described above will be explained. The description of the same operation as that of the above embodiment will be omitted, and only different parts will be described here. That is, in the signal processing device 6, the temperature is calculated by the following method.

【0057】測定点の個数をN 、各測定点での強度比デ
ータを{R’i ;i=1,2,…,N} 、理想的強度比の組を
{Ri ;i=1,2,…,N} 、各測定点での温度を{Ti
i=1,2,…,N} 、理想的強度比をR、温度をTとした時
の理想的強度比と温度の関係を表わす関数をR(T)、
減衰率差をα、温度をTとした時の減衰率差と温度の関
係を表わす関数をα(T)、隣り合った強度比データの
間の距離を△xとした場合、温度が既知である測定点近
傍の複数個の測定点のそれぞれの強度比データと、温度
と、理想的強度比と温度の関係との間に成り立つ減衰率
差と温度の関係を含む関係式として、
The number of measurement points is N, the intensity ratio data at each measurement point is {R ′ i ; i = 1,2, ..., N}, and the set of ideal intensity ratios is {R i ; i = 1, 2, ..., N}, the temperature at each measurement point is {T i ;
i = 1,2, ..., N}, where R is the ideal intensity ratio and T is the temperature, a function representing the relationship between the ideal intensity ratio and temperature is R (T),
If the attenuation rate difference is α and the temperature is T, the function expressing the relationship between the attenuation rate difference and temperature is α (T), and the distance between adjacent intensity ratio data is Δx, the temperature is known. Intensity ratio data of each of a plurality of measurement points in the vicinity of a certain measurement point, temperature, as a relational expression including the relationship between the attenuation rate difference and the temperature that holds between the ideal intensity ratio and the temperature,

【0058】[0058]

【数19】 のうちの少なくとも1つを用いて温度が求められる。こ
こで、(11)式、(12)式は以下のような方法で導
かれるものである。まず、前記(6)式の中のRをxで
微分する部分は、次のように分解することができる。
[Formula 19] The temperature is determined using at least one of Here, the equations (11) and (12) are derived by the following method. First, the part of the equation (6) that differentiates R with respect to x can be decomposed as follows.

【0059】[0059]

【数20】 この関係を用いると、(6)式を次のように変形するこ
とができる。
[Equation 20] Using this relationship, equation (6) can be modified as follows.

【0060】[0060]

【数21】 [Equation 21]

【0061】あとは、前述した(6)式から前記(3)
式、(4)式を導いた時と同様の方法により離散値系へ
の置き換えが行なわれ、変形すると上記(11)式、
(12)式が得られる。以上の(11)式、(12)式
を用いて温度を算出する具体的方法は、次の通りであ
る。
Then, from the above equation (6), the above (3)
Equation (4) is replaced with a discrete value system by the same method as when the equation (4) is derived.
Expression (12) is obtained. The specific method of calculating the temperature using the above equations (11) and (12) is as follows.

【0062】まず、測定点の内の任意の1点以上を温度
参照点とし、そこでの温度を別手段により求めておく。
また、理想的強度比と温度の関係を表す関数をR
(T)、減衰率差と温度のの関係を表す関数をα(T)
を与えておく。ここで、R(T)は絶対強度比である必
要はなく、相対強度比でよいが、次の微分を含む式
First, any one or more of the measurement points is set as a temperature reference point, and the temperature at that point is obtained by another means.
In addition, the function expressing the relationship between the ideal intensity ratio and temperature is R
(T), α (T) is a function that represents the relationship between the attenuation rate difference and temperature.
Is given. Here, R (T) does not have to be an absolute intensity ratio, and may be a relative intensity ratio, but an expression including the following derivative

【0063】[0063]

【数22】 が算出可能であることが必要である。[Equation 22] Must be calculable.

【0064】いま、r番目の測定点が温度参照点であり
温度がTr であるとする。すると、r+1 番目の測定点の
温度は、(11)式を用いて計算することができる。同
様に、(12)式を用いて、r-1 番目の温度Tr-1 を求
めることもできる。
It is now assumed that the r-th measurement point is the temperature reference point and the temperature is T r . Then, the temperature at the r + 1-th measurement point can be calculated using the equation (11). Similarly, the equation (12) can be used to obtain the r-1th temperature T r-1 .

【0065】以後は、上述の方法を繰り返し適用して、
温度が求められた点からその1つ前あるいは1つ後のま
だ温度を算出していない点での温度を順番に算出するこ
とにより、全測定点の温度を算出することができる。
Thereafter, the above method is repeatedly applied to
The temperatures at all measurement points can be calculated by sequentially calculating the temperature at the point before or after the point at which the temperature is obtained and at the point at which the temperature has not yet been calculated.

【0066】図2は、温度が位置によって連続的に変化
する状況を想定した数値シミュレーションの一例を示す
図である。図2(a)は算出に用いた温度分布、図2
(b)は(2)式を用いた従来方法による温度算出結
果、図2(c)は第1の発明の第1の算出方法による
(3)式、(4)式を用いた温度算出結果、図2(d)
は第1の発明の第2の算出方法による(7)式、(8)
式を用いた算出結果、図2(e)は第2の発明の算出方
法による(11)式、(12)式を用いた計算結果であ
る。
FIG. 2 is a diagram showing an example of a numerical simulation assuming a situation where the temperature continuously changes depending on the position. FIG. 2A shows the temperature distribution used for the calculation, and FIG.
(B) is a temperature calculation result by the conventional method using the equation (2), and FIG. 2 (c) is a temperature calculation result by the equation (3) and the equation (4) according to the first calculating method of the first invention. , Fig. 2 (d)
Are equations (7) and (8) according to the second calculation method of the first invention.
FIG. 2E shows the calculation result using the formula, and the calculation result using the formula (11) and the formula (12) according to the calculation method of the second invention.

【0067】図3は、温度が位置によって急激に変化す
る状況を想定した数値シミュレーションの一例を示す図
である。図3(a)は算出に用いた温度分布、図3
(b)は(2)式を用いた従来方法による温度算出結
果。図3(c)は第1の発明の第1の算出方法による
(3)式、(4)式を用いた温度算出結果、図3(d)
は第1の発明の第2の算出方法による(7)式、(8)
式を用いた算出結果、図3(e)は第2の発明の算出方
法による(11)式、(12)式を用いた算出結果であ
る。
FIG. 3 is a diagram showing an example of a numerical simulation assuming a situation where the temperature changes rapidly depending on the position. FIG. 3A shows the temperature distribution used for the calculation, and FIG.
(B) is the temperature calculation result by the conventional method using the equation (2). FIG. 3 (c) is a temperature calculation result using the equations (3) and (4) according to the first calculation method of the first invention, and FIG.
Are equations (7) and (8) according to the second calculation method of the first invention.
Calculation results using the equations, FIG. 3E shows the calculation results using the equations (11) and (12) according to the calculation method of the second invention.

【0068】なお、これらは、現実の測定環境と類似し
た測定強度比を数値算出によって求め、その結果をもと
に本発明の方法と従来の方法の両方で温度算出を行なっ
た数値シミュレーションである。次に、図2、図3に示
す算出結果について説明する。
Note that these are numerical simulations in which the measurement intensity ratio similar to the actual measurement environment is obtained by numerical calculation, and the temperature is calculated by both the method of the present invention and the conventional method based on the result. .. Next, the calculation results shown in FIGS. 2 and 3 will be described.

【0069】まず、図2(b)、図3(b)に示す通
り、従来の温度算出方法では、元の温度分布である図2
(a)、図3(a)と比較して大きなずれを生じてお
り、温度が正しく求められていないことがわかる。この
場合、元の温度と算出温度との間の最大誤差は、図2
(b)の例で34.4℃、図3(b)の例で22.0℃
である。
First, as shown in FIGS. 2B and 3B, in the conventional temperature calculation method, the original temperature distribution shown in FIG.
Compared to (a) and FIG. 3 (a), there is a large deviation, and it can be seen that the temperature is not correctly obtained. In this case, the maximum error between the original temperature and the calculated temperature is
34.4 ° C in the example of (b), 22.0 ° C in the example of FIG. 3 (b)
Is.

【0070】一方、第1の発明の第1の算出方法による
(3)式、(4)式を用いた算出結果である図2
(c)、図3(c)と、第1の発明の第2の算出方法に
よる(7)式、(8)式を用いた算出結果である図2
(d)、図3(d)では、どちらも元の温度分布をほぼ
再現しており、本発明の効果をよく表わしている。この
場合、元の温度と計算温度との間の最大誤差は、図2
(c)の例で0.033℃、図3(b)の例で0.18
5℃、図2(d)の例で0.004℃、図3(d)の例
で0.086℃である。また、算出時間は、図2
(c)、図3(c)の例では従来例とほぼ同じ、図2
(d)、図3(d)の例では従来例のほぼ2倍である。
On the other hand, FIG. 2 shows the calculation results using the equations (3) and (4) according to the first calculation method of the first invention.
2 (c), FIG. 3 (c), and FIG. 2 which is a calculation result using the formulas (7) and (8) according to the second calculation method of the first invention.
In both (d) and FIG. 3 (d), the original temperature distribution is almost reproduced, and the effect of the present invention is well represented. In this case, the maximum error between the original temperature and the calculated temperature is
0.033 ° C. in the example of (c), 0.18 in the example of FIG. 3 (b).
5 ° C., 0.004 ° C. in the example of FIG. 2 (d), and 0.086 ° C. in the example of FIG. 3 (d). The calculation time is shown in FIG.
2 (c) and FIG. 3 (c) are almost the same as the conventional example.
In the example of (d) and FIG. 3 (d), it is almost double that of the conventional example.

【0071】さらに、第2の発明の算出方法による(1
1)式、(12)式を用いた算出結果である図2
(e)、図3(e)のうち、急激な温度変化のない図2
(e)では元の温度分布をほぼ再現しているが、図3
(e)の例では温度が急激に変化する点で大きな誤差が
生じる。この場合、元の温度と計算温度との間の最大誤
差は、図2(e)の例で0.67℃、図3(e)の例で
27.4℃である。また、算出時間は、従来例よりも少
し短い程度である。
Further, according to the calculation method of the second invention, (1
FIG. 2 is a calculation result using the equations (1) and (12).
2 (e) and FIG. 3 (e) in which there is no abrupt temperature change
In (e), the original temperature distribution is almost reproduced.
In the example of (e), a large error occurs in that the temperature changes abruptly. In this case, the maximum error between the original temperature and the calculated temperature is 0.67 ° C. in the example of FIG. 2 (e) and 27.4 ° C. in the example of FIG. 3 (e). Further, the calculation time is a little shorter than that of the conventional example.

【0072】以上の結果をまとめると、温度精度は
(7)式、(8)式を用いた結果が最も高く、(3)
式、(4)式を用いた結果がその次に高い。現実の光フ
ァイバ温度分布センサの温度精度は、受光素子や増幅器
による雑音によって制限され、現状においては雑音によ
る誤差が温度換算で0.5℃程度であることを考える
と、上記の2つの方法での算出誤差はどちらもそれ以下
であり、ほぼ完全に減衰率差を補正することができる。
Summarizing the above results, the temperature accuracy is highest in the results using the expressions (7) and (8), and
The result using the equation (4) is the second highest. Considering that the temperature accuracy of an actual optical fiber temperature distribution sensor is limited by noise due to the light receiving element and the amplifier, and at present, the error due to noise is about 0.5 ° C. in terms of temperature, the above two methods are used. Both of the calculation errors are less than that, and the attenuation rate difference can be corrected almost completely.

【0073】また、(11)式、(12)式を用いた結
果では、図3(e)のような急激な温度変化が存在する
場合は正しい温度を算出することは難しいが、図2
(e)のように温度変化が緩やかな場合はほぼ正しい温
度を算出することができる。さらに、(11)式、(1
2)式を用いた場合には、次に示すように温度算出時間
を大幅に短縮することができることがある。
Further, from the results obtained by using the equations (11) and (12), it is difficult to calculate the correct temperature when there is a rapid temperature change as shown in FIG.
When the temperature change is gradual as shown in (e), a nearly correct temperature can be calculated. Furthermore, equation (11), (1
When the equation (2) is used, the temperature calculation time may be greatly shortened as shown below.

【0074】すなわち、上記の算出では、高速実数演算
を行なう高性能コンピュータを用いるため、算出時間に
有意な差は現われない。しかし、実数演算に時間がかか
る処理系では、算出時間に大きな違いが生じる場合があ
る。今回のシミュレーションでは、前記R(T)として
(1)式を用いているが、(11)式、(12)式を用
いて温度を算出する場合、算出に必要な(13)式を次
のように初等的に表わすことができる。
That is, in the above calculation, since a high-performance computer for performing high-speed real number calculation is used, no significant difference appears in the calculation time. However, in a processing system in which a real number calculation takes time, a large difference may occur in calculation time. In the simulation this time, the equation (1) is used as the R (T), but when the temperature is calculated using the equations (11) and (12), the equation (13) necessary for the calculation is expressed as follows. Can be expressed as elementary.

【0075】[0075]

【数23】 [Equation 23]

【0076】このため、指数関数や対数関数の算出を行
なう必要がなくなる。また、指数関数や対数関数の数値
算出は、例えば(10)式のような展開式を用いて行な
うが、それには多くの実数算出を行なう必要がある。よ
って、(11)式、(12)式を用いた場合、実数算出
に時間のかかる処理系では、上述した他の方法に比べて
著しく算出時間を短縮することができる。
Therefore, it is not necessary to calculate the exponential function or logarithmic function. The exponential function and the logarithmic function are numerically calculated by using an expansion equation such as the equation (10), which requires many real number calculations. Therefore, when the equations (11) and (12) are used, in a processing system that takes a long time to calculate the real number, the calculation time can be significantly shortened as compared with the other methods described above.

【0077】尚、前記R(T)の表式としては、上記実
施例では(1)式を用いたが、前述したように、(3)
式、(4)式、(7)式、(8)式を用いる場合に必要
な条件は、逆関数R-1(R)を一義的に求められるこ
と、(11)式、(12)式を用いる場合に必要な条件
は、(13)式を算出できることであり、数学的には以
上を満たせばどんな関数を用いても温度を算出すること
が可能である。
As the expression of R (T), the expression (1) was used in the above embodiment, but as described above, (3)
The conditions required when using the equations, (4), (7), and (8) are that the inverse function R −1 (R) is uniquely obtained, equations (11), (12) The condition necessary to use is that equation (13) can be calculated, and mathematically, the temperature can be calculated using any function as long as the above is satisfied.

【0078】また、測定温度領域が広い場合等は、実験
的に求めた強度比が、理論式である(1)式に当てはま
らない場合も考えられる。この場合には、(1)式に補
正を加えてもよいし、実験的に求めた多項式等の近似式
や、複数の座標点を補間したものを用いてもよい。ま
た、α(T)についても同様である。
When the measured temperature range is wide, the intensity ratio obtained experimentally may not be applied to the theoretical formula (1). In this case, the formula (1) may be corrected, or an approximate formula such as an experimentally obtained polynomial formula or one obtained by interpolating a plurality of coordinate points may be used. The same applies to α (T).

【0079】[0079]

【発明の効果】以上説明したように本発明によれば、ア
ンチストークス光とストークス光の減衰率差およびその
温度依存性に起因する温度誤差を補償して、正確な温度
を算出することが可能な極めて高精度の光ファイバ温度
分布センサが提供できる。
As described above, according to the present invention, an accurate temperature can be calculated by compensating for the temperature error caused by the difference in attenuation rate between anti-Stokes light and Stokes light and its temperature dependence. A highly accurate optical fiber temperature distribution sensor can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光ファイバ温度分布センサの全体
構成例を示すブロック図。
FIG. 1 is a block diagram showing an example of the overall configuration of an optical fiber temperature distribution sensor according to the present invention.

【図2】温度が位置によって連続的に変化する状況を想
定した数値計算シミュレーションの結果の一例をそれぞ
れ示す図。
FIG. 2 is a diagram showing an example of a result of a numerical calculation simulation assuming a situation where the temperature continuously changes depending on the position.

【図3】温度が位置によって連続的に変化する状況を想
定した数値計算シミュレーションの結果の一例をそれぞ
れ示す図。
FIG. 3 is a diagram showing an example of a result of a numerical calculation simulation assuming a situation where the temperature continuously changes depending on the position.

【符号の説明】[Explanation of symbols]

1…パルス光発生装置、2…方向性結合器、3…光ファ
イバプローブ、4…光フィルタ、5…信号検出装置、6
…信号処理装置。
DESCRIPTION OF SYMBOLS 1 ... Pulse light generation device, 2 ... Directional coupler, 3 ... Optical fiber probe, 4 ... Optical filter, 5 ... Signal detection device, 6
... Signal processing device.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバにパルス光を入射し、前記光
ファイバ内のラマン効果によって生じる後方散乱光のア
ンチストークス光とストークス光の強度をサンプリング
して時系列データとして測定し、当該時系列データの順
序が前記光ファイバに沿った距離に対応することを利用
して、これらの強度データから前記光ファイバに沿った
温度分布を求めるようにした光ファイバ温度分布センサ
において、 前記アンチストークス光とストークス光の強度比をサン
プリングによる時系列データとして測定すると共に、少
なくとも1点の温度参照点の温度を別手段により求め、
あらかじめ求められた前記後方散乱された地点における
アンチストークス光とストークス光の理想的強度比と温
度の関係を用いて前記温度参照点での理想的強度比を求
め、温度が既知である測定点近傍の複数個の測定点のそ
れぞれの強度比データと、前記理想的強度比と温度の関
係との間に成り立つあらかじめ求められた前記光ファイ
バ中のアンチストークス光とストークス光の減衰率差と
温度の関係を含む関係式を用いて、既に温度と前記理想
的強度比が算出されているかまたは別手段により求めら
れている測定点での前記強度比データからその近傍のま
だ温度を算出していない測定点での理想的強度比を算出
し、当該算出した理想的強度比から前記理想的強度比と
温度の関係を用いて前記理想的強度比を算出した点での
温度を求める温度算出手段を備えて成ることを特徴とす
る光ファイバ温度分布センサ。
1. Intensity of anti-Stokes light and Stokes light of back-scattered light generated by Raman effect in the optical fiber is sampled and measured as time series data. In the optical fiber temperature distribution sensor configured to obtain the temperature distribution along the optical fiber from these intensity data by utilizing the fact that the order of corresponds to the distance along the optical fiber, the anti-Stokes light and Stokes The light intensity ratio is measured as time series data by sampling, and the temperature of at least one temperature reference point is obtained by another means.
The ideal intensity ratio at the temperature reference point is obtained by using the relationship between the ideal intensity ratio of anti-Stokes light and Stokes light and the temperature at the backscattered point obtained in advance, and the vicinity of the measurement point where the temperature is known Intensity ratio data of each of a plurality of measurement points of, and the difference between the attenuation rate of the anti-Stokes light and the Stokes light in the optical fiber and the temperature which are obtained in advance between the ideal intensity ratio and the temperature Using a relational expression including a relation, the temperature and the ideal intensity ratio have already been calculated, or a measurement in which the temperature in the vicinity has not yet been calculated from the intensity ratio data at the measurement point obtained by another means. The temperature at which the ideal intensity ratio at a point is calculated, and the temperature at the point at which the ideal intensity ratio is calculated using the relationship between the ideal intensity ratio and temperature from the calculated ideal intensity ratio Optical fiber temperature distribution sensor, characterized in that it comprises an output means.
【請求項2】 前記温度算出手段としては、前記測定点
の個数をN 、各測定点での前記強度比データを
{R’i ;i=1,2,…,N} 、前記理想的強度比の組を
{Ri ;i=1,2,…,N} 、各測定点での温度を{Ti
i=1,2,…,N} 、前記理想的強度比をR、温度をTとし
た時の前記理想的強度比と温度の関係を表わす関数をR
(T)、前記減衰率差をα、温度をTとした時の前記減
衰率差と温度の関係を表わす関数をα(T)、隣り合っ
た強度比データの間の距離を△xとした場合、前記温度
が既知である測定点近傍の複数個の測定点のそれぞれの
強度比データと、前記理想的強度比と温度の関係との間
に成り立つ前記減衰率差と温度の関係を含む関係式とし
て、 【数1】 のうちの少なくとも1つを用いて温度を求めることを特
徴とする請求項1に記載の光ファイバ温度分布センサ。
2. The temperature calculation means includes the number of the measurement points N, the intensity ratio data at each measurement point {R ′ i ; i = 1, 2, ..., N}, the ideal intensity. The set of ratios is {R i ; i = 1,2, ..., N}, and the temperature at each measurement point is {T i ;
i = 1,2, ..., N}, where R is the ideal intensity ratio and T is the temperature, a function representing the relationship between the ideal intensity ratio and temperature is R
(T), α is the attenuation rate difference, α (T) is the function representing the relationship between the attenuation rate difference and temperature when T is the temperature, and Δx is the distance between adjacent intensity ratio data. In this case, the intensity ratio data of each of a plurality of measurement points in the vicinity of the measurement point where the temperature is known, and the relationship including the relationship between the attenuation rate difference and the temperature that holds between the relationship between the ideal intensity ratio and the temperature. As an expression, The optical fiber temperature distribution sensor according to claim 1, wherein the temperature is obtained using at least one of the above.
【請求項3】 前記温度算出手段としては、前記測定点
の個数をN 、各測定点での前記強度比データを
{R’i ;i=1,2,…,N} 、前記理想的強度比の組を
{Ri ;i=1,2,…,N} 、各測定点での温度を{Ti
i=1,2,…,N} 、前記理想的強度比をR、温度をTとし
た時の前記理想的強度比と温度の関係を表わす関数をR
(T)、前記減衰率差をα、温度をTとした時の前記減
衰率差と温度の関係を表わす関数をα(T)、隣り合っ
た強度比データの間の距離を△xとした場合、前記温度
が既知である測定点近傍の複数個の測定点のそれぞれの
強度比データと、前記理想的強度比と温度の関係との間
に成り立つ前記減衰率差と温度の関係を含む関係式とし
て、 【数2】 のうちの少なくとも1つを用いて温度を求めることを特
徴とする請求項1に記載の光ファイバ温度分布センサ。
3. The temperature calculating means includes the number of the measurement points as N, the intensity ratio data at each measurement point as {R ′ i ; i = 1, 2, ..., N}, and the ideal intensity. The set of ratios is {R i ; i = 1,2, ..., N}, and the temperature at each measurement point is {T i ;
i = 1,2, ..., N}, where R is the ideal intensity ratio and T is the temperature, a function representing the relationship between the ideal intensity ratio and temperature is R
(T), α is the attenuation rate difference, α (T) is the function representing the relationship between the attenuation rate difference and temperature when T is the temperature, and Δx is the distance between adjacent intensity ratio data. In this case, the intensity ratio data of each of a plurality of measurement points in the vicinity of the measurement point where the temperature is known, and the relationship including the relationship between the attenuation rate difference and the temperature that holds between the relationship between the ideal intensity ratio and the temperature. As an expression, The optical fiber temperature distribution sensor according to claim 1, wherein the temperature is obtained using at least one of the above.
【請求項4】 光ファイバにパルス光を入射し、前記光
ファイバ内のラマン効果によって生じる後方散乱光のア
ンチストークス光とストークス光の強度をサンプリング
して時系列データとして測定し、当該時系列データの順
序が前記光ファイバに沿った距離に対応することを利用
して、これらの強度データから前記光ファイバに沿った
温度分布を求めるようにした光ファイバ温度分布センサ
において、 前記アンチストークス光とストークス光の強度比をサン
プリングによる時系列データとして測定すると共に、少
なくとも1点の温度参照点の温度を別手段により求め、
温度が既知である測定点近傍の複数個の測定点のそれぞ
れの強度比データと、温度と、あらかじめ求められた前
記後方散乱された地点におけるアンチストークス光とス
トークス光の理想的強度比と温度の関係との間に成り立
つあらかじめ求められた前記光ファイバ中のアンチスト
ークス光とストークス光の減衰率差と温度の関係を含む
関係式を用いて、既に温度が算出されているかまたは別
手段により求められている測定点での温度からその近傍
のまだ温度を算出していない測定点での温度を求める温
度算出手段を備えて成ることを特徴とする光ファイバ温
度分布センサ及びその温度計算方法。
4. The pulsed light is incident on the optical fiber, and the intensities of the anti-Stokes light and the Stokes light of the backscattered light generated by the Raman effect in the optical fiber are sampled and measured as time-series data, and the time-series data is obtained. In the optical fiber temperature distribution sensor configured to obtain the temperature distribution along the optical fiber from these intensity data by utilizing the fact that the order of corresponds to the distance along the optical fiber, the anti-Stokes light and Stokes The light intensity ratio is measured as time series data by sampling, and the temperature of at least one temperature reference point is obtained by another means.
Each intensity ratio data of a plurality of measurement points in the vicinity of the measurement point temperature is known, the temperature, the ideal intensity ratio of anti-Stokes light and Stokes light and the temperature of the backscattered point obtained in advance Using a relational expression containing the relationship between the temperature and the attenuation factor difference between the anti-Stokes light and the Stokes light in the optical fiber, which has been obtained in advance, the temperature has already been calculated or is obtained by another means. An optical fiber temperature distribution sensor and a temperature calculation method therefor, comprising temperature calculation means for calculating the temperature at a measurement point in the vicinity of which the temperature has not been calculated yet from the temperature at the measurement point.
【請求項5】 前記温度算出手段としては、前記測定点
の個数をN 、各測定点での前記強度比データを
{R’i ;i=1,2,…,N} 、前記理想的強度比の組を
{Ri ;i=1,2,…,N} 、各測定点での温度を{Ti
i=1,2,…,N} 、前記理想的強度比をR、温度をTとし
た時の前記理想的強度比と温度の関係を表わす関数をR
(T)、前記減衰率差をα、温度をTとした時の前記減
衰率差と温度の関係を表わす関数をα(T)、隣り合っ
た強度比データの間の距離を△xとした場合、前記温度
が既知である測定点近傍の複数個の測定点のそれぞれの
強度比データと、温度と、前記理想的強度比と温度の関
係との間に成り立つ前記減衰率差と温度の関係を含む関
係式として、 【数3】 のうちの少なくとも1つを用いて温度を求めることを特
徴とする請求項4に記載の光ファイバ温度分布センサ。
5. The temperature calculation means comprises the number of the measurement points as N, the intensity ratio data at each measurement point as {R ′ i ; i = 1, 2, ..., N}, and the ideal intensity. The set of ratios is {R i ; i = 1,2, ..., N}, and the temperature at each measurement point is {T i ;
i = 1,2, ..., N}, where R is the ideal intensity ratio and T is the temperature, a function representing the relationship between the ideal intensity ratio and temperature is R
(T), α is the attenuation rate difference, α (T) is the function representing the relationship between the attenuation rate difference and temperature when T is the temperature, and Δx is the distance between adjacent intensity ratio data. In this case, the intensity ratio data of each of a plurality of measurement points in the vicinity of the measurement point where the temperature is known, the temperature, and the relationship between the attenuation rate difference and the temperature that holds between the ideal intensity ratio and the temperature relationship. As a relational expression including The optical fiber temperature distribution sensor according to claim 4, wherein the temperature is obtained using at least one of the above.
JP4155523A 1992-06-16 1992-06-16 Optical fiber temperature distribution sensor Expired - Fee Related JP2977373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4155523A JP2977373B2 (en) 1992-06-16 1992-06-16 Optical fiber temperature distribution sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4155523A JP2977373B2 (en) 1992-06-16 1992-06-16 Optical fiber temperature distribution sensor

Publications (2)

Publication Number Publication Date
JPH05346353A true JPH05346353A (en) 1993-12-27
JP2977373B2 JP2977373B2 (en) 1999-11-15

Family

ID=15607932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4155523A Expired - Fee Related JP2977373B2 (en) 1992-06-16 1992-06-16 Optical fiber temperature distribution sensor

Country Status (1)

Country Link
JP (1) JP2977373B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017797A (en) * 2014-07-07 2016-02-01 横河電機株式会社 Optical fiber temperature distribution measurement device
CN113748826A (en) * 2020-06-01 2021-12-07 上海山科机器人有限公司 Autonomous working apparatus and autonomous working system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017797A (en) * 2014-07-07 2016-02-01 横河電機株式会社 Optical fiber temperature distribution measurement device
US10018517B2 (en) 2014-07-07 2018-07-10 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
CN113748826A (en) * 2020-06-01 2021-12-07 上海山科机器人有限公司 Autonomous working apparatus and autonomous working system

Also Published As

Publication number Publication date
JP2977373B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
JP3440721B2 (en) Multi-point strain and temperature sensor
CN108627272B (en) Two-dimensional temperature distribution reconstruction method based on four-angle laser absorption spectrum
CN111896137B (en) Centimeter-level spatial resolution distributed optical fiber Raman sensing device and method
CN109580033A (en) A kind of concrete dam distributed optical fiber temperature measurement data error compensation method
CN110501092B (en) Temperature extraction method of Brillouin optical fiber sensing system
KR102023701B1 (en) Apparatus and Method for Measuring Distribution of Structure Strain with Combination of Discrete Sensor and Distributed Sensor
JP2010223831A (en) Temperature measuring device
JPH06500387A (en) Multiwavelength pyrometer
CN103256999B (en) Distributed type optical fiber temperature measuring method
JP2977373B2 (en) Optical fiber temperature distribution sensor
RU2428682C1 (en) Method for thermal nondestructive inspection of thermal-technical state of long, non-uniform and hard-to-reach objects
JP4911437B2 (en) Multi-layer film thickness measuring device
CN112697303B (en) Distributed optical fiber sensing system and detection method for smart grid
JP2006023260A (en) Method and instrument for measuring temperature distribution in optical fiber
Bernini et al. A reconstruction technique for stimulated Brillouin scattering fiber-optic sensors for simultaneous measurement of temperature and strain
JP2897389B2 (en) Temperature measuring method and distributed optical fiber temperature sensor
JPH07243920A (en) Optical fiber temperature distribution measuring system
Bradley et al. Measurement of temperature PDFS in turbulent flames by the CARS technique
CN114577367B (en) Optical fiber temperature sensor calibration method and device and computer equipment
JP3106443B2 (en) Temperature distribution measuring method and device therefor
RU2686401C1 (en) Photoelectric method of determining average concentration and average size of dust particles
Sokolov et al. Digital Data Processing when Reproducing a Unit of Length in the Range up to 60 m
JPH06331447A (en) Method and apparatus for evaluating precision of radiation thermometer
JP3991105B2 (en) Characteristic spectrum determination method, slime feeling evaluation method and evaluation apparatus for cloth
RU2244950C1 (en) Infrared collimator complex

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees