JPH05344975A - Ultrasonic wave diagnosing system - Google Patents

Ultrasonic wave diagnosing system

Info

Publication number
JPH05344975A
JPH05344975A JP4154611A JP15461192A JPH05344975A JP H05344975 A JPH05344975 A JP H05344975A JP 4154611 A JP4154611 A JP 4154611A JP 15461192 A JP15461192 A JP 15461192A JP H05344975 A JPH05344975 A JP H05344975A
Authority
JP
Japan
Prior art keywords
array probe
array
probe
ultrasonic diagnostic
diagnostic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4154611A
Other languages
Japanese (ja)
Other versions
JP3329485B2 (en
Inventor
Ryoichi Kanda
良一 神田
Kinya Takamizawa
欣也 高見沢
Takanobu Uchibori
孝信 内堀
Satoshi Tezuka
智 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP15461192A priority Critical patent/JP3329485B2/en
Publication of JPH05344975A publication Critical patent/JPH05344975A/en
Application granted granted Critical
Publication of JP3329485B2 publication Critical patent/JP3329485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/52095Details related to the ultrasound signal acquisition, e.g. scan sequences using multiline receive beamforming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8938Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
    • G01S15/894Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8918Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being linear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To provide an ultrasonic wave diagnosing system which can collect three-dimensional data at a high speed in the system constitution for mechanically moving an array probe. CONSTITUTION:This ultrasonic wave diagnosing system is equipped with a transmission/receiver 2 which transmits the relatively spread transmission beam from an array probe 1 and receives a plurality of reception beams at the same time through the array probe 1, means (combination of a reversible swing motor 3 and a probe shift controller 4) for mechanically moving the array probe 1 in the slice direction, and a scan controller 5 for allowing the array probe 1 to carry out the second direction scan through the control for synchronously operating the transmission/receiving device 2 and the probe shift controller 4. Further, a means (phase arrangement addition calculation circuits 61-6n) for collecting three-dimensional data by the repetition of taking in a plurality of simultaneous received echo signals in parallel supplied from the transmission/ receiver 2 under the control by the scan controller 5 is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、3次元データを収集し
て立体表示を行えるようにした超音波診断装置に関し、
特にアレイプローブを機械的に動かして3次元データを
収集する構成とした超音波診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic diagnostic apparatus capable of collecting three-dimensional data and performing stereoscopic display.
In particular, it relates to an ultrasonic diagnostic apparatus configured to mechanically move an array probe to collect three-dimensional data.

【0002】[0002]

【従来の技術】従来のこの種の超音波診断装置は、アレ
イプローブを機械的に動かす手法として、例えば特開昭
55−116342号公報、特開昭56−75146号
公報、特開昭61−154653号公報等にそれぞれ開
示されているようにいくつか提案されているが、これら
の手法は以下の点が共通している。
2. Description of the Related Art In a conventional ultrasonic diagnostic apparatus of this type, as a method of mechanically moving an array probe, for example, JP-A-55-116342, JP-A-56-75146, and JP-A-61-161. There are some proposals as disclosed in Japanese Patent No. 154653, etc., but these methods have the following points in common.

【0003】a.アレイプローブでは通常の断層像デー
タを収集する場合と同様のスキャンを行う。
A. The array probe performs the same scan as when collecting normal tomographic image data.

【0004】b.機械的にアレイプローブにより撮像断
面の移動若しくは回転を行う。
B. The array probe mechanically moves or rotates the imaging section.

【0005】c.機械的なアレイプローブの動きは、ア
レイプローブの電子的な走査によるスキャンに比べて十
分に遅く行われる。
C. The movement of the mechanical array probe is sufficiently slow compared to the scanning by electronic scanning of the array probe.

【0006】また、従来においても、アレイプローブを
電子的に走査して断層像データを短時間で収集する方法
が提案されている。これは比較的に広がった送信ビーム
を出し、数系列ある受信整相加算回路により、同時に数
受信ビーム分のデータを収集しようとするものである。
Also, conventionally, there has been proposed a method of electronically scanning an array probe to collect tomographic image data in a short time. This is to output a comparatively spread transmission beam and to collect data for several reception beams at the same time by a reception phasing addition circuit having several series.

【0007】更にまた、複数の振動素子が複数列状に配
列された2次元分割構造のアレイプローブ(2次元アレ
イプローブ)を用いて、3次元データを収集しようとす
る方法も既に提案されている。これは直交する両方向に
同程度の分割を行い、その両方向に電子的な走査による
スキャンで3次元データを収集しようとするものであ
る。
Furthermore, a method for collecting three-dimensional data by using an array probe having a two-dimensional division structure in which a plurality of vibrating elements are arranged in a plurality of rows (two-dimensional array probe) has already been proposed. .. This is to perform the same degree of division in both orthogonal directions and to collect three-dimensional data by electronic scanning in both directions.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来技
術において、アレイプレーブを機械的に動かす方法、同
時受信、2次元アレイプローブのそれぞれに次のような
不具合があった。
However, in the prior art, each of the method of mechanically moving the array probe, the simultaneous reception and the two-dimensional array probe has the following problems.

【0009】A.アレイプローブを機械的に動かす方法 データ収集時間が遅くなる。例えば振動素子が列状に配
列された方向(アレイ方向)に120本のラスタを出す
場合、1断面の収集に約1/30秒を要する。よってア
レイ方向と直交する方向(スライス方向)にアレイプロ
ーブを移動させて120枚の断層像を得る場合、約4秒
を要する。これは心臓や血流等の動きのある対象の像を
撮ろうとする場合、時間がかかり過ぎ像を撮ることが不
可能である。
A. How to move the array probe mechanically Data acquisition time is slow. For example, when 120 rasters are output in the direction in which the vibrating elements are arranged in rows (array direction), it takes about 1/30 seconds to collect one cross section. Therefore, it takes about 4 seconds to obtain 120 tomographic images by moving the array probe in the direction (slice direction) orthogonal to the array direction. This is too time-consuming to capture an image of a moving object such as the heart or blood flow.

【0010】B.同時受信 より高速なデータ収集を行うため広い範囲のデータを同
時に得ようとすると、中央部と周辺部の送信音圧を均一
にすることが難しくなり、s/nが劣化してしまう。
B. Simultaneous reception If a wide range of data is to be acquired at the same time in order to collect data at a higher speed, it becomes difficult to equalize the transmission sound pressures in the central part and the peripheral part, and s / n deteriorates.

【0011】C.2次元アレイ 製造が非常に困難。例えば、アレイプローブによりアレ
イ・スライス両方向にスキャンする事を考えると両方向
に50分割程度する必要がある。この場合、素子の数は
2500個となり配線の引き出し等が非常に困難とな
る。しかし、後で述べるようにスライス方向のスキャン
を機械的に行い、スライス方向のアレイプローブによる
操作を微少角偏向及びフォーカスのみに限ると、スライ
ス方向の分割数は数分割で済むため、製造上の困難は極
端に減少し実現可能となる。
C. Two-dimensional array Manufacturing is very difficult. For example, considering that the array probe scans in both directions of the array and slice, it is necessary to divide into 50 in both directions. In this case, the number of elements becomes 2500, which makes it very difficult to draw out wiring. However, as will be described later, if the scan in the slice direction is mechanically performed and the operation by the array probe in the slice direction is limited to only the minute angle deflection and the focus, the number of divisions in the slice direction may be several divisions. Difficulty is extremely reduced and becomes feasible.

【0012】本発明は、上記した事情に着目してなされ
たもので、その目的とするところは、アレイプローブを
機械的に動かすシステム構成において高速に3次元デー
タを収集することができる超音波診断装置を提供するこ
とにある。
The present invention has been made by paying attention to the above-mentioned circumstances, and an object thereof is an ultrasonic diagnosis capable of collecting three-dimensional data at high speed in a system configuration in which an array probe is mechanically moved. To provide a device.

【0013】[0013]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、アレイプローブから比較的広がった送信
ビームを出し、当該アレイプローブを介して複数の受信
ビームを同時受信する送受信手段と、前記アレイプロー
ブを振動素子の配列方向と直交する方向へ機械的に動か
すプローブ駆動手段と、前記送受信手段及び前記プロー
ブ駆動手段を同期して動作させる制御を行って前記アレ
イプローブにより2次方向走査を行わせる走査制御手段
と、該走査制御手段の制御下で前記送受信手段からの複
数の同時受信エコー信号を並列に取込む繰返しで3次元
データの収集を行う3次元データ収集手段と、を具備す
ることを特徴とする。
In order to achieve the above object, the present invention provides a transmitting / receiving means for emitting a relatively spread transmission beam from an array probe and simultaneously receiving a plurality of reception beams via the array probe. , The array probe is mechanically moved in a direction orthogonal to the array direction of the vibrating elements, and the transmitting / receiving means and the probe driving means are controlled to operate in synchronization with each other to perform a secondary scanning by the array probe. And a three-dimensional data collecting means for collecting three-dimensional data by repeatedly capturing a plurality of simultaneously received echo signals from the transmitting and receiving means in parallel under the control of the scanning control means. It is characterized by doing.

【0014】[0014]

【作用】本発明による超音波診断装置の構成であれば、
走査制御手段の制御下でプローブ駆動手段によってアレ
イプローブをアレイ方向と直交する方向へ機械的に動か
しながら2次方向走査して送受信手段で得られる複数の
同時受信エコー信号を3次元データ収集手段に並列に取
込む繰返しで3次元データを収集できることになる。従
って、従来のアレイプローブを機械的に動かす方法、同
時受信、2次元アレイプローブの各手法のみでは不可能
であった高速の3次元データ収集が可能となる。
With the configuration of the ultrasonic diagnostic apparatus according to the present invention,
Under the control of the scanning control means, the probe driving means mechanically moves the array probe in a direction orthogonal to the array direction to scan the secondary direction to obtain a plurality of simultaneously received echo signals obtained by the transmitting / receiving means in the three-dimensional data collecting means. It is possible to collect three-dimensional data by repeating the acquisition in parallel. Therefore, high-speed three-dimensional data acquisition, which is impossible only by the conventional method of mechanically moving the array probe, simultaneous reception, and the two-dimensional array probe method, becomes possible.

【0015】[0015]

【実施例】図1は、本発明が適用された第1実施例の超
音波診断装置の機能構成を示すブロック図である。
FIG. 1 is a block diagram showing the functional arrangement of an ultrasonic diagnostic apparatus according to the first embodiment to which the present invention is applied.

【0016】この第1実施例の超音波診断装置は、複数
の振動素子が単列状に配列されてなる1次元分割構造の
アレイプローブ1と、アレイプローブ1から比較的広が
った送信ビームを出し、アレイプローブ1を介して複数
の受信ビームを同時受信する送受信器2と、アレイプロ
ーブ1をアレイ方向と直交する方向へ機械的に動かすた
めの可逆揺動モータ3及びプローブ移動制御器4の組合
せと、送受信器2及びプローブ移動制御器4を同期して
動作させる制御を行ってアレイプローブ1により2次方
向走査を行わせる走査制御器5と、この走査制御器5の
制御下で送受信器からの複数の同時受信エコー信号を並
列に取込む繰返しで3次元データの収集を行えるように
複数系統持たせた整相加算回路61 〜6n と、表示処理
回路7と、モニタ8とを備えている。
In the ultrasonic diagnostic apparatus of the first embodiment, an array probe 1 having a one-dimensionally divided structure in which a plurality of vibrating elements are arranged in a single row, and a relatively spread transmission beam is emitted from the array probe 1. , A combination of a transceiver 2 for simultaneously receiving a plurality of reception beams via the array probe 1, a reversible swing motor 3 for mechanically moving the array probe 1 in a direction orthogonal to the array direction, and a probe movement controller 4. And a scanning controller 5 for controlling the transceiver 2 and the probe movement controller 4 to operate in synchronization with each other to perform secondary scanning by the array probe 1, and from the transceiver under the control of the scanning controller 5. and phasing and adding circuit 6 1 to 6 n which gave plurality of systems multiple simultaneous received echo signals to allow the collection of three-dimensional data with repeated capturing in parallel, a display processing circuit 7, a monitor It is equipped with a door.

【0017】これら各部を備えた構成において、アレイ
プローブ1は、図2に示す関係で送信ビームに対し複数
の受信ビームを並列同時受信する電子的な扇状走査をア
レイ方向に行う一方、可逆揺動モータ3の駆動により機
械的な扇風走査をスライス方向に行うことで2次方向走
査を行うことになる。この2次方向走査を走査制御部5
の制御下で行うと、送受信器2で得られる複数の同時受
信エコー信号を各整相加算回路61 〜6n に並列に取込
む繰返しで複数枚分の2次元データ(3次元データ)を
収集する。こうして収集される複数枚分の2次元画像デ
ータが次段の表示処理部7に加わると、表示処理回路7
において3次元画像の作成がなされ、モニタ8上に3次
元画像が表示される。
In the configuration including these units, the array probe 1 performs electronic fan-shaped scanning for parallel reception of a plurality of reception beams in parallel with the transmission beam in the array direction, while the array probe 1 has a reversible oscillation. By driving the motor 3 to perform mechanical fan scanning in the slice direction, secondary scanning is performed. This secondary scanning is performed by the scanning control unit 5
Under the control of, the two-dimensional data (three-dimensional data) for a plurality of sheets is repeatedly acquired by parallelly fetching a plurality of simultaneously-received echo signals obtained by the transmitter / receiver 2 into the phasing addition circuits 6 1 to 6 n. collect. When the plurality of pieces of two-dimensional image data thus collected are added to the display processing unit 7 in the next stage, the display processing circuit 7
At 3, the three-dimensional image is created and the three-dimensional image is displayed on the monitor 8.

【0018】このように並列同時受信により3次元デー
タの収集を行うことから、従来の各手法のみでは不可能
であった高速の3次元データ収集を行えることになる。
Since the three-dimensional data is collected by the parallel simultaneous reception as described above, the high-speed three-dimensional data collection can be performed, which is impossible only by each conventional method.

【0019】図3は、本発明が適用された第2実施例の
超音波診断装置の機能構成を示すブロック図である。
FIG. 3 is a block diagram showing the functional arrangement of an ultrasonic diagnostic apparatus according to the second embodiment of the present invention.

【0020】この第2実施例の超音波診断装置は、基本
的には上記第1実施例と同様の動作となるが、複数の振
動素子が複数列状に配列された2次元分割構造のアレイ
プローブ11を使用しているため、送信及び受信ビーム
が図4に示す関係でスライス方向にも広がっており、そ
の分同時受信数が増えている。このようなアレイプロー
ブ11による2次方向走査は、走査制御器15によって
送受信器12及びプローブ移動制御器14を同期して動
作させ、アレイ方向の電子的な扇状走査と、可逆揺動モ
ータ13の駆動によるスライス方向の機械的な扇状走査
とにより行われる。また、整相加算回路16は2次元画
像データの収集用としており、この整相加算回路16で
収集される2次元画像データにより表示処理回路17は
モニタ18上に2次元画像を表示することになる。ま
た、上記第1実施例では、並列に整相加算回路を持つ事
で同時受信を行えるようにしたが、本実施例においては
同時受信数が非常に多くなるので、整相加算回路を並列
にもつ代りに、一旦波形メモリ19にアレイプローブ1
1の各振動素子の受信波形を記録し、後で開口合成処理
回路20において開口合成処理を行うことにより、整相
加算された複数の2次元データをデータを得る。この複
数の2次元データを一旦画像データメモリ21に書込み
後読み出して3次元グラフィック演算回路22へ加える
ことにより3次元画像データを求め、この3次元画像デ
ータを基に表示処理回路17によりモニタ18上に3次
元画像が表示される。
The ultrasonic diagnostic apparatus of the second embodiment basically operates in the same manner as the first embodiment, but an array having a two-dimensional division structure in which a plurality of vibrating elements are arranged in a plurality of rows. Since the probe 11 is used, the transmission and reception beams are spread in the slice direction as well, and the number of simultaneous receptions is increased accordingly. In the secondary direction scanning by the array probe 11, the scanning controller 15 causes the transceiver 12 and the probe movement controller 14 to operate in synchronization with each other, and the electronic fan-shaped scanning in the array direction and the reversible swing motor 13 are performed. It is performed by mechanical fan-shaped scanning in the slice direction by driving. The phasing addition circuit 16 is for collecting two-dimensional image data, and the display processing circuit 17 displays a two-dimensional image on the monitor 18 according to the two-dimensional image data collected by the phasing addition circuit 16. Become. Further, in the first embodiment described above, the phasing addition circuit is provided in parallel so that simultaneous reception can be performed. However, in the present embodiment, the number of simultaneous receptions is very large. Instead of once, the array probe 1 is once stored in the waveform memory 19.
By recording the received waveform of each vibrating element 1 and performing aperture synthesis processing in the aperture synthesis processing circuit 20 later, data of a plurality of two-dimensional data subjected to phasing addition is obtained. The plurality of two-dimensional data is once written into the image data memory 21, read out, and added to the three-dimensional graphic operation circuit 22 to obtain three-dimensional image data. Based on the three-dimensional image data, the display processing circuit 17 causes the monitor 18 to display the three-dimensional image data. A three-dimensional image is displayed on the screen.

【0021】前述の如く、第2実施例では、アレイ及び
スライスの両方向に広がった送信ビームを用いるため、
比較的容易に均一な音圧の送信ビームを作ることがで
き、これによりS/Nの良い受信エコーを得られる。よ
って第2実施例によれば第1実施例と比較して更に高速
にデータ収集することが可能となる。
As described above, in the second embodiment, since the transmission beams spread in both the array and slice directions are used,
It is relatively easy to form a transmission beam having a uniform sound pressure, which makes it possible to obtain a reception echo with a good S / N. Therefore, according to the second embodiment, it is possible to collect data at a higher speed than in the first embodiment.

【0022】しかし、アレイ方向に電子的に走査してい
る間にもスライス方向に機械的な走査が行われているの
で、アレイプローブ11の法線の角度が変化していくに
つれて、各送信ビームの中心位置は、例えば図5の実線
のようにずれることになる。この場合、点線で囲むずれ
のない所定の送信ビームの位置B1 〜Bn の中心からず
れることになり、このずれが生じると3次元画像が歪む
ことになる。特に、本実施例のように高速でデータ収集
する場合、プローブアレイ11の機械的な移動も高速に
行われるため歪みも無視できない。そこで、本実施例で
は、2次元アレイを用いた場合の特徴を生かしてアレイ
プローブ11をスライス方向に補正することを、走査制
御部15の制御下でプローブ移動制御器14による可逆
振動モータ13の可逆駆動調整で行う。この補正を行う
ことにより図5の点線で囲むずれのない所定の送信ビー
ムの位置B1 〜Bn を確保することができる。また、図
5中、送信ビームB1 〜Bn 中に示す小さな丸は受信ビ
ームを示している。但し、図6(A)に示すようにアレ
イプローブ11の中心が機械的移動において固定されて
いれば完全に補正することができるが、同図(B)に示
すようにアレイプローブ11の中心も移動してしまう時
には補正が不完全となり、音場の深さが近距離であるか
又は遠距離であるかに応じて位置的な誤差が残るので留
意することが望ましい。
However, since mechanical scanning is performed in the slice direction even while electronically scanning in the array direction, as the angle of the normal line of the array probe 11 changes, each transmission beam The center position of is shifted as shown by the solid line in FIG. In this case, the position is shifted from the center of the predetermined transmission beam positions B 1 to B n surrounded by the dotted line, and the three-dimensional image is distorted. In particular, when data is collected at high speed as in this embodiment, the mechanical movement of the probe array 11 is also carried out at high speed, so distortion cannot be ignored. Therefore, in the present embodiment, the probe movement controller 14 controls the reversible vibration motor 13 to correct the array probe 11 in the slice direction by taking advantage of the characteristics of the two-dimensional array. It is performed by reversible drive adjustment. By performing this correction, it is possible to secure the predetermined transmission beam positions B 1 to B n surrounded by the dotted line in FIG. 5 and having no deviation. Further, in FIG. 5, small circles shown in the transmission beams B 1 to B n represent reception beams. However, if the center of the array probe 11 is fixed by mechanical movement as shown in FIG. 6A, it can be completely corrected, but as shown in FIG. 6B, the center of the array probe 11 is also corrected. It is desirable to keep in mind that the correction becomes incomplete when moving, and a positional error remains depending on whether the depth of the sound field is a short distance or a long distance.

【0023】こうして微少角偏向を行うことにより、図
7に示すように血流計測時のアレイプローブ11の機械
的な動きと微少角偏向後の送信ビームの位置(点線で囲
む位置)との関係が得られるようにするとよい。即ち、
血流計測時は、同一アレイ方向に数回の送信を行うがそ
の間もスライス方向にアレイプローブ11が機械的な動
きにより移動しているので、その分も含めて偏向により
補正するとよいものである。このような補正は微少角の
偏向だけで行えるので振動素子群の分割数が少くても行
える。
By performing the minute angle deflection in this way, as shown in FIG. 7, the relationship between the mechanical movement of the array probe 11 at the time of blood flow measurement and the position of the transmission beam after the minute angle deflection (the position surrounded by the dotted line). Should be obtained. That is,
During blood flow measurement, transmission is performed several times in the same array direction, but since the array probe 11 is moving in the slice direction due to mechanical movement during that time as well, it is good to correct by including that amount as well. .. Since such a correction can be performed only by deflecting a small angle, it can be performed even if the number of divisions of the vibration element group is small.

【0024】また、アレイプローブ11は、2次元アレ
イでありスライス方向にも分割されているため、スライ
ス方向の口径及び受信焦点を各深さでダイナミックに変
えることができる。本実施例にあっては、開口合成処理
回路20での開口合成処理においてそのダイナミック変
化の操作がなされる。実際には通常のリアルタイム断層
像を見ながら超音波検査を行い、必要に応じて操作者が
3次元データ収集をスイッチ等の手段により本実施例装
置に指示すると、本実施例装置は上記に述べた操作によ
り3次元データを波形メモリ19に格納する。その後、
開口合成処理回路20での開口合成処理により画像を計
算し、操作者の指示に対応した画像をモニタ18上に表
示することになる。
Further, since the array probe 11 is a two-dimensional array and is also divided in the slice direction, it is possible to dynamically change the aperture and reception focus in the slice direction at each depth. In this embodiment, the dynamic change operation is performed in the aperture synthesis processing in the aperture synthesis processing circuit 20. Actually, an ultrasonic examination is performed while viewing a normal real-time tomographic image, and if necessary, the operator instructs the apparatus of this embodiment to collect three-dimensional data by means of a switch or the like. The three-dimensional data is stored in the waveform memory 19 by the above operation. afterwards,
An image is calculated by the aperture synthesis processing in the aperture synthesis processing circuit 20, and the image corresponding to the instruction of the operator is displayed on the monitor 18.

【0025】なお、前述した各実施例において、第2実
施例においてのみ開口合成処理を行うものとしたが、第
1実施例のシステム構成に開口合成処理機能を付加して
も本発明を逸脱しないことは勿論のことである。また、
第2実施例のシステム構成に複数の整相加算回路を並列
に持つことも本発明の範ちゅうにある。また、アレイプ
レーブでの電子的な走査及びアレイプローブで行わせる
機械的な走査を共に、前述した各実施例では扇状走査と
したが、実際には本発明の主旨を変えない範囲で異なる
形状となる走査にも適応できる。
In each of the above-described embodiments, the aperture synthesis processing is performed only in the second embodiment, but the addition of the aperture synthesis processing function to the system configuration of the first embodiment does not depart from the present invention. Of course, of course. Also,
It is also within the scope of the present invention to have a plurality of phasing addition circuits in parallel in the system configuration of the second embodiment. Further, both the electronic scanning by the array probe and the mechanical scanning performed by the array probe are fan-shaped scanning in each of the above-described embodiments, but actually have different shapes within a range that does not change the gist of the present invention. It can also be applied to scanning.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、ア
レイプレーブを介して並列同時受信しながらこのアレイ
プローブをスライス方向に動かして3次元データを収集
するので、高速に3次元データの収集を行える。
As described above, according to the present invention, since three-dimensional data is collected by moving the array probe in the slice direction while simultaneously receiving in parallel via the array probe, three-dimensional data can be collected at high speed. You can do it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用された第1実施例の超音波診断装
置の機能構成を示すブロック図である。
FIG. 1 is a block diagram showing a functional configuration of an ultrasonic diagnostic apparatus of a first embodiment to which the present invention is applied.

【図2】本発明の第1実施例における2次方向走査の概
念を示す図である。
FIG. 2 is a diagram showing the concept of secondary direction scanning in the first embodiment of the present invention.

【図3】本発明が適用された第2実施例の超音波診断装
置の機能構成を示すブロック図である。
FIG. 3 is a block diagram showing a functional configuration of an ultrasonic diagnostic apparatus according to a second embodiment of the present invention.

【図4】本発明の第2実施例における2次方向走査の概
念を示す図である。
FIG. 4 is a diagram showing the concept of secondary direction scanning in the second embodiment of the present invention.

【図5】本発明の第2実施例における微少角偏向による
断層面の補正の概念を示す図である。
FIG. 5 is a diagram showing a concept of correcting a tomographic plane by minute angle deflection in the second embodiment of the present invention.

【図6】本発明の第2実施例における微少角偏向による
断層面の補正が効果的に行える条件を説明するために用
いた図である。
FIG. 6 is a diagram used for explaining conditions under which a tomographic plane can be effectively corrected by minute angle deflection in the second embodiment of the present invention.

【図7】本発明の第2実施例に従って血流計測を行う場
合のアレイプローブの機械的な動きと送信ビームの位置
との好適な一例を示す図である。
FIG. 7 is a diagram showing a preferred example of the mechanical movement of the array probe and the position of the transmission beam when performing blood flow measurement according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,11 アレイプローブ 2,12 送受信器 3,13 可逆揺動モータ 4,14 プローブ移動制御器 5,15 走査制御器 61 〜6n ,16 整相加算回路 7,17 表示処理回路 8,18 モニタ 19 波形メモリ 20 開口合成処理回路 21 画像データメモリ 22 3次元グラフィック演算回路1,11 array probe 2,12 transceiver 3,13 reversible swing motor 4, 14 probe movement controller 5,15 scan controller 6 1 ~6 n, 16 phasing addition circuit 7, 17 display processing circuit 8, 18 Monitor 19 Waveform memory 20 Aperture synthesis processing circuit 21 Image data memory 22 Three-dimensional graphic operation circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内堀 孝信 栃木県大田原市下石上1385番の1 東芝メ ディカルエンジニアリング株式会社内 (72)発明者 手塚 智 栃木県大田原市下石上1385番の1 株式会 社東芝那須工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takanobu Uchibori 1385-1 Shimoishigami, Otawara, Tochigi Prefecture Toshiba Medical Engineering Co., Ltd. (72) Inventor Satoshi Tezuka 1385-1, Shimoishigami, Otawara, Tochigi Prefecture Stock Association Inside Toshiba Nasu factory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 アレイプローブから比較的広がった送信
ビームを出し、当該アレイプローブを介して複数の受信
ビームを同時受信する送受信手段と、前記アレイプロー
ブを振動素子の配列方向と直交する方向へ機械的に動か
すプローブ駆動手段と、前記送受信手段及び前記プロー
ブ駆動手段を同期して動作させる制御を行って前記アレ
イプローブにより2次方向走査を行わせる走査制御手段
と、該走査制御手段の制御下で前記送受信手段からの複
数の同時受信エコー信号を並列に取込む繰返しで3次元
データの収集を行う3次元データ収集手段と、を具備す
ることを特徴とする超音波診断装置。
1. A transmission / reception means for emitting a relatively wide transmission beam from an array probe and simultaneously receiving a plurality of reception beams via the array probe; and a machine for moving the array probe in a direction orthogonal to the array direction of the vibration elements. A probe driving unit that is moved dynamically, a scanning control unit that controls the transmitting and receiving unit and the probe driving unit to operate synchronously, and causes the array probe to perform secondary direction scanning, and under the control of the scanning control unit. An ultrasonic diagnostic apparatus, comprising: a three-dimensional data collecting unit that repeatedly collects a plurality of simultaneously received echo signals from the transmitting and receiving unit in parallel to collect three-dimensional data.
【請求項2】 前記アレイプローブとして複数の振動素
子が複数列状に配列されてなる2次元分割構造のアレイ
プローブを用いることを特徴とする請求項1記載の超音
波診断装置。
2. The ultrasonic diagnostic apparatus according to claim 1, wherein an array probe having a two-dimensionally divided structure in which a plurality of vibrating elements are arranged in a plurality of rows is used as the array probe.
【請求項3】 振動素子の配列方向及びこれに直交する
方向ともに比較的太い送信ビームを出し、その送信ビー
ムの成す円錐又は多角錘内の各方向に指向性を持つ受信
ビーム群により同時に2方向以上からの受信エコーを検
出することを特徴とする請求項1又は2記載の超音波診
断装置。
3. A relatively thick transmission beam is emitted in both the array direction of the vibrating elements and the direction orthogonal thereto, and two directions are simultaneously provided by a reception beam group having directivity in each direction within a cone or a polygonal cone formed by the transmission beam. The ultrasonic diagnostic apparatus according to claim 1, wherein the received echoes from the above are detected.
【請求項4】 請求項2記載の超音波診断装置におい
て、前記2次元分割構造のアレイプローブにおける振動
素子の配列方向と直交する方向の開口幅および焦点を変
えながら前記送受信手段を受信動作させることを特徴と
する超音波診断装置。
4. The ultrasonic diagnostic apparatus according to claim 2, wherein the transmitting / receiving means performs a receiving operation while changing an opening width and a focus in a direction orthogonal to an array direction of the vibration elements in the array probe having the two-dimensionally divided structure. An ultrasonic diagnostic apparatus characterized by:
【請求項5】 振動素子の配列方向と直交する方向の機
械的な動きに合わせて微少角偏向する事で、機械的な動
きに起因する断層像間の間隔の不均一を補正することを
特徴とする請求項2記載の超音波診断装置。
5. The non-uniformity of the interval between the tomographic images caused by the mechanical movement is corrected by deflecting the microscopic angle in accordance with the mechanical movement in the direction orthogonal to the array direction of the vibrating elements. The ultrasonic diagnostic apparatus according to claim 2.
【請求項6】 振動素子の配列方向と直交する方向の機
械的な動きに合わせて微少角偏向する事で、血流情報収
集の際の機械的な動きに起因する誤差を減少させる事を
特徴とする請求項2記載の超音波診断装置。
6. An error caused by a mechanical movement at the time of collecting blood flow information is reduced by deflecting a minute angle in accordance with a mechanical movement in a direction orthogonal to the array direction of the vibrating elements. The ultrasonic diagnostic apparatus according to claim 2.
【請求項7】 アレイプレーブを機械的に動かして被検
体の3次元データを収集するシステムにおいて、リアル
タイム断層像表示を行うための整相加算回路と、開口合
成処理を行うため波形メモリ及び処理回路とを共にも
ち、通常のリアルタイム断層像表示の際には前記整相加
算回路を動作させ、3次元データ収集を行う旨の指示を
受けた際には前記波形メモリ及び処理回路を動作させる
ことを特徴とする超音波診断装置。
7. A phasing addition circuit for displaying a real-time tomographic image, a waveform memory and a processing circuit for performing aperture synthesis processing in a system for mechanically moving an array probe to collect three-dimensional data of a subject. In addition, the phasing addition circuit is operated during normal real-time tomographic image display, and the waveform memory and the processing circuit are operated when an instruction to collect three-dimensional data is received. And ultrasonic diagnostic equipment.
JP15461192A 1992-06-15 1992-06-15 Ultrasound diagnostic equipment Expired - Lifetime JP3329485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15461192A JP3329485B2 (en) 1992-06-15 1992-06-15 Ultrasound diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15461192A JP3329485B2 (en) 1992-06-15 1992-06-15 Ultrasound diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH05344975A true JPH05344975A (en) 1993-12-27
JP3329485B2 JP3329485B2 (en) 2002-09-30

Family

ID=15587973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15461192A Expired - Lifetime JP3329485B2 (en) 1992-06-15 1992-06-15 Ultrasound diagnostic equipment

Country Status (1)

Country Link
JP (1) JP3329485B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236642A (en) * 1994-03-02 1995-09-12 Aloka Co Ltd Ultrasonic diagnostic device
JPH08336533A (en) * 1994-11-30 1996-12-24 Advanced Technol Lab Inc Three-dimensional ultrasonic wave picture creation method and picture processor
WO2002039901A1 (en) * 2000-11-15 2002-05-23 Aloka Co., Ltd. Ultrasonic diagnosic device
JP2004154415A (en) * 2002-11-07 2004-06-03 Ge Medical Systems Global Technology Co Llc Ultrasonic pulse transmission method and ultrasonic diagnostic equipment
JP2005028166A (en) * 1994-08-05 2005-02-03 Acuson Corp Receiving beam generator
JP2005121660A (en) * 2003-10-16 2005-05-12 General Electric Co <Ge> Two-dimensional phased array for volume ultrasonic inspection and method for using the same
JP2006087668A (en) * 2004-09-24 2006-04-06 Fuji Photo Film Co Ltd Ultrasonic imaging apparatus
JP2008073085A (en) * 2006-09-19 2008-04-03 Toshiba Corp Ultrasonic diagnostic equipment and image data generation method
JP2010523253A (en) * 2007-04-13 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Imaging thick slices with high-speed ultrasound
US9116225B2 (en) 2009-05-25 2015-08-25 Canon Kabushiki Kaisha Measuring apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438693A (en) * 1977-09-02 1979-03-23 Hitachi Medical Corp Ultrasonic wave diagnosing device
JPS60246740A (en) * 1984-05-21 1985-12-06 株式会社東芝 Ultrasonic diagnostic apparatus
JPS63246143A (en) * 1987-10-09 1988-10-13 株式会社日立メデイコ Ultrasonic diagnostic apparatus
JPH02124553U (en) * 1989-03-27 1990-10-15
JPH0364607U (en) * 1989-10-30 1991-06-24
JPH03155843A (en) * 1989-11-15 1991-07-03 Toshiba Corp Ultrasonic diagnostic device
JPH03184532A (en) * 1989-12-14 1991-08-12 Aloka Co Ltd Ultrasonic probe for picking up three-dimensional data
JPH0422347A (en) * 1990-05-17 1992-01-27 Toshiba Corp Ultrasonic diagonostic device
JPH0479943A (en) * 1990-07-20 1992-03-13 Toshiba Corp Ultrasonic diagnosing device
JPH04507352A (en) * 1989-05-26 1992-12-24 サーキュレーション リサーチ リミテッド Methods and devices for examination and treatment of internal organs

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438693A (en) * 1977-09-02 1979-03-23 Hitachi Medical Corp Ultrasonic wave diagnosing device
JPS60246740A (en) * 1984-05-21 1985-12-06 株式会社東芝 Ultrasonic diagnostic apparatus
JPS63246143A (en) * 1987-10-09 1988-10-13 株式会社日立メデイコ Ultrasonic diagnostic apparatus
JPH02124553U (en) * 1989-03-27 1990-10-15
JPH04507352A (en) * 1989-05-26 1992-12-24 サーキュレーション リサーチ リミテッド Methods and devices for examination and treatment of internal organs
JPH0364607U (en) * 1989-10-30 1991-06-24
JPH03155843A (en) * 1989-11-15 1991-07-03 Toshiba Corp Ultrasonic diagnostic device
JPH03184532A (en) * 1989-12-14 1991-08-12 Aloka Co Ltd Ultrasonic probe for picking up three-dimensional data
JPH0422347A (en) * 1990-05-17 1992-01-27 Toshiba Corp Ultrasonic diagonostic device
JPH0479943A (en) * 1990-07-20 1992-03-13 Toshiba Corp Ultrasonic diagnosing device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236642A (en) * 1994-03-02 1995-09-12 Aloka Co Ltd Ultrasonic diagnostic device
JP2006187667A (en) * 1994-08-05 2006-07-20 Acuson Corp Receiving beam generator
JP2005028166A (en) * 1994-08-05 2005-02-03 Acuson Corp Receiving beam generator
JPH08336533A (en) * 1994-11-30 1996-12-24 Advanced Technol Lab Inc Three-dimensional ultrasonic wave picture creation method and picture processor
WO2002039901A1 (en) * 2000-11-15 2002-05-23 Aloka Co., Ltd. Ultrasonic diagnosic device
US6875177B2 (en) 2000-11-15 2005-04-05 Aloka Co., Ltd. Ultrasonic diagnostic apparatus
KR100851587B1 (en) * 2000-11-15 2008-08-12 아로카 가부시키가이샤 Ultrasonic diagnosic device
JP2004154415A (en) * 2002-11-07 2004-06-03 Ge Medical Systems Global Technology Co Llc Ultrasonic pulse transmission method and ultrasonic diagnostic equipment
JP2005121660A (en) * 2003-10-16 2005-05-12 General Electric Co <Ge> Two-dimensional phased array for volume ultrasonic inspection and method for using the same
JP4728620B2 (en) * 2003-10-16 2011-07-20 ゼネラル・エレクトリック・カンパニイ Two-dimensional phased array for volumetric ultrasound inspection and method of use thereof
JP4713118B2 (en) * 2004-09-24 2011-06-29 富士フイルム株式会社 Ultrasonic imaging device
JP2006087668A (en) * 2004-09-24 2006-04-06 Fuji Photo Film Co Ltd Ultrasonic imaging apparatus
JP2008073085A (en) * 2006-09-19 2008-04-03 Toshiba Corp Ultrasonic diagnostic equipment and image data generation method
JP2010523253A (en) * 2007-04-13 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Imaging thick slices with high-speed ultrasound
US9880271B2 (en) 2007-04-13 2018-01-30 Koninklijke Philips N.V. Ultrasonic thick slice image forming via parallel multiple scanline acquisition
US11988783B2 (en) 2007-04-13 2024-05-21 Koninklijke Philips N.V. High speed ultrasonic thick slice imaging by combining slice images with microbeamformer provided in the probe to control steering
US9116225B2 (en) 2009-05-25 2015-08-25 Canon Kabushiki Kaisha Measuring apparatus

Also Published As

Publication number Publication date
JP3329485B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
US7474778B2 (en) Ultrasonograph
US5421333A (en) Ultrasonic diagnostic apparatus
US20100022883A1 (en) Ultrasonic diagnostic apparatus
JPH09313487A (en) Method and device for ultrasonic three-dimensional photographing
JP2000107182A (en) Ultrasonograph
EP1235080B1 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
US4815043A (en) Ultrasonic imaging apparatus
JP2856858B2 (en) Ultrasound diagnostic equipment
JPH05344975A (en) Ultrasonic wave diagnosing system
JP2000254120A (en) Three-dimensional ultrasonograph
EP0406909A2 (en) Ultrasonic diagnosing apparatus
JPS63143039A (en) Ultrasonic diagnostic apparatus
JP4130004B2 (en) Ultrasonic imaging device
JPH04152939A (en) Ultrasonic diagnostic device
JP3523307B2 (en) Ultrasound diagnostic equipment
JP3364002B2 (en) Ultrasound image processing device
JP3329770B2 (en) Ultrasound diagnostic equipment
JP2004290393A (en) Ultrasonograph
JP3934541B2 (en) Ultrasonic diagnostic equipment
JPH11267121A (en) Method and device for ultrasonic photographing
JP2004223109A (en) Apparatus and method for picking up ultrasonic image
JPH08266539A (en) Ultrasonic diagnostic system
JP2002306474A (en) Ultrasonic imaging apparatus, ultrasonic photographing method, and program to make computer execute the method
JPH08131444A (en) Ultrasonic diagnostic device
JPS6339256B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

EXPY Cancellation because of completion of term