JPH04152939A - Ultrasonic diagnostic device - Google Patents

Ultrasonic diagnostic device

Info

Publication number
JPH04152939A
JPH04152939A JP2277619A JP27761990A JPH04152939A JP H04152939 A JPH04152939 A JP H04152939A JP 2277619 A JP2277619 A JP 2277619A JP 27761990 A JP27761990 A JP 27761990A JP H04152939 A JPH04152939 A JP H04152939A
Authority
JP
Japan
Prior art keywords
scanning
transmitting
ultrasonic
receiving
phasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2277619A
Other languages
Japanese (ja)
Inventor
Shoji Nomura
野村 昇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2277619A priority Critical patent/JPH04152939A/en
Publication of JPH04152939A publication Critical patent/JPH04152939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To variably set the scanning density in a state that a prescribed number of scanning lines of a focusing ultrasonic beam to be transmitted/ received is maintained as it is by giving a prescribed delay time to each of plural vibrators and transmitting or receiving it. CONSTITUTION:When an operator desired to observe the image of a higher bearing resolution by the tomographic image of a display screen, the operator sets a scanning density variable setting switch on an operating panel 11 to a desired position. Thus, a CPU 8 outputs delay data for narrowing a scanning angle between the initial direction and the final direction to the transmitting/ receiving surface of an ultrasonic beam for executing a scan by standard scanning density, and also, while keeping the number of beams in its scanning angle and the depth of focus constant, and reducing the deflection angle of every transmission/reception, to a first and a second phasing circuits 3, 4 for transmission, and a first and a second phasing circuits 5, 6 for reception. In such a manner, the image of a desired bearing resolution is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波診断装置の分野で用いられ、特に、セク
タ走査形又はコンベックス走査形の装置における超音波
検査領域を可変設定する技術に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is used in the field of ultrasonic diagnostic equipment, and particularly relates to a technique for variably setting the ultrasound examination area in sector scanning or convex scanning equipment. It is.

〔従来の技術〕[Conventional technology]

超音波診断装置における超音波ビームの走査方法は、ビ
ームを平行に走査するリニア走査と、ビームを放射状に
走査するセクタ走査及びコンベックス(カーブド・リニ
アとも称される。)走査との3方法が現在の主流をなし
ている。
There are currently three methods for scanning ultrasound beams in ultrasound diagnostic equipment: linear scanning, which scans the beam in parallel; sector scanning, and convex (also called curved linear) scanning, which scans the beam radially. is the mainstream.

超音波診断装置の画像は30フレ一ム/秒程度のリアル
タイム画像であるが、その画像の分解能は空間分解能と
時間分解能との双方で把えられなければならない。超音
波が人体等の生体中を伝播する速度は約1500m/秒
であり、また超音波像を表示するTVモニタの画面上で
像のチラッキを目立たなくするフレームレートは約30
フレーム/秒という制約が存在する。これらの2つの制
約を加味した上で、前記2つの分解能と1走査で検査可
能な走査範囲を最適にするように、超音波診断装置では
1画像に対する超音波ビーム走査線数及びその密度が設
定されている。
Images from an ultrasonic diagnostic apparatus are real-time images of about 30 frames/second, but the resolution of the images must be understood in terms of both spatial and temporal resolution. The speed at which ultrasound waves propagate through living organisms such as the human body is approximately 1,500 m/s, and the frame rate that makes flickering of images less noticeable on the TV monitor screen that displays ultrasound images is approximately 30 m/s.
There is a frame/second constraint. Taking these two constraints into consideration, the number of ultrasound beam scanning lines and their density for one image are set in the ultrasound diagnostic equipment so as to optimize the two resolutions and the scanning range that can be inspected in one scan. has been done.

つまり、従来装置では、超音波ビーム1走査で検査でき
る範囲と、それに対する走査線数、したがって走査線密
度も装置固有のものとして所定値に設定されているもの
であった。
In other words, in the conventional apparatus, the range that can be inspected by one scan of the ultrasonic beam, the number of scanning lines therefor, and therefore the scanning line density are also set to predetermined values unique to the apparatus.

ところが、近年、心臓等の循環器を検査対象とする電子
セクタ形装置の研究・開発が進んでいるこの電子セクタ
形装置ではドツプラ効果を利用して心臓や血流を表示す
る機能が必須要件である。
However, in recent years, research and development of electronic sector type devices that test circulatory organs such as the heart has progressed, and the function of displaying the heart and blood flow using the Doppler effect is an essential requirement for this type of electronic sector type device. be.

しかし、ドツプラ効果を利用するには、1方向に対し複
数回超音波ビームを送受信する必要があるしかし、この
方法を用いると、前記制約から超音波像のフレームレー
トが通常のBモードと比較しかなり低下してしまうのが
避けられない。そこで血流表示モードでは、走査線密度
は変更せずに走査線数を変え少なくし、即ち検査領域を
狭くし、フレームレートを少しでも高く保とうとするこ
とが行われている。すなわち、このような装置では、通
常のBモート走査における最大走査範囲を所定走査線密
度で走査するように設定し、血流表示モードでは、前記
走査線密度を保ったまま、又は走査線を間引き、かつ走
査範囲を狭くすることが一般的に行われている。
However, in order to utilize the Doppler effect, it is necessary to transmit and receive ultrasound beams multiple times in one direction. However, when using this method, the frame rate of ultrasound images is lower than that of normal B mode due to the above constraints. It is inevitable that it will decline significantly. Therefore, in the blood flow display mode, the number of scanning lines is decreased without changing the scanning line density, that is, the inspection area is narrowed, and the frame rate is kept as high as possible. That is, in such a device, the maximum scanning range in normal B mode scanning is set to be scanned at a predetermined scanning line density, and in blood flow display mode, the scanning line density is maintained or the scanning lines are thinned out. , and narrowing the scanning range is common practice.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来装置では、Bモード表示について考えた場合に
、走査範囲と走査線密度は固定されているため、分解能
(特に方位方向分解能)を低くしても広い範囲を1画面
で検査したいとか、走査範囲は狭くしても良いから高い
方位分解能の画像で検査したいという要望に応えること
は不可能であった。
In the conventional device described above, when considering B-mode display, the scanning range and scanning line density are fixed, so even if the resolution (especially azimuth resolution) is lowered, you may want to inspect a wide area on one screen, or Since the range can be narrowed, it has been impossible to meet the demand for inspection using images with high lateral resolution.

そこで本発明は、上記要望に応え得る超音波診断装置を
提供することを目的とする。
Therefore, an object of the present invention is to provide an ultrasonic diagnostic apparatus that can meet the above-mentioned demands.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明は、複数の振動子を配
列してなる超音波探触子と、この探触子により集束超音
波ビームを放射状に所定走査線数を所定走査線密度で順
次送受信する第1の送受波整相手段を含む送受信手段と
、前記探触子とこの送受信手段とによって取り込んだエ
コー信号を表示する表示手段とを備えた超音波診断装置
において、前記送受信される集束超音波ビームの所定走
査線数を維持したまま、走査g密度を可変設定できる第
2の送受波整相手段を設けたものである。
In order to achieve the above object, the present invention provides an ultrasonic probe having a plurality of transducers arranged, and a focused ultrasonic beam that is sequentially transmitted radially by a predetermined number of scanning lines at a predetermined scanning line density. In an ultrasonic diagnostic apparatus, the ultrasonic diagnostic apparatus includes a transmitting/receiving means including a first transmitting/receiving wave phasing means for transmitting and receiving, and a display means for displaying an echo signal taken in by the probe and the transmitting/receiving means. A second wave transmitting/receiving phasing means is provided which can variably set the scanning g density while maintaining a predetermined number of scanning lines of the ultrasonic beam.

〔作用〕[Effect]

超音波ビームを収束させ又は指向性を変えるためには複
数の振動子の各々に対し所定の遅延時間を与えて送信又
は受信をすれば良い、上記構成において、第1の送受波
整相手段のみを動作させると、装置として標準的な走査
線密度で視野(検査領域)が設定される。そして、それ
よりも視野が狭くても解像力の良い画像を得たい場合、
及び、解像力は劣っても視野範囲を広くしたい場合には
、第2の送受波整相手段を第1の送受波整相手段から切
り換えて、又は第1の送受波整相手段へ第2の送受波整
相手段を付加して動作させる。これにより走査線数を変
えることなく走査liA密度を可変設定できる。
In order to converge the ultrasonic beam or change the directivity, it is only necessary to transmit or receive by giving a predetermined delay time to each of the plurality of transducers.In the above configuration, only the first wave transmitting/receiving phasing means is used. When operated, the field of view (inspection area) is set at the standard scanning line density for the device. If you want to obtain an image with good resolution even if the field of view is narrower than that,
If you want to widen the viewing range even if the resolution is poor, you can switch the second wave transmitting/receiving phasing means from the first wave transmitting/receiving phasing means, or switch the second wave transmitting/receiving phasing means to the first wave transmitting/receiving phasing means. It is operated by adding a transmitting/receiving wave phasing means. This allows the scanning liA density to be variably set without changing the number of scanning lines.

〔実施例〕〔Example〕

以下、図面により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の概念を示すもので、第1図は電子セク
タ方式の例、そして第2図はコンベックス方式の例を示
している。電子セクタ方式は第1図に示すように探触子
10には#1〜#Dまでのn個の振動子が配列状に設け
られている。これらの#1〜#nまでの各振動子へ後述
の送受波整相回路により遅延時間をそれぞれ与えて送受
信を行うと、超音波ビームが所定方向へ偏向して、かつ
所定深度で集束するように形成される。各振動子へ与え
られる遅延時間は、超音波ビームの偏向角と集束点Pの
深度(焦点深度)とにより特定されるものであり、全走
査角度と走査線数Nと焦点深度Fとを設定すれば、第4
図に示すごとく走査線番号n(このときの偏向角をθと
する。)を生成するために振動子iへ与える遅延時間τ
、は(1)式により決まる。
FIG. 1 shows the concept of the present invention; FIG. 1 shows an example of the electronic sector system, and FIG. 2 shows an example of the convex system. In the electronic sector method, as shown in FIG. 1, a probe 10 is provided with n vibrators #1 to #D in an array. When each of these transducers #1 to #n transmits and receives a delay time using a transmitting/receiving phasing circuit described later, the ultrasonic beam is deflected in a predetermined direction and focused at a predetermined depth. is formed. The delay time given to each transducer is specified by the deflection angle of the ultrasound beam and the depth of the focal point P (depth of focus), and the total scanning angle, number of scanning lines N, and depth of focus F are set. Then, the fourth
As shown in the figure, the delay time τ given to the transducer i to generate the scanning line number n (the deflection angle at this time is θ)
, is determined by equation (1).

・・・(1) 二二に i:振動子番号 d:振動子の配列ピッチ C:生体内における超音波速度 この(1)式の(i −1)d−sinθ/Cは偏向の
ための遅延時間を、そして(i−1)もd、/8CF・
cosθは集束のための遅延時間を表わしている。
...(1) 22 i: Transducer number d: Transducer arrangement pitch C: Ultrasonic velocity in the living body (i - 1) d-sin θ/C in equation (1) is for deflection. The delay time and (i-1) are also d, /8CF・
cos θ represents the delay time for focusing.

このようにして決めた長連時間の組第1の送受波整相手
段により#1〜#nの各振動子への走査線番号順に順次
与えてNQ1〜&Nまで走査すると第1図(a)に示す
如く標準的な走査線密度の超音波像が得られる。
When the set of long continuous time determined in this manner is sequentially given to each transducer #1 to #n in the order of scanning line number by the first transmission/reception wave phasing means and scanned from NQ1 to &N, the result is shown in Fig. 1(a). As shown in Figure 2, an ultrasound image with standard scanning line density is obtained.

これに対し、第1図(b)、(c)は走査線密度を変更
したものである。これらの各ケースでは上記(1)式の
θを走査線番号毎に求めて各振動子へ与える遅延時間を
計算により求めることができる。
On the other hand, in FIGS. 1(b) and 1(c), the scanning line density is changed. In each of these cases, the delay time given to each vibrator can be determined by calculating θ in the above equation (1) for each scanning line number.

これらの遅延時間は第2の送受信整相手段により各振動
子へ与えられるが、特別な場合として次のようなことを
考えても良い。すなわち、第1図(a)に示す標準的走
査線密度に対し、第1図(b)又は(c)の場合の走査
!!密度が2倍、3場合には走査線の位置が重畳するも
のがある。そこで、重畳する走査線については、第1の
送受波整相手段により、そうでないものについては第2
の送受波整相手段により遅延時間を与えるようにしても
良い。
These delay times are given to each vibrator by the second transmission/reception phasing means, but the following may be considered as a special case. That is, for the standard scanning line density shown in FIG. 1(a), the scanning in the case of FIG. 1(b) or (c)! ! When the density is double or triple, the positions of the scanning lines may overlap. Therefore, for scanning lines to be superimposed, the first transmission/reception wave phasing means is used, and for other scanning lines, the second wave phasing means is used.
The delay time may be provided by the transmitting/receiving wave phasing means.

次に、第2図によりコンベックス走査方式について説明
する。コンベックス走査は前記のようにカーブドリニア
走査とも称されるように、リニア走査の一種であり、そ
れに用いられる探触子は複数の振動子を円弧状に配列さ
れており、放射される各超音波ビームは円弧に対し法線
方向とされている(第2図(a)参照)。つまり、偏向
のための遅延制御は行われておらず、集束のための遅延
制御のみが行われているものである。したがって、コン
ベックス走査方式における送受信整相手段(第1の送受
信整相手段)は、1回の送受信の際に配列される振動子
数に所定の遅延時間を与えるに足りるものを備えていれ
ば良いものであった。
Next, the convex scanning method will be explained with reference to FIG. As mentioned above, convex scanning is also called curved linear scanning, and is a type of linear scanning.The probe used for it has multiple transducers arranged in an arc, and each emitted ultrasonic wave The beam is oriented normal to the arc (see FIG. 2(a)). In other words, delay control for deflection is not performed, but only delay control for focusing is performed. Therefore, the transmitting/receiving phasing means (first transmitting/receiving phasing means) in the convex scanning method only needs to have enough components to give a predetermined delay time to the number of oscillators arranged during one transmission/reception. It was something.

本発明はコンベックス方式でも前記セクタ方式と同様に
第2の送受波整相手段を設け、第2図(b)又は(c)
のように超音波ビームを偏向させるものである。超音波
ビームを偏向させ、かつ集束させるために、各振動子へ
与える遅延時間は、前述のセクタ方式と同様にして計算
又は幾何学的に求めることができるが、ここではその説
明は省略する。
The present invention also provides a second wave transmitting/receiving phasing means in the convex method as well as in the sector method, as shown in FIG. 2(b) or (c).
It deflects the ultrasonic beam as shown in the figure. The delay time given to each transducer in order to deflect and focus the ultrasonic beam can be calculated or geometrically obtained in the same manner as the sector method described above, but its explanation will be omitted here.

次に第3図により、本発明を具現化した一実施例を説明
する。第3図において、1は電子セクタ形超音波探触子
又はコンベックス形超音波探触子、2は送受信回路で振
動子群へ能動パルスを供給する送波用のバルサ、スイッ
チング回路及び受波用の増幅器、スイッチング回路等を
含んでいる。3は送波用第1整相回路、4は同じく送波
用第2整相回路、そして5は受渡用第1整相回路、6は
同じく受波用第2整相回路である。7は受波用整相回路
の出力信号を記憶するメモリを有し、超音波の走査をT
V表示走査しこ変換するディジタル・スキャン・コンバ
ータ(以下+ DSCと記す。)、8は装置の各部を制
御するCPU、9はcpusへの信号入力及びCPU8
から各部への信号出力のための■/○ポート、10はC
RTを備えてなるTVモニタの如き表示装置、11は走
査線密度可変設定スイッチを含む各種スイッチ類が配置
された操作パネルである。
Next, an embodiment embodying the present invention will be described with reference to FIG. In Fig. 3, 1 is an electronic sector type ultrasonic probe or a convex type ultrasonic probe, 2 is a transmitting/receiving circuit, which is a balsa for transmitting waves that supplies active pulses to a group of transducers, a switching circuit, and a wave receiving circuit. This includes amplifiers, switching circuits, etc. 3 is a first phasing circuit for wave transmission, 4 is a second phasing circuit for wave transmission, 5 is a first phasing circuit for delivery, and 6 is a second phasing circuit for wave reception. 7 has a memory for storing the output signal of the wave receiving phasing circuit, and controls ultrasonic scanning at T.
A digital scan converter (hereinafter referred to as +DSC) that performs V-display scan conversion, 8 a CPU that controls each part of the device, 9 a signal input to the CPU, and a CPU 8
■/○ port for signal output from to each part, 10 is C
A display device such as a TV monitor equipped with an RT, and 11 an operation panel on which various switches including a scanning line density variable setting switch are arranged.

次に、上記の如く構成した装置の動作を説明する。操作
者は走査線密度可変設定スイッチ(これは、走査線数は
一定であるから探触子から放射される超音波ビームの走
査角度を設定するスイッチに対応している。)を操作し
、被検査部位の大きさ、精検がスクリーニングか等に応
じた走査線密度を設定する。今仮りに標準的走査線密度
が設定されたとする。次いで、探触子1を被検体20へ
当接し、超音波走査を開始する操作を行う。すると、C
PU8から超音波の送波方向及び焦点深度を設定するた
めに各振動子へ与える遅延データが出力され、送波用第
1整相回路3及び受波用第1整相回路5が制御される。
Next, the operation of the apparatus configured as described above will be explained. The operator operates the scanning line density variable setting switch (this corresponds to the switch that sets the scanning angle of the ultrasonic beam emitted from the probe, since the number of scanning lines is constant). The scanning line density is set depending on the size of the examination area, whether the detailed examination is screening, etc. Assume now that a standard scanning line density has been set. Next, the probe 1 is brought into contact with the subject 20 and an operation is performed to start ultrasonic scanning. Then, C
The PU 8 outputs delay data given to each transducer in order to set the ultrasound transmission direction and focal depth, and the first phasing circuit 3 for transmission and the first phasing circuit 5 for reception are controlled. .

前記遅延データは超音波送受信毎に更新して出力され、
その結果、超音波ビームは各送受信毎に標準的走査線密
度となる偏向角で順次偏向される。そして、探触子1.
送受信回路2及び送波用第1整相回路5を介して取り込
まれたエコー信号はDSC7のメモリへディジタル化し
て送受信のタイミングに同期して書き込まれ、TVモニ
タの水平同期信号のタイミングで読み出されTVモニタ
10へ断層像として表示される。
The delay data is updated and output every time ultrasound is transmitted and received;
As a result, the ultrasound beam is sequentially deflected at a deflection angle that provides a standard scanning line density for each transmission and reception. And probe 1.
The echo signal taken in via the transmitting/receiving circuit 2 and the first wave transmitting phasing circuit 5 is digitized into the memory of the DSC 7, written in synchronization with the timing of transmission and reception, and read out with the timing of the horizontal synchronization signal of the TV monitor. and displayed on the TV monitor 10 as a tomographic image.

上記の表示画面の断層像によって、操作者がより高い方
位分解能の画像を観察したいと思ったときには、操作者
は操作パネル11上の走査線密度可変設定スイッチを所
望の位置に合わせる。すると: CPU8は上記標準的
走査線密度で走査する超音波ビームの送受信面に対する
初期方向と最終方向との間の走査角を狭く、かつその走
査角内のビーム数と焦点深度とを一定に保ち、各送受信
毎の偏向角を小さくする遅延データを、送波用箱1゜第
2整相回路3及び4、受波用第1.第2整相回路5及び
6へ出力する。これによって、詳細な説明は省略するが
、所望の方位分解能の画像が得られることは容易に理解
されるであろう。
When the operator wishes to observe an image with higher lateral resolution from the tomographic image on the display screen, the operator adjusts the scanning line density variable setting switch on the operation panel 11 to a desired position. Then: The CPU 8 narrows the scanning angle between the initial direction and the final direction of the ultrasonic beam scanning at the standard scanning line density with respect to the transmitting/receiving surface, and keeps the number of beams and the depth of focus within the scanning angle constant. , delay data for reducing the deflection angle for each transmission/reception are sent to the transmitting box 1°, the second phasing circuits 3 and 4, and the receiving box 1°. It is output to the second phasing circuits 5 and 6. Although a detailed explanation will be omitted, it will be easily understood that an image with a desired lateral resolution can be obtained by this.

なお、本実施例では送波と受波の整相回路を各2つずつ
設けた例で説明したが、本発明はそれに限定されるもの
ではなく、各々単一の整相回路で上記の如く種々超音波
ビームを偏向させることが可能に構成しても良いことは
言うまでもない。
Although this embodiment has been described using an example in which two phasing circuits are provided for transmitting and receiving waves, the present invention is not limited to this, and a single phasing circuit for each is used as described above. It goes without saying that the configuration may be such that the ultrasonic beam can be deflected in various ways.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、1つの超音波断層像
を構成する超音波走査線数を所定値に保ったまま、超音
波走査線の密度を可変設定可能としたので、精密検査の
ように狭い範囲を高い方位分解能で観察したい場合には
超音波走査線密度を高くし、スクリーニング等の方位分
解能は低くても広い範囲を観察したい場合には超音波走
査線密度を低くすることで対応ができる。これにより、
超音波診断を効率的に、かつ精度良く行うことが可能と
なる。
As described above, according to the present invention, it is possible to variably set the density of ultrasound scanning lines while maintaining the number of ultrasound scanning lines constituting one ultrasound tomographic image at a predetermined value. If you want to observe a narrow area with high lateral resolution, as in I can handle it. This results in
It becomes possible to perform ultrasonic diagnosis efficiently and with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電子セクタ走査方式へ本発明を適用した場合の
3つの超音波ビームの走査状況を示す図、第2図はコン
ベックス走査方式へ本発明を適用した場合の3つの超音
波ビームへの走査状況を示す図、第3図は本発明の一実
施例の超音波診断装置の構成を示すブロック図、第4図
は電子セクタ方式における超音波の集束と偏向の説明図
である。 1・探触子、2・・送受信回路、3・送波用第1整相回
路、4・・送波用第2整相回路、5・・・受波用第1整
相回易、6・・受波用第2整相回路、7・・DSC1第
Fig. 1 shows the scanning situation of three ultrasonic beams when the present invention is applied to an electronic sector scanning method, and Fig. 2 shows the scanning situation of three ultrasonic beams when the present invention is applied to a convex scanning method. FIG. 3 is a block diagram showing the configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention, and FIG. 4 is an explanatory diagram of focusing and deflection of ultrasonic waves in the electronic sector system. 1. Probe, 2. Transmission/reception circuit, 3. First phasing circuit for transmitting waves, 4. Second phasing circuit for transmitting waves, 5. First phasing circuit for receiving waves, 6 ...Second phasing circuit for wave reception, 7...DSC1st

Claims (1)

【特許請求の範囲】[Claims] 1、複数の振動子を配列してなる超音波探触子と、この
探触子により集束超音波ビームを放射状に所定走査線数
を所定走査線密度で順次送受信する第1の送受波整相手
段を含む超音波送受信手段と、前記探触子とこの送受信
手段とによつて取り込んだエコー信号を表示する表示手
段とを備えた超音波診断装置において、前記送受信され
る集束超音波ビームの所定走査線数を維持したまま、走
査線密度を可変設定できる第2の送受波整相手段を設け
たことを特徴とする超音波診断装置。
1. An ultrasonic probe formed by arranging a plurality of transducers, and a first transmission/reception wave phasing device that sequentially transmits and receives a focused ultrasonic beam radially at a predetermined number of scanning lines at a predetermined scanning line density. In an ultrasonic diagnostic apparatus, the ultrasonic diagnostic apparatus includes an ultrasonic transmitting/receiving means including a means for transmitting and receiving an ultrasonic wave, and a display means for displaying an echo signal captured by the probe and the transmitting/receiving means. An ultrasonic diagnostic apparatus comprising a second wave transmission/reception phasing means that can variably set the scanning line density while maintaining the number of scanning lines.
JP2277619A 1990-10-17 1990-10-17 Ultrasonic diagnostic device Pending JPH04152939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2277619A JPH04152939A (en) 1990-10-17 1990-10-17 Ultrasonic diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2277619A JPH04152939A (en) 1990-10-17 1990-10-17 Ultrasonic diagnostic device

Publications (1)

Publication Number Publication Date
JPH04152939A true JPH04152939A (en) 1992-05-26

Family

ID=17585946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2277619A Pending JPH04152939A (en) 1990-10-17 1990-10-17 Ultrasonic diagnostic device

Country Status (1)

Country Link
JP (1) JPH04152939A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113608A (en) * 2002-09-27 2004-04-15 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic instrument
JP2006340745A (en) * 2005-06-07 2006-12-21 Hitachi Medical Corp Ultrasonograph
JP2009039232A (en) * 2007-08-08 2009-02-26 Aloka Co Ltd Ultrasonic diagnostic apparatus
CN102058417A (en) * 2010-12-31 2011-05-18 飞依诺科技(苏州)有限公司 Linear density control method in ultrasonic image
JP2014534885A (en) * 2011-11-10 2014-12-25 コーニンクレッカ フィリップス エヌ ヴェ Volumetric ultrasound imaging with stable frame rate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113608A (en) * 2002-09-27 2004-04-15 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic instrument
JP2006340745A (en) * 2005-06-07 2006-12-21 Hitachi Medical Corp Ultrasonograph
JP2009039232A (en) * 2007-08-08 2009-02-26 Aloka Co Ltd Ultrasonic diagnostic apparatus
CN102058417A (en) * 2010-12-31 2011-05-18 飞依诺科技(苏州)有限公司 Linear density control method in ultrasonic image
JP2014534885A (en) * 2011-11-10 2014-12-25 コーニンクレッカ フィリップス エヌ ヴェ Volumetric ultrasound imaging with stable frame rate
US10939895B2 (en) 2011-11-10 2021-03-09 Koninklijke Philips N.V. Steady frame rate volumetric ultrasound imaging

Similar Documents

Publication Publication Date Title
EP1745745B9 (en) Apparatus for obtaining ultrasonic images and method of obtaining ultrasonic images
JPH1142224A (en) Ultrasonic diagnostic apparatus
WO2015145828A1 (en) Acoustic wave process device, and method and program for signal processing of acoustic wave process device
JP2008080104A (en) Ultrasound apparatus and method for forming ultrasound image
EP1834587B1 (en) Ultrasound diagnostic apparatus and method for displaying ultrasound image
US5186176A (en) Ultrasonic diagnosis apparatus
WO2015145836A1 (en) Acoustic wave processing device, method for processing signals in acoustic wave processing device and program
US8303506B2 (en) Ultrasonic diagnostic apparatus and ultrasonic imaging method and program
US6258030B1 (en) Ultrasonic diagnostic apparatus
US20100081936A1 (en) Ultrasonic diagnosis apparatus and ultrasonic transmission/reception method
WO2015146227A1 (en) Acoustic wave processing device, method for processing signals in acoustic wave processing device, and program
JP2000139906A (en) Three-dimensional ultrasonograph
JPH078492A (en) Ultrasonic diagnostic device
JP3329485B2 (en) Ultrasound diagnostic equipment
JPH04152939A (en) Ultrasonic diagnostic device
JP2000139907A (en) Ultrasonograph
JP2006218089A (en) Ultrasonic diagnostic apparatus
JPH1099331A (en) Ultrasonic diagnostic device
JP2001037757A (en) Ultrasonic beam scanning method and device and ultrasonic image pickup device
JPH0678922A (en) Ultrasonic diagnostic device
JPH06339479A (en) Ultrasonic diagnostic device
JPS6234537A (en) Ultrasonic doppler apparatus
JPH11206766A (en) Method and device ultrasonic imaging
JPH07148167A (en) Ultrasonic diagnostic apparatus
JP2965256B2 (en) Ultrasound diagnostic equipment