JPH05344723A - Resonant dc-dc converter - Google Patents

Resonant dc-dc converter

Info

Publication number
JPH05344723A
JPH05344723A JP17734192A JP17734192A JPH05344723A JP H05344723 A JPH05344723 A JP H05344723A JP 17734192 A JP17734192 A JP 17734192A JP 17734192 A JP17734192 A JP 17734192A JP H05344723 A JPH05344723 A JP H05344723A
Authority
JP
Japan
Prior art keywords
winding
transformer
effect transistor
field effect
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17734192A
Other languages
Japanese (ja)
Inventor
Takayuki Taguchi
隆行 田口
Teruhi Satou
輝被 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP17734192A priority Critical patent/JPH05344723A/en
Publication of JPH05344723A publication Critical patent/JPH05344723A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a required number of resonance inductances in a parallel drive system voltage resonant DC-DC converter. CONSTITUTION:A series circuit consisting of a primary winding of a transformer 2, third winding 23 and field effect transistor 5 is connected between terminals of a DC power supply 1. A resonance capacitor 7 is connected between main terminals of the field effect transistor 5. A series circuit consisting of a fourth winding 24 and field effect transistor 6 is connected to the end of the primary winding 21 of the transformer 2, and a second resonance capacitor 8 is connected between main terminals of the field effect transistor 6. The third winding 23 and fourth winding 24 lower coupling factor of the transformer 2 with a core to raise a leak inductance, and it is acted as a parallel drive system voltage resonant DC-DC converter by a series resonant circuit consisting of the leak inductance and resonance capacitors 7 and 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は,共振形DC−DCコン
バータ,特に並列駆動方式の共振形DC−DCコンバー
タに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resonance type DC-DC converter, and more particularly to a parallel drive type resonance DC-DC converter.

【従来の技術】共振形DC−DCコンバータはスイッチ
ング損失が小さく,低ノイズであることから高周波化に
適しており,電源の小型・軽量化に有効な回路方式とし
て注目されている。この共振形コンバータの電圧調整に
はスイッチング周波数を制御する方法が一般的に用いら
れているが,この方式ではスイッチング周波数の変化範
囲の最低周波数に対して出力フィルタを設計する必要が
あり,小型・軽量化に制限を与えるという欠点が残る。
そのため,固定周波数で出力電圧の調整が可能な回路方
式が共振形DC−DCコンバータの一つの課題となって
いる。この一つの方式として例えば,1989年9月8日に
電子情報通信学会技術研究報告〔電子通信用電源技術〕
PE89−26において発表された並列駆動方式電圧共振形D
C−DCコンバータがある。この並列駆動方式電圧共振
形DC−DCコンバータについて説明すると,図3にお
いて,1は直流電源でありその端子間には,変圧器2の
1次巻線21と,共振インダクタンス3と,第1のスイッ
チング素子である電界効果トランジスタ5とが直列接続
される。また変圧器2の1次巻線21の端部には,第2の
共振インダクタンス4と第2のスイッチング素子である
電界効果トランジスタ6との直列回路が並列接続されて
いる。第1のスイッチング素子である電界効果トランジ
スタ5のドレイン・ソース間には共振コンデンサ7が並
列接続され,同様に第2のスイッチング素子である電界
効果トランジスタ6のドレイン・ソース間に第2の共振
コンデンサ8が並列接続されている。変圧器2の2次側
巻線22には,整流ダイオード9と平滑用のコンデンサ10
が直列接続されている。平滑用のコンデンサ10の両端は
出力端子31,32 に接続される。この出力端子31,32 の電
圧は基準電圧と比較して誤差信号を増幅する比較・誤差
増幅回路11に接続される。この比較・誤差増幅回路11の
出力信号は発振回路13の信号を遅延させ電界効果トラン
ジスタ5と電界効果トランジスタ6との位相差を制御
し,電界効果トランジスタ6を駆動する位相制御回路12
に接続されている。電界効果トランジスタ5と電界効果
トランジスタ6は,発振回路13により固定周波数,固定
パルス幅で動作しており,出力電圧と基準電圧との誤差
信号を増幅する比較・誤差増幅回路11が電界効果トラン
ジスタ5と電界効果トランジスタ6の位相差を決定し出
力電圧を安定化する。第1のスイッチング素子である電
界効果トランジスタ5と,第2のスイッチング素子であ
る電界効果トランジスタ6との位相が一致したとき最大
出力となり,反対に位相をずらすほど出力は減少する。
2. Description of the Related Art A resonance type DC-DC converter is suitable for high frequency because of its small switching loss and low noise, and it has been attracting attention as a circuit system effective for reducing the size and weight of a power supply. A method of controlling the switching frequency is generally used for voltage adjustment of this resonant converter, but in this method, it is necessary to design an output filter for the lowest frequency in the change range of the switching frequency. The drawback remains that it limits weight reduction.
Therefore, a circuit method capable of adjusting the output voltage at a fixed frequency is one of the problems of the resonance type DC-DC converter. As one method of this, for example, on September 8, 1989, the Institute of Electronics, Information and Communication Engineers Technical Research Report [Power Technology for Electronic Communications]
Parallel drive type voltage resonance type D announced at PE89-26
There is a C-DC converter. This parallel drive type voltage resonance type DC-DC converter will be explained. In FIG. 3, reference numeral 1 is a DC power source, and between its terminals, the primary winding 21 of the transformer 2, the resonance inductance 3 and the first winding 21. The field effect transistor 5, which is a switching element, is connected in series. At the end of the primary winding 21 of the transformer 2, a series circuit of a second resonance inductance 4 and a field effect transistor 6 which is a second switching element is connected in parallel. A resonance capacitor 7 is connected in parallel between the drain and the source of the field effect transistor 5 which is the first switching element, and a second resonance capacitor is similarly connected between the drain and the source of the field effect transistor 6 which is the second switching element. 8 are connected in parallel. The secondary winding 22 of the transformer 2 includes a rectifying diode 9 and a smoothing capacitor 10
Are connected in series. Both ends of the smoothing capacitor 10 are connected to the output terminals 31 and 32. The voltages at the output terminals 31 and 32 are connected to a comparison / error amplification circuit 11 that amplifies the error signal by comparing it with a reference voltage. The output signal of the comparison / error amplification circuit 11 delays the signal of the oscillation circuit 13 to control the phase difference between the field effect transistor 5 and the field effect transistor 6, and drives the field effect transistor 6.
It is connected to the. The field effect transistor 5 and the field effect transistor 6 operate at a fixed frequency and a fixed pulse width by the oscillation circuit 13, and the comparison / error amplification circuit 11 that amplifies the error signal between the output voltage and the reference voltage has the field effect transistor 5. And the phase difference between the field effect transistor 6 and the output voltage is stabilized. When the phase of the field effect transistor 5 which is the first switching element and the field effect transistor 6 which is the second switching element match, the maximum output is obtained, and on the contrary, the output is reduced as the phases are shifted.

【発明が解決しようする課題】しかしながら,このよう
な従来の固定周波数で動作する並列駆動方式電圧共振形
DC−DCコンバータにおいては,2個の共振インダク
タンスが必要であり,小型化に対しては障害となり,あ
るいはコストがかかるという問題があった。本発明は,
並列駆動方式電圧共振形DC−DCコンバータにおい
て,共振インダクタンスの必要数を減少させることを課
題とする。
However, in such a conventional parallel drive type voltage resonance type DC-DC converter which operates at a fixed frequency, two resonance inductances are required, which is an obstacle to miniaturization. However, there is a problem that it becomes expensive. The present invention is
An object of the present invention is to reduce the required number of resonance inductances in a parallel drive type voltage resonance type DC-DC converter.

【課題を解決するための手段】この課題を解決するた
め,本発明では,並列駆動方式電圧共振形DC−DCコ
ンバータの2個のインダクタンスとして,変圧器に結合
率の低い第3,第4巻線を設けて,それらの第3,第4
巻線の漏れインダクタンスを共振インダクタンスとして
利用することを提案するものである。
In order to solve this problem, in the present invention, as the two inductances of the parallel drive type voltage resonance type DC-DC converter, the third and fourth windings having a low coupling rate to the transformer are used. Lines are provided for those 3rd, 4th
It proposes to utilize the leakage inductance of the winding as the resonance inductance.

【実施例】図1は,本発明の一実施例を示すものであ
り,以下同図にもとづいて説明する。図において1は直
流電源であり,これを受ける入力端子29,30の間には,
変圧器2の1次巻線21,第3巻線23,第1のスイッチン
グ素子たる電界効果トランジスタ5が直列接続される。
また変圧器2の1次巻線21には,第4巻線24,第2のス
イッチング素子たる電界効果トランジスタ6が直列接続
さる。変圧器2の第3巻線23と第4巻線24は変圧器2の
鉄芯との結合率をあえて低くして,漏れインダクタンス
を大きくする。そして電界効果トランジスタ5のドレイ
ン・ソース間に共振コンデンサ7が並列接続され,同様
に電界効果トランジスタ6のドレイン・ソース間に第2
の共振コンデンサ8が並列接続されている。変圧器2の
第3巻線23による漏れインダクタンスと共振コンデンサ
7とは等価的に直列共振回路を形成する。また変圧器2
の第4巻線24による漏れインダクタンスと共振コンデン
サ8とは等価的に直列共振回路を形成する。次に変圧器
2の2次側巻線22には,整流ダイオード9と平滑コンデ
ンサ10が直列接続されている。平滑コンデンサ10は出力
端子31,32に接続される。この出力端子31,32の電圧と
基準電圧との誤差信号を増幅する誤差増幅回路11と,誤
差増幅回路11の信号で発振器13の信号を遅延させ,電界
効果トランジスタ5と電界効果トランジスタ6との位相
差を制御し電界効果トランジスタ6を駆動する位相制御
回路12が発振器13と電界効果トランジスタ6のゲートの
間に接続されている。電界効果トランジスタ5と電界効
果トランジスタ6は,発振器13により固定周波数,固定
パルス幅で動作する。出力電圧と基準電圧との誤差信号
を増幅する誤差増幅回路11が電界効果トランジスタ5と
電界効果トランジスタ6の位相差を決定し出力電圧を安
定化する。電界効果トランジスタ5と電界効果トランジ
スタ6との位相が一致したとき最大出力となり,反対に
位相をずらすほど出力が減少する。この回路は,外観上
はインダクタンスが存在しないが,変圧器の中に等価的
に形成されている漏れインダクタンスを利用して,並列
駆動方式の共振形DC−DCコンバータを構成するもの
である。共振インダクタンスの値の設定については,そ
の漏れインダクタンスが必要な共振インダクタンスの値
となるように結合率を調整することにより達成できる。
FIG. 1 shows an embodiment of the present invention, which will be described below with reference to FIG. In the figure, 1 is a DC power supply, and between the input terminals 29 and 30 for receiving it,
The primary winding 21, the third winding 23, and the field effect transistor 5, which is the first switching element, of the transformer 2 are connected in series.
A fourth winding 24 and a field effect transistor 6 as a second switching element are connected in series to the primary winding 21 of the transformer 2. The third winding 23 and the fourth winding 24 of the transformer 2 intentionally lower the coupling rate with the iron core of the transformer 2 to increase the leakage inductance. A resonance capacitor 7 is connected in parallel between the drain and source of the field effect transistor 5, and similarly, a second capacitor is formed between the drain and source of the field effect transistor 6.
The resonance capacitor 8 is connected in parallel. The leakage inductance of the third winding 23 of the transformer 2 and the resonance capacitor 7 equivalently form a series resonance circuit. Also transformer 2
The leakage inductance of the fourth winding 24 and the resonance capacitor 8 equivalently form a series resonance circuit. Next, the rectifying diode 9 and the smoothing capacitor 10 are connected in series to the secondary winding 22 of the transformer 2. The smoothing capacitor 10 is connected to the output terminals 31 and 32. The error amplification circuit 11 that amplifies the error signal between the voltage of the output terminals 31 and 32 and the reference voltage, the signal of the oscillator 13 is delayed by the signal of the error amplification circuit 11, and the field effect transistor 5 and the field effect transistor 6 A phase control circuit 12 for controlling the phase difference and driving the field effect transistor 6 is connected between the oscillator 13 and the gate of the field effect transistor 6. The field effect transistor 5 and the field effect transistor 6 are operated by the oscillator 13 at a fixed frequency and a fixed pulse width. An error amplification circuit 11 that amplifies an error signal between the output voltage and the reference voltage determines the phase difference between the field effect transistor 5 and the field effect transistor 6 and stabilizes the output voltage. The maximum output is obtained when the phases of the field effect transistor 5 and the field effect transistor 6 match, and conversely, the output decreases as the phases are shifted. Although this circuit has no inductance in appearance, it uses a leakage inductance equivalently formed in the transformer to form a parallel drive type resonant DC-DC converter. The setting of the value of the resonance inductance can be achieved by adjusting the coupling rate so that the leakage inductance becomes the required value of the resonance inductance.

【発明の効果】以上説明してきたように,本発明によれ
ば,並列駆動方式の共振形DC−DCコンバータにおい
て,1個の変圧器の中に等価的に必要なインダクタンス
を収容することで,より小型化,より経済化を達成する
ことができる。
As described above, according to the present invention, in a parallel drive type resonance type DC-DC converter, by accommodating the required inductance equivalently in one transformer, It is possible to achieve further miniaturization and further economy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る共振形DC−DCコンバータの一
実施例の回路図である。
FIG. 1 is a circuit diagram of an embodiment of a resonance type DC-DC converter according to the present invention.

【図2】従来の並列駆動方式の共振形DC−DCコンバ
ータの回路図である。
FIG. 2 is a circuit diagram of a conventional parallel drive type resonant DC-DC converter.

【符号の説明】[Explanation of symbols]

1…直流電源 2…変圧器 21…1次巻線
22…2次巻線 23…第3巻線 24…第4巻線 3,4…共振イン
ダクタンス 5,6…電界効果トランジスタ 7,8…共振コン
デンサ 9…整流ダイオード 10…コンデンサ 11…比較・誤差増幅回路 12…位相制御回路
13…発振回路 29,30…入力端子 31,32 …出力端子
1 ... DC power supply 2 ... Transformer 21 ... Primary winding
22 ... Secondary winding 23 ... Third winding 24 ... Fourth winding 3,4 ... Resonance inductance 5,6 ... Field effect transistor 7,8 ... Resonance capacitor 9 ... Rectifier diode 10 ... Capacitor 11 ... Comparison / error amplification Circuit 12 ... Phase control circuit
13 ... Oscillator 29, 30 ... Input terminal 31, 32 ... Output terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 直流電源に接続される一対の入力端子
と,変圧器と,この変圧器の1次巻線であって,その一
端が前記入力端子の一端に接続される1次巻線と,この
1次巻線の他端に接続され,変圧器の結合率の低い第3
巻線と,この第3巻線の他端と前記入力端子の他端との
間に主端子が接続される第1のスイッチング素子と,こ
の第1のスイッチング素子の主端子間に接続された第1
のコンデンサと,前記1次巻線の他端に接続され,変圧
器の結合率の低い第4巻線と,この第4巻線の他端と前
記入力端子の他端との間に主端子が接続される第2のス
イッチング素子と,この第2のスイッチング素子の主端
子間に接続された第2のコンデンサと,前記変圧器の2
次巻線と,この2次巻線に接続された整流器と,この整
流器に接続された一対の出力端子と,前記第1のスイッ
チング素子を駆動する発振回路と,前記一対の出力端子
に接続された,比較・誤差増幅回路と,この比較・誤差
増幅回路の出力を受けて作動し,前記発振回路の出力と
前記第2のスイッチング素子との間に出力が接続される
位相制御回路とからなり,前記第3巻線の漏れインダク
タンスと前記第1のコンデンサとで直列共振回路を形成
し,前記第4巻線の漏れインダクタンスと前記第2のコ
ンデンサとで直列共振回路を形成してなることを特徴と
する共振形DC−DCコンバータ。
1. A pair of input terminals connected to a DC power source, a transformer, and a primary winding of the transformer, one end of which is connected to one end of the input terminal. , Connected to the other end of this primary winding, the third coupling of transformer is low
A winding, a first switching element having a main terminal connected between the other end of the third winding and the other end of the input terminal, and a first switching element connected between the main terminal of the first switching element. First
Capacitor, a fourth winding connected to the other end of the primary winding and having a low coupling ratio of the transformer, and a main terminal between the other end of the fourth winding and the other end of the input terminal. A second switching element connected to the second switching element, a second capacitor connected between the main terminals of the second switching element, and 2 of the transformer.
A secondary winding, a rectifier connected to the secondary winding, a pair of output terminals connected to the rectifier, an oscillator circuit for driving the first switching element, and a pair of output terminals And a phase control circuit which operates by receiving the output of the comparison / error amplification circuit and which is connected between the output of the oscillation circuit and the second switching element. A series resonance circuit is formed by the leakage inductance of the third winding and the first capacitor, and a series resonance circuit is formed by the leakage inductance of the fourth winding and the second capacitor. A characteristic resonance type DC-DC converter.
JP17734192A 1992-06-11 1992-06-11 Resonant dc-dc converter Withdrawn JPH05344723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17734192A JPH05344723A (en) 1992-06-11 1992-06-11 Resonant dc-dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17734192A JPH05344723A (en) 1992-06-11 1992-06-11 Resonant dc-dc converter

Publications (1)

Publication Number Publication Date
JPH05344723A true JPH05344723A (en) 1993-12-24

Family

ID=16029276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17734192A Withdrawn JPH05344723A (en) 1992-06-11 1992-06-11 Resonant dc-dc converter

Country Status (1)

Country Link
JP (1) JPH05344723A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079528A1 (en) * 2002-03-19 2003-09-25 Soc Corporation High power factor switching power source apparatus
WO2012135525A2 (en) * 2011-03-29 2012-10-04 Texas Instruments Incorporated Resonant gate drivers and converters
US10903753B2 (en) 2011-03-29 2021-01-26 Texas Instruments Incorporated Resonant isolated converters for power supply charge balancing systems and other systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079528A1 (en) * 2002-03-19 2003-09-25 Soc Corporation High power factor switching power source apparatus
WO2012135525A2 (en) * 2011-03-29 2012-10-04 Texas Instruments Incorporated Resonant gate drivers and converters
WO2012135525A3 (en) * 2011-03-29 2013-03-14 Texas Instruments Incorporated Resonant gate drivers and converters
US10903753B2 (en) 2011-03-29 2021-01-26 Texas Instruments Incorporated Resonant isolated converters for power supply charge balancing systems and other systems

Similar Documents

Publication Publication Date Title
US5073849A (en) Resonant DC to DC converter switching at zero current
US4257087A (en) DC-to-DC switching converter with zero input and output current ripple and integrated magnetics circuits
US5508903A (en) Interleaved DC to DC flyback converters with reduced current and voltage stresses
US6483721B2 (en) Resonant power converter
US6970366B2 (en) Phase-shifted resonant converter having reduced output ripple
US4857822A (en) Zero-voltage-switched multi-resonant converters including the buck and forward type
US6061252A (en) Switching power supply device
US11750101B2 (en) Resonant converter
US7439717B1 (en) Secondary side post regulators
US5282123A (en) Clamped mode DC-DC converter
JP3199423B2 (en) Resonant type forward converter
KR0119914B1 (en) High power factor series resonance type rectifier
WO2000028648A1 (en) A high input voltage, high efficiency, fast transient voltage regulator module (vrm)
US20100123450A1 (en) Interleaved llc power converters and method of manufacture thereof
US5870291A (en) Asymmetrical half-bridge converter having adjustable parasitic resistances to offset output voltage DC bias
US11539285B2 (en) DC-to-DC converter
JPH0586144B2 (en)
JP2860255B2 (en) Trim type resonance type converter
US5801932A (en) Interleaved current-fed forward converter
US7362594B2 (en) Adaptive resonant switching power system
JPH05344723A (en) Resonant dc-dc converter
EP3459091A1 (en) Resonant converters with variable inductor
JP3137155B2 (en) DC-DC converter
JP3700844B2 (en) Switching converter
JP3022620B2 (en) DC-DC converter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831