JPH0534447A - Multistatic radar method - Google Patents

Multistatic radar method

Info

Publication number
JPH0534447A
JPH0534447A JP21153091A JP21153091A JPH0534447A JP H0534447 A JPH0534447 A JP H0534447A JP 21153091 A JP21153091 A JP 21153091A JP 21153091 A JP21153091 A JP 21153091A JP H0534447 A JPH0534447 A JP H0534447A
Authority
JP
Japan
Prior art keywords
target
station
receiving
transmitting
receiving station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21153091A
Other languages
Japanese (ja)
Inventor
Takahiko Fujisaka
貴彦 藤坂
Tomomasa Kondo
倫正 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21153091A priority Critical patent/JPH0534447A/en
Publication of JPH0534447A publication Critical patent/JPH0534447A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a multistatic radar method whereby the position of a target can be measured with high accuracy by utilizing angle information about azimuth and angles of elevation without electromagtnetic wave transmission time decided according to the positional relationship among a sending station, the target and a receiving station. CONSTITUTION:Three(or two) sending stations 5 are disposed in different positions and electromagnetic waves modulated so that they are mutually irrelevant are radiated toward a target 4. The waves reflected at the target are received at a receiving station 6 and the position coordinate of the target is calculated according to the time taken for the electromagnetic waves to be transmitted from the sending station to the receiving station and the position coordinates of the sending and receiving stations.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、マルチスタティック
レーダ方式における目標の位置計測精度の向上に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement in the accuracy of position measurement of a target in a multistatic radar system.

【0002】[0002]

【従来の技術】図7は例えば特開平1−217285号
公報に示された従来のマルチスタティックレーダ方式を
示す図であり、図8はその運用時の送受信局の配置を示
す図である。図において、1は送信機11、送信アンテ
ナ12、及び計時装置13とを備えた送信局、2は受信
アンテナ21、受信機22、方位角・仰角計算機23、
及び計時装置24とを備えた受信局、3は位置計算機3
1、位置表示機32とを備えた目標位置表示装置、4は
目標である。
2. Description of the Related Art FIG. 7 is a diagram showing a conventional multi-static radar system disclosed in, for example, Japanese Unexamined Patent Publication No. 1-217285, and FIG. 8 is a diagram showing an arrangement of transceiver stations during its operation. In the figure, 1 is a transmitting station provided with a transmitter 11, a transmitting antenna 12, and a timing device 13, 2 is a receiving antenna 21, a receiver 22, an azimuth / elevation angle calculator 23,
The receiving station 3 provided with the
A target position display device 1 including a position display device 32 and a target position display device 4 are targets.

【0003】上記のように構成されたマルチスタティッ
クレーダ方式の動作を図に従って説明する。送信局1の
送信機11から送信アンテナ12を通じて送信された電
波は目標4で反射され、異なる位置に配置された2つの
受信局2の受信アンテナ21で受信され、受信機22で
増幅・検波された後、方位角仰角計算機23により、目
標の方位角及び仰角の計算が行われる。
The operation of the multi-static radar system configured as described above will be described with reference to the drawings. The electric wave transmitted from the transmitter 11 of the transmitting station 1 through the transmitting antenna 12 is reflected by the target 4, received by the receiving antennas 21 of the two receiving stations 2 arranged at different positions, amplified and detected by the receiver 22. After that, the azimuth and elevation calculator 23 calculates the target azimuth and elevation.

【0004】この間、送信局と受信局との同期は、送信
局1と受信局2のそれぞれに搭載された計時装置13,
24により保たれる。2つの受信局2の位置は既知、或
は計測可能であるから、その間の距離Δrは容易に求め
られ、上記の2つの方位角及び仰角と合わせて、位置計
算機31で三角測量を行い、目標の位置を算出し、位置
表示機32に表示する。このとき、方位角及び仰角の計
測制度は、そのビーム幅OB に一致し、ビーム幅OB
アンテナ開口径D及び波長λを用いてOB =λ/Dで与
えられ、距離Rに存在する目標の位置計測誤差εはε=
ROB =λR/Dで与えられる。今、波長λを0.03
m、開口径1mのアンテナを用いて、距離100kmの
目標の位置を計測するならば、その計測誤差は3kmと
なる。
During this time, the synchronization between the transmitting station and the receiving station is achieved by the timing devices 13 mounted on the transmitting station 1 and the receiving station 2, respectively.
Kept by 24. Since the positions of the two receiving stations 2 are known or measurable, the distance Δr between them is easily obtained, and the position calculator 31 performs triangulation with the above two azimuth angles and elevation angles to obtain the target. The position is calculated and displayed on the position display 32. In this case, the measurement system of azimuth and elevation, that coincides with the beam width O B, beam width O B is given by O B = lambda / D using the antenna aperture diameter D and the wavelength lambda, present at a distance R The target position measurement error ε is ε =
It is given by RO B = λR / D. Now, set the wavelength λ to 0.03
If a target position at a distance of 100 km is measured using an antenna with m and an aperture diameter of 1 m, the measurement error is 3 km.

【0005】[0005]

【発明が解決しようとする課題】従来のマルチスタティ
ックレーダ方式では、以上のように方位角及び仰角を利
用して、目標位置を算出するため、目標の位置の計測誤
差が距離に比例して増加し、また角度分解機能がアンテ
ナ開口径によって制限されるため、角度計測誤差を小さ
くするには、巨大なアンテナが必要になるなどの問題点
があった。
In the conventional multi-static radar system, since the target position is calculated by using the azimuth angle and the elevation angle as described above, the measurement error of the target position increases in proportion to the distance. In addition, since the angle resolution function is limited by the antenna aperture diameter, there is a problem that a huge antenna is required to reduce the angle measurement error.

【0006】この発明は上記のような問題点を解消する
ためになされたもので、方位角及び仰角の角度情報を利
用することなく、送信局と、目標及び受信局の位置関係
により決まる電波伝搬時間を利用して目標の位置を高精
度に計測できるマルチスタティックレーダ方式を提供す
ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and radio wave propagation determined by the positional relationship between the transmitting station and the target and receiving stations without using the azimuth and elevation angle information. It is an object of the present invention to provide a multi-static radar system that can measure a target position with high accuracy by using time.

【0007】[0007]

【課題を解決するための手段】この第1の発明に係るマ
ルチスタティックレーダ方式は、異なる位置に配置さ
れ、各々が無相関となるように変調された電波を送信タ
イミングをずらして同一目標に対して放射する複数の送
信局と、各送信局の送信タイミングに同期し、目標より
反射された電波を受信する単一の受信局に、受信電波を
各送信局別に分離する復調器と、分離された各電波の電
波伝搬時間、各送信局の位置座標、受信局の位置座標及
び光速を用いて目標の位置座標を算出する目標位置算出
手段を設けたものである。
The multistatic radar system according to the first aspect of the present invention is arranged at different positions, and the radio waves modulated so as to be uncorrelated with each other are shifted to different transmission timings with respect to the same target. Are separated by a single demodulator that synchronizes with the transmission timing of each transmitting station and that receives the radio waves reflected from the target, and a demodulator that separates the received radio waves by each transmitting station. A target position calculating means for calculating a target position coordinate using the radio wave propagation time of each radio wave, the position coordinate of each transmitting station, the position coordinate of the receiving station, and the speed of light is provided.

【0008】また、この第2の発明に係るマルチスタテ
ィックレーダ方式は、目標に対して電波を放射する送信
局と、目標より反射された電波をそれぞれ異なる位置で
受信するように配置された複数の受信局と、各受信局で
得られた電波伝搬時間、受信局の位置座標、送信局の位
置座標及び光速を所定通信手段によって受け目標の位置
座標を算出する目標位置算出手段を設けたものである。
Further, the multistatic radar system according to the second aspect of the present invention includes a transmitting station that radiates radio waves to a target and a plurality of radio stations that are arranged to receive radio waves reflected from the target at different positions. It is provided with a receiving station and a target position calculating means for receiving the radio wave propagation time, the position coordinate of the receiving station, the position coordinate of the transmitting station and the speed of light obtained by each receiving station by a predetermined communication means and calculating the position coordinate of the target. is there.

【0009】[0009]

【作用】この第1の発明における受信局は、複数の送信
局より同一の目標に対して放射し反射された各電波を送
信局別に分離して各電波の電波伝搬時間、各送信局の位
置座標、受信局の位置座標、光速Cを既知のパラメータ
として多元連立方程式を解くことで目標の位置座標を求
める。
In the receiving station according to the first aspect of the present invention, the radio waves radiated and reflected by the same target from a plurality of transmission stations are separated for each transmission station, and the radio wave propagation time of each radio wave and the position of each transmission station are separated. The target position coordinates are obtained by solving a multi-dimensional simultaneous equation using the coordinates, the position coordinates of the receiving station, and the speed of light C as known parameters.

【0010】また、この第2の発明によれば、単一の送
信局より目標に対して放射され反射した電波を受信位置
がそれぞれ異なる複数の受信局で受信して得た電波の伝
搬時間と、自局の位置座標、送信局の位置座標、光速C
の各受信信号は所定通信手段を介して目標位置算出手段
に送出し、該算出手段では各受信局より送出されてき
た、送信局と受信局の位置座標、各伝搬時間、光速をパ
ラメータとし多元連立方程式を解くことにより目標の位
置座標を求める。
According to the second aspect of the invention, the propagation time of the radio wave obtained by receiving the radio waves radiated and reflected by the target from a single transmitting station at a plurality of receiving stations having different receiving positions, respectively. , Position coordinates of own station, position coordinates of transmitting station, speed of light C
Each received signal of is transmitted to the target position calculation means through a predetermined communication means, and the calculation means uses the position coordinates of the transmitting station and the receiving station, each propagation time, and the speed of light transmitted from each receiving station as parameters. The target position coordinates are obtained by solving the simultaneous equations.

【0011】[0011]

【実施例】以下、この発明の一実施例を図について説明
する。図1において、5は送信局、6は受信局、4は目
標を示す。図2及び図3はそれぞれ送信局5及び受信局
6の構成を示す図であって、図2において、51は送信
アンテナ、52は増幅器、53は参照信号発生器、54
は変調器、55はキャリア発生器、56は計時装置を示
す。図3において、61は受信アンテナ、62は増幅
器、63は位相検出器、64は参照信号発生器、65は
復調器、66は計時装置、67は目標位置算出装置、6
8は表示器である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 5 is a transmitting station, 6 is a receiving station, and 4 is a target. 2 and 3 are diagrams showing the configurations of the transmitting station 5 and the receiving station 6, respectively. In FIG. 2, 51 is a transmitting antenna, 52 is an amplifier, 53 is a reference signal generator, and 54 is a reference signal generator.
Is a modulator, 55 is a carrier generator, and 56 is a timing device. In FIG. 3, 61 is a receiving antenna, 62 is an amplifier, 63 is a phase detector, 64 is a reference signal generator, 65 is a demodulator, 66 is a time measuring device, 67 is a target position calculating device, 6
Reference numeral 8 is a display.

【0012】上記のように構成された本発明のマルチス
タティックレーダ方式の動作を図に従って説明する。異
なる位置に配置された3つの送信局5において、キャリ
ア発生器55で発生した高周波信号(キャリア)は、変
調器54において、異なる送信局間で互いに無相関とな
るように参照信号発生器53で発生した参照信号で変調
され、増幅器52で増幅され、送信アンテナ51から目
標4へ放射される。
The operation of the multistatic radar system of the present invention configured as described above will be described with reference to the drawings. In the three transmitting stations 5 arranged at different positions, the high frequency signal (carrier) generated in the carrier generator 55 is generated in the reference signal generator 53 in the modulator 54 so as to be uncorrelated with each other between the different transmitting stations. It is modulated by the generated reference signal, amplified by the amplifier 52, and radiated from the transmission antenna 51 to the target 4.

【0013】3つの送信局5から放射された電波(変調
後の高周波信号)は、目標4で反射され、受信局6の受
信アンテナ61で受信される。このとき、各送信局5か
ら送信された電波は送信局5から目標4までの距離と、
目標4から受信局6までの距離を伝搬するため、送信時
刻と受信時刻の間にこの距離に応じた遅れ時間を生じ
る。
Radio waves (modulated high frequency signals) radiated from the three transmitting stations 5 are reflected by the target 4 and received by the receiving antenna 61 of the receiving station 6. At this time, the radio wave transmitted from each transmitting station 5 is the distance from the transmitting station 5 to the target 4 and
Since the distance propagates from the target 4 to the receiving station 6, a delay time corresponding to this distance is generated between the transmission time and the reception time.

【0014】受信アンテナ61で受信された電波は増幅
器62で増幅され、位相検波器63で検波された後、復
調器65において、各送信局毎に対応する3種類の復調
信号で個別に復調される。この3種類の復調信号は、参
照信号発生器64で発生する。送信局5及び受信局6に
おいては、それぞれに内蔵された計時装置56及び66
により、時刻合わせを行い、同期のとれた参照信号を発
生させる。
Radio waves received by the receiving antenna 61 are amplified by an amplifier 62, detected by a phase detector 63, and then individually demodulated by a demodulator 65 into three types of demodulated signals corresponding to each transmitting station. It The three types of demodulated signals are generated by the reference signal generator 64. In the transmitting station 5 and the receiving station 6, the time measuring devices 56 and 66 incorporated therein, respectively.
By doing so, the time is adjusted and a synchronized reference signal is generated.

【0015】送信局別に分離された復調信号は、目標位
置算出装置67へ入力され、それぞれが伝搬に要した時
間T1 ,T2 ,T3が計測される。さらに3つの送信局
5の位置座標(x1 ,y1 ,z1 ),(x2 ,y2 ,z
2 ),(x3 ,y3 ,z3 )及び受信局6の位置座標
(x0 ,y0 ,z0 )及び光速Cは既知或は計測可能な
パラメータであるから、これらを用いて、式1に示す三
元連立方程式を解くことにより、目標の位置座標(x,
y,z)を求める。
The demodulated signal separated for each transmitting station is input to the target position calculating device 67, and the times T 1 , T 2 , and T 3 required for each propagation are measured. Furthermore, the position coordinates (x 1 , y 1 , z 1 ) of the three transmitting stations 5 (x 2 , y 2 , z 1 )
2 ), (x 3 , y 3 , z 3 ) and the position coordinates (x 0 , y 0 , z 0 ) of the receiving station 6 and the speed of light C are known or measurable parameters. By solving the simultaneous three-way equation shown in Equation 1, the target position coordinates (x,
y, z) is calculated.

【0016】[0016]

【数1】 [Equation 1]

【0017】算出された目標位置座標(x,y,z)を
用いて、表示器68上に目標が表示される。このとき、
目標位置座標(x,y,z)の計測精度は、送受信間の
遅れ時間(伝搬時間)の計測誤差に依存するが、この誤
差は現行のレーダでも、10ns〜100nsが達成さ
れており、距離に換算して3m〜30m程度に抑えるこ
とができ、従来の装置の誤差3kmの1/1000〜1
/100を達成できる。また、観測対象を地上或は海上
に存在する目標に限定する場合、目標の位置座標中、高
度zは既知(z=0となり、未知数はxとyの2つにな
る。よって、この場合、送信局の数は2つで十分とな
り、式2に示す2元連立方程式を解くことにより、目標
位置(x,y)を算出できる。
The target is displayed on the display 68 using the calculated target position coordinates (x, y, z). At this time,
The measurement accuracy of the target position coordinates (x, y, z) depends on the measurement error of the delay time (transmission time) between transmission and reception, but this error has been achieved by the current radar as well, and is 10 ns to 100 ns. Can be reduced to about 3 m to 30 m, which is 1/1000 to 1 of the error 3 km of the conventional device.
/ 100 can be achieved. Further, when the observation target is limited to the target existing on the ground or the sea, the altitude z is known (z = 0 and the unknowns are two, x and y in the position coordinate of the target. Therefore, in this case, The number of transmitting stations is sufficient to be two, and the target position (x, y) can be calculated by solving the simultaneous binary equation shown in Expression 2.

【0018】[0018]

【数2】 [Equation 2]

【0019】実施例2.図4、図5及び図6は、請求項
2に係る発明の実施例で、図4はこの発明に係るマルチ
スタティックレーダ方式を示す図、図5は送信局の構成
を示す図、図6は受信局の構成を示す図である。図中、
69は各受信局で得られた送信局、受信局の位置座標及
び送受信間での電波伝搬時間を目標位置算出装置67へ
伝送するための通信手段であり、他の符号の構成要素は
それぞれ実施例1と同一或は同等の装置を表す。
Example 2. 4, 5 and 6 are embodiments of the invention according to claim 2, FIG. 4 is a diagram showing a multi-static radar system according to the present invention, FIG. 5 is a diagram showing a configuration of a transmitting station, and FIG. It is a figure which shows the structure of a receiving station. In the figure,
Reference numeral 69 is a communication means for transmitting the position coordinates of the transmitting station and the receiving station obtained at each receiving station and the radio wave propagation time between transmission and reception to the target position calculating device 67, and the components of other symbols are respectively implemented. The same or equivalent device as in Example 1 is shown.

【0020】この実施例においては、一つの送信局5か
ら、目標4へ向け放射された電波が目標で反射され、複
数の受信局6で受信される。各受信局6の動作は、実施
例1と同様であるが、送信局5が単一であるため、目標
位置座標(x,y,z)を決定するための式は式1のう
ちの1つしか求めることができない。
In this embodiment, the radio wave radiated from one transmitting station 5 toward the target 4 is reflected by the target and is received by a plurality of receiving stations 6. The operation of each receiving station 6 is the same as that of the first embodiment, but since the transmitting station 5 is single, the formula for determining the target position coordinates (x, y, z) is 1 of the formula 1. I can only ask for one.

【0021】よって、通信手段69を介して、この式の
パラメータである送信局5の位置座標(x0 ,y0 ,z
0 )、受信局6の位置座標(xi ,yi ,zi )及び送
受信間の電波伝搬時間Ti を目標位置算出装置67へ伝
送する。ここで、iは{1,2.3}の任意の数とす
る。
Therefore, via the communication means 69, the position coordinates (x 0 , y 0 , z) of the transmitting station 5 which are the parameters of this equation.
0 ), the position coordinates (x i , y i , z i ) of the receiving station 6 and the radio wave propagation time T i between transmission and reception are transmitted to the target position calculation device 67. Here, i is an arbitrary number of {1, 2.3}.

【0022】目標位置算出装置67は3つの異なる受信
局6から上記パラメータが得られた場合、式1を解くこ
とにより、目標の3次元空間中での位置座標(x,y,
z)を求める。
When the target position calculating device 67 obtains the above parameters from three different receiving stations 6, the target position calculating device 67 solves the formula 1 to obtain the position coordinates (x, y,
z) is calculated.

【0023】これは、すなわち、位置座標(x3 ,y
3 ,z3 )に配置された第3の送信局または受信局を追
加し、3つの送信局または受信局に対する送受信間での
遅れ時間T1 ,T2 ,T3 と位置座標(x1 ,y1 ,z
1 ),(x2 ,y2 ,z2 ),(x3 ,y3 ,z3 )と
受信局または送信局の位置座標(x0 ,y0 ,z0 )と
光速Cを用いて、地上、海面上、或は空中に存在する目
標の3次元空間中の位置座標(x,y,z)を算出す
る。また、2つの異なる受信局6からしか上記パラメー
タが得られない場合は、式2を解くことにより、地上或
は海面上の目標の位置座標(x,y)を求める。
This means that the position coordinates (x 3 , y
3 , z 3 ), a third transmitting station or receiving station is added, and delay times T 1 , T 2 , T 3 between transmitting and receiving with respect to the three transmitting stations or receiving stations and position coordinates (x 1 , y 1 , z
1 ), (x 2 , y 2 , z 2 ), (x 3 , y 3 , z 3 ) and the position coordinates (x 0 , y 0 , z 0 ) of the receiving station or the transmitting station and the speed of light C, The position coordinates (x, y, z) in the three-dimensional space of the target existing on the ground, on the sea surface, or in the air are calculated. Further, when the above parameters can be obtained only from two different receiving stations 6, the equation (2) is solved to obtain the position coordinate (x, y) of the target on the ground or the sea surface.

【0024】このとき、目標位置算出装置67及び表示
器68は、各受信局6との通信が可能であれば任意の場
所に設置可能で、各受信局内に内蔵することもできる。
通信手段69としては、無線及び任意の手段が利用可能
であり、有線通信手段として電話線利用も考えられる。
At this time, the target position calculating device 67 and the display 68 can be installed at any place as long as they can communicate with each receiving station 6, and can also be built in each receiving station.
As the communication means 69, wireless and arbitrary means can be used, and use of a telephone line as a wired communication means is also conceivable.

【0025】[0025]

【発明の効果】以上のように、第1の発明によれば、複
数の送信局から送信される電波の伝搬時間から、目標の
位置座標を算出できるようにしたので、従来の方位角・
仰角を利用する方式に比較して、その計測精度を向上さ
せることができる。
As described above, according to the first aspect of the invention, the position coordinates of the target can be calculated from the propagation times of the radio waves transmitted from the plurality of transmitting stations.
The measurement accuracy can be improved as compared with the method using the elevation angle.

【0026】また、第2の発明によれば、1つの送信局
であっても、複数の受信局で受信された電波の伝搬時間
を組み合わせることにより、上記請求項1と同様に、目
標の位置座標を高精度に求めることができる。
According to the second aspect of the invention, even in one transmitting station, by combining the propagation times of the radio waves received by the plurality of receiving stations, the target position can be obtained in the same manner as in claim 1. The coordinates can be obtained with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例によるマルチスタティ
ックレーダ運用時の送信局と受信局の配置を示す配置図
である。
FIG. 1 is a layout diagram showing a layout of transmitting stations and receiving stations during operation of a multi-static radar according to a first embodiment of the present invention.

【図2】この発明の第1の実施例における送信局の構成
を示す構成図である。
FIG. 2 is a configuration diagram showing a configuration of a transmitting station according to the first embodiment of the present invention.

【図3】この発明の第1の実施例における受信局の構成
を示す構成図である。
FIG. 3 is a configuration diagram showing a configuration of a receiving station according to the first embodiment of the present invention.

【図4】この発明の第2の実施例によるマルチスタティ
ックレーダ運用時の送信局と受信局の配置を示す配置図
である。
FIG. 4 is a layout diagram showing a layout of transmitting stations and receiving stations during operation of the multi-static radar according to the second embodiment of the present invention.

【図5】この発明の第2の実施例における送信局の構成
を示す構成図である。
FIG. 5 is a configuration diagram showing a configuration of a transmitting station according to a second embodiment of the present invention.

【図6】この発明の第2の実施例における送信局の構成
を示す構成図である。
FIG. 6 is a configuration diagram showing a configuration of a transmitting station according to a second embodiment of the present invention.

【図7】従来のマルチスタティックレーダ方式における
送信局と受信局の構成を示す構成図である。
FIG. 7 is a configuration diagram showing configurations of a transmitting station and a receiving station in a conventional multistatic radar system.

【図8】従来のマルチスタティックレーダ運用時の送受
信局の配置を示す配置図である。
FIG. 8 is a layout diagram showing a layout of transceiver stations during operation of a conventional multi-static radar.

【符号の説明】[Explanation of symbols]

4 目標 5 送信局 6 受信局 61 復調器 67 目標位置算出装置 69 通信手段 4 goals 5 transmitter 6 Receiving station 61 demodulator 67 Target Position Calculation Device 69 Communication means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 異なる位置に配置され、各々が無相関と
なるように変調された電波を送信タイミングをずらして
同一目標に対して放射する複数の送信局と、各送信局の
送信タイミングに同期し、 目標より反射された電波を
受信する単一の受信局に、受信電波を各送信局別に分離
する復調器と、分離された各電波の電波伝搬時間、各送
信局の位置座標、受信局の位置座標及び光速を用いて目
標の位置座標を算出する目標位置算出手段とを備えたこ
とを特徴とするマルチスタティックレーダ方式。
1. A plurality of transmitting stations arranged at different positions and radiated to the same target by shifting transmission timings of radio waves modulated so as to be uncorrelated, and synchronized with the transmitting timing of each transmitting station. A single receiving station that receives the radio waves reflected from the target, a demodulator that separates the received radio waves for each transmitting station, the radio wave propagation time of each separated radio wave, the position coordinates of each transmitting station, and the receiving station. And a target position calculating means for calculating the position coordinate of the target using the position coordinate and the speed of light.
【請求項2】 目標に対して電波を放射する送信局と、
目標より反射された電波をそれぞれ異なる位置で受信す
るように配置された複数の受信局と、各受信局で得られ
た電波伝搬時間、受信局の位置座標、送信局の位置座標
及び光速を所定通信手段によって受け目標の位置座標を
算出する目標位置算出手段とを備えたことを特徴とする
マルチスタティックレーダ方式。
2. A transmitting station that radiates radio waves to a target,
Predetermine a plurality of receiving stations arranged to receive the radio waves reflected from the target at different positions, and the radio wave propagation time obtained at each receiving station, the position coordinates of the receiving station, the position coordinates of the transmitting station, and the speed of light. A multi-static radar system, comprising: a target position calculating means for calculating a position coordinate of a receiving target by a communication means.
JP21153091A 1991-07-29 1991-07-29 Multistatic radar method Pending JPH0534447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21153091A JPH0534447A (en) 1991-07-29 1991-07-29 Multistatic radar method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21153091A JPH0534447A (en) 1991-07-29 1991-07-29 Multistatic radar method

Publications (1)

Publication Number Publication Date
JPH0534447A true JPH0534447A (en) 1993-02-09

Family

ID=16607407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21153091A Pending JPH0534447A (en) 1991-07-29 1991-07-29 Multistatic radar method

Country Status (1)

Country Link
JP (1) JPH0534447A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140234A (en) * 1993-10-12 1995-06-02 Nec Corp Bistatic radar
JPH11125674A (en) * 1997-10-24 1999-05-11 Mitsubishi Electric Corp Synthetic aperture radar device
JP2004351215A (en) * 2003-05-29 2004-12-16 Biosense Webster Inc Hysteresis evaluation for metal immunity
JP2009526223A (en) * 2006-02-09 2009-07-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Radar system comprising at least two antenna units spatially separated
JP2009244272A (en) * 2001-05-04 2009-10-22 Lockheed Martin Corp System and method for detecting and tracking target object
JP2010181385A (en) * 2009-02-09 2010-08-19 Toshiba Corp Apparatus and method for sensing incoming wave
JP2011505558A (en) * 2007-11-30 2011-02-24 ザ・ボーイング・カンパニー User equipment navigation solution with navigation signal reflector position determination
JP2011208961A (en) * 2010-03-29 2011-10-20 Mitsubishi Space Software Kk Image processing device, monitoring system, image processing method, and image processing program
JP2012068224A (en) * 2010-08-23 2012-04-05 Toshiba Corp Mimo radar system, transmitting unit, receiving unit, and mimo radar signal processing method
JP2013508710A (en) * 2009-10-22 2013-03-07 トヨタ モーター ヨーロッパ ナームロゼ フェンノートシャップ/ソシエテ アノニム Submillimeter radar using signals reflected from multiple angles
JP2015172561A (en) * 2014-03-12 2015-10-01 株式会社東芝 Target detector and target detection method
JP2015180870A (en) * 2014-03-14 2015-10-15 コダー オーシャン センサーズ リミテッド Negative pseudo-range processing with multi-static fmcw radar system
JP2020176852A (en) * 2019-04-16 2020-10-29 日本電気株式会社 Three-dimensional infra-monitoring method, system, and program
JP2021071422A (en) * 2019-10-31 2021-05-06 株式会社東芝 Radar system
JP2022098395A (en) * 2020-12-21 2022-07-01 WaveArrays株式会社 Radar device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140234A (en) * 1993-10-12 1995-06-02 Nec Corp Bistatic radar
JPH11125674A (en) * 1997-10-24 1999-05-11 Mitsubishi Electric Corp Synthetic aperture radar device
JP2009244272A (en) * 2001-05-04 2009-10-22 Lockheed Martin Corp System and method for detecting and tracking target object
JP2004351215A (en) * 2003-05-29 2004-12-16 Biosense Webster Inc Hysteresis evaluation for metal immunity
JP2009526223A (en) * 2006-02-09 2009-07-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Radar system comprising at least two antenna units spatially separated
JP2011505558A (en) * 2007-11-30 2011-02-24 ザ・ボーイング・カンパニー User equipment navigation solution with navigation signal reflector position determination
JP2010181385A (en) * 2009-02-09 2010-08-19 Toshiba Corp Apparatus and method for sensing incoming wave
US8912946B2 (en) 2009-10-22 2014-12-16 Toyota Motor Europe Nv/Sa Submillimeter radar using signals reflected from multiple angles
JP2013508710A (en) * 2009-10-22 2013-03-07 トヨタ モーター ヨーロッパ ナームロゼ フェンノートシャップ/ソシエテ アノニム Submillimeter radar using signals reflected from multiple angles
JP2011208961A (en) * 2010-03-29 2011-10-20 Mitsubishi Space Software Kk Image processing device, monitoring system, image processing method, and image processing program
JP2012068224A (en) * 2010-08-23 2012-04-05 Toshiba Corp Mimo radar system, transmitting unit, receiving unit, and mimo radar signal processing method
JP2015172561A (en) * 2014-03-12 2015-10-01 株式会社東芝 Target detector and target detection method
JP2015180870A (en) * 2014-03-14 2015-10-15 コダー オーシャン センサーズ リミテッド Negative pseudo-range processing with multi-static fmcw radar system
JP2020176852A (en) * 2019-04-16 2020-10-29 日本電気株式会社 Three-dimensional infra-monitoring method, system, and program
JP2021071422A (en) * 2019-10-31 2021-05-06 株式会社東芝 Radar system
JP2022098395A (en) * 2020-12-21 2022-07-01 WaveArrays株式会社 Radar device

Similar Documents

Publication Publication Date Title
US10425910B1 (en) Localization using millimeter wave communication signals
EP1910864B1 (en) A system and method for positioning a transponder
Gottinger et al. Coherent automotive radar networks: The next generation of radar-based imaging and mapping
EP3379737B1 (en) System and method for determining location information for a mobile radio transmitter
KR100904681B1 (en) Method and apparatus for transmitter locating using a single receiver
JP5197138B2 (en) Multi static radar device
JPH0534447A (en) Multistatic radar method
US20140327567A1 (en) Radar device
JPH04220582A (en) Poly-static correlation radar
JP3672212B2 (en) Synthetic aperture radar equipment
US20190219661A1 (en) High frequency geo-location methods and systems
CN103837856A (en) Extended angular resolution in sensor arrays using secondary echoe
US7280072B2 (en) System for the relative navigation of aircraft and spacecraft using a phased array antenna
US10031222B2 (en) Methods and devices for determining the location of remotely emplaced objects, such as munitions
US10536920B1 (en) System for location finding
JPH0429080A (en) Bistatic radar equipment
JP3484995B2 (en) Instantaneous passive distance measuring device
US11467243B2 (en) Radio wave arrival direction estimation apparatus
JP2005265412A (en) Obstacle detection device
KR102287852B1 (en) Radio positioning system and navigation method for unmanned aerial vehicle
US20220229175A1 (en) Coherent, Multi-Static Radar System, In Particular For Use In A Vehicle
CN103185882B (en) Measuring method of relative position, device of relative position and system of relative position
WO2021021249A1 (en) One-way time-of-flight localization using sonic and electromagnetic signals for mobile ad hoc networks
JP2004093341A (en) Electric wave positioning device
JP3751574B2 (en) Target position detection method and target position detection system