JPH0534435B2 - - Google Patents

Info

Publication number
JPH0534435B2
JPH0534435B2 JP59054539A JP5453984A JPH0534435B2 JP H0534435 B2 JPH0534435 B2 JP H0534435B2 JP 59054539 A JP59054539 A JP 59054539A JP 5453984 A JP5453984 A JP 5453984A JP H0534435 B2 JPH0534435 B2 JP H0534435B2
Authority
JP
Japan
Prior art keywords
powder
electroplating
plating
granular material
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59054539A
Other languages
Japanese (ja)
Other versions
JPS60200998A (en
Inventor
Nobutaka Goshima
Nobuyasu Ezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP5453984A priority Critical patent/JPS60200998A/en
Publication of JPS60200998A publication Critical patent/JPS60200998A/en
Publication of JPH0534435B2 publication Critical patent/JPH0534435B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は粉粒体の電気めつき方法及び電気めつ
き用装置に関する。 導電性を有する粉粒体に対し金属被覆を施する
方法としては、一般に電気めつき方法が考えられ
るが、実際には非常に困難な問題が多い。例えば
精密パーツに用いられるビス、ナツト等の小物部
品であれば、小さなバレルを用いたり、網付け法
を採用したり、或いは遠心力で被めつき物をめつ
き槽内壁に密着させてめつきする方法を採用する
など、種々の方法で電気めつきすることが可能で
ある。しかし、多量の物品を均一にめつきしよう
とした場合には、これらの方法では装置が大型化
したり、不必要に多量のめつき液を使用しなけれ
ばならず、不経済であつた。また、粉粒体、特に
粒径500μ以下の粉粒体を電気めつきする場合は、
これらの方法を採用することが困難であり、とり
わけ0.5〜50μ程度の粉粒体では電気めつき法を採
用し難い。また被めつき物やリード材料などがめ
つき液中に溶けこんだ場合、このような不純物を
巻きこんでめつきされてしまう。 そこで、粉粒体を電気めつき液中に撹拌作用下
で流動化させ、粉粒体と電気めつき液とでスラリ
ーを形成し、このスラリーを陰極に接触させて電
気めつきを行なう方法も提案されているが、めつ
き液が均一な層流で送られないためめつきの均一
性や不必要な多量のめつき液を使用する点で問題
があつた。 このため、従来は粉粒体に体する金属被覆法と
して科学めつき法が主として採用されているが、
この方法はコスト的に問題がある上、使用目的に
よつては被膜強度、密着性、品質安全性などの点
で必ずしも満足な性能を示さない場合がある。特
に、金属粉に代る導電性粉粒体として塗料、イン
ク、接着剤、プラスチツク等に添加、混合し、金
属粉と同程度の性能をもつて各種用途に使用し得
る導電性材料を得ようとする場合、母材となる粉
粒体に金属めつき膜が所要の厚みをもつて均一に
しかも密着性よく被覆することが必要、かつその
製造コストも安価であることが要求されるが、科
学めつき法を採用する場合にはめつき膜を厚く形
成するのにかなりの時間を要し、まためつき液自
体も比較的高価なため、製造コストが高価なもの
になる。 本発明者らは、上記事情に鑑み、粉粒体を均一
かつ効率的に電気めつきする方法及び装置につき
鋭意検討を行なつた結果、粉粒体の電気めつき方
法において、陰極室内部に収納した粉粒体を、め
つき液の上昇流によつて粉粒体を流動状態として
電気めつきするとともに、陰極室内を上昇する上
昇流の流速を陰極室の上部において低下させて上
昇流に随伴する粉粒体が上昇流とともに外部に流
出しないようにしたことを特徴とする粉粒体の電
気めつき方法および円筒形の陽極と粉粒体収容槽
を有する陰極室とからなる電気めつき装置におい
て、粉粒体収容槽の底部にめつき液流入口を有
し、陰極室の上部には断面積が上部ほど漸増する
流動粒子逸散防止塔が取り付けられており、流動
粒子逸散防止塔の上部壁面にはめつき液の流出口
を設けたことを特徴とする粉粒体の電気めつき装
置とによつて、上記目的が達成されることを知見
した。 即ち、本発明者らは、最初開放型の傾斜バレル
を使用し、このバレル本体自体を陰極にして内部
に粉粒体を入れると共に、バレル本体の開放口よ
り陽極を挿入し、バレルの回転を1〜10rpmの範
囲で種々変化させて電気めつきを行なつたが、均
一な電気めつきが行なわれず、特に10μ以下の粉
粒体を用いた場合はバレルの回転を低速にしても
粉粒体がめつき液中にかなりの程度分散し、電着
物の均一性が非常に悪いものであつた。また、こ
の種の回転バレルの代りに振動バレルを用い、粉
粒体を振動下に電気めつきしたが、同様に良好な
電気めつきが行なわれず、更にめつき槽内底面を
陰極にし、その上に粉粒体を堆積させ、この粉粒
体を超音波を利用して撹拌しながら電気めつきし
たが、この場合も不均一な電着物しか得られなか
つた。これらはすべてめつき液が均一な層流とな
らないので、粉粒体が流動化されないためであ
る。このため更に検討を続けた結果、堆積した被
めつき物となる粉粒体粒子を流動化した状態で電
気めつきを施すことにより均一かつ高効率の電気
めつきが得られることを知見した。すなわち、本
発明においてはめつき液が層流となるため粉粒体
粒子がめつき液中で粉粒体相互がくつついたりは
なれたりしていわゆる多孔質状態をなし、この多
孔質状態の内部をめつき液が通過する。したがつ
て、電気めつきすると、多孔質状態全体が陰極と
して働くので陰極表面積が極端に大きくなり、効
率よくめつきできる。また多孔質状態のめつき液
流入側は流出側に比し、めつき液濃度が高く厚く
めつきされるが、めつき液の水流によつてまき上
げられて撹拌される。 この場合、粉粒体が余りにも小さすぎると、め
つき液中の熱振動などにより粉粒体がはなればな
れとなり、陰極として働かせることが困難とな
る。粉粒体の粒径の好ましい範囲は、粉粒体の材
質、比重等によつて異なり、炭素質の粉粒体のよ
うに比重の小さいものでは比較的大きなものまで
使用することが可能である。そして、粉粒体の平
均粒径は1μm以上が好ましく、また粉粒体が10
mm以上になると、必要とするめつき液の流速が大
きくなり装置が大型になつて好ましくない。 また、流動状態においては、めつき液が粉粒体
内部に流れることと粉粒体全体が陰極として働く
ことが必要なことから、めつき時における多孔質
状態の体積がもとの被めつき物の堆積した体積の
1.1〜1.5倍であることが作業性に良い。 また、本発明の装置においては、めつき液の流
出側が外方に開口した構造となつておりめつき液
速度が弱められるため、粉粒体がめつき液ととも
に流出してしまうこともなく、また粉粒体収容槽
では均一な層流による流動状態が保たれて不純物
を含まない均一な電気めつきができる。 以下、本発明につき図面を参照して更に詳しく
説明する。 第1図は、本発明に係る電気めつき装置の一実
施例を示す縦断面図、第2図は、第1図の−
線横断面図である。 電解槽本体1は、上面が開口し、上端に外向き
フランジ2が連設された円筒体から成り、該本体
1の下面中央には、下向きにめつき液流入口3が
設けられている。本体1内壁の下端近傍には、陽
極支持用円筒4が内設され、該円筒4上には、O
リング5を介して、格子状の支持片6が内設され
たドーナツ状の陽極下部フレーム7が載置されて
いる。陽極下部フレーム7の上縁には、多孔性円
筒状の陽極8が溶接等により立設されている。 陽極の材質としては、グラフアイト、ステンレ
ス、白金あるいは貴金属酸化物をコーテイングし
たチタン及びフエライト等を使用することができ
る。陽極8の上端には、上端に外向き折曲部9が
連設された短寸円筒状の陽極上部フレーム10の下
端部が溶接等により連結され、外向き折曲部9の
外端部は、前記外向きフランジ2の外端部と整合
し、外向き折曲部9と外向きフランジ2の間に
は、ガスケツト11が介在されている。陽極8及
び陽極上部フレーム10の内面及び格子状の支持
片6の上には、ナイロン、ポリエチレン、ポリプ
ロピレン等の非電導性有機化合物あるいは非電導
性無機化合物から成り、0.1μ〜100μ程度の多数の
細孔を有する袋状の隔膜12が内接状態で収容さ
れ、該隔膜12の上端部は外方に折曲され、かつ
1対のガスケツト13,14に挾持されて陽極上
部フレーム10の外向き折曲部9上に載置されて
いる。袋状隔膜12の内下部の該隔膜12を介し
て陽極下部フレーム7に当接する部分には、中央
上面に凹部15が設けられ、上下方向の流通孔1
6が穿設された塩化ビニル樹脂等から成る溶液分
散板17が載置されている。この分散板17はな
くても良い。 袋状の隔膜12の上端部上にはガスケツト14
を介して、流動粒子逸散防止塔18の下端部外向
きフランジ19が載置され、ボルト20により締
着されている。流動粒子逸散防止塔18は下から
順に前記下端部外向きフランジ19、小径部2
1、テーパー部22、大径部23、上端部外向き
フランジ24から構成され、該外向きフランジ2
4上には、円盤状の蓋体25がボルト26により
締着されている。蓋体25中央下面には、下端が
前記凹部15近傍に達する陰極集電体27が垂設
され、該集電体27は、上端からほぼ中央までの
棒状部28と、棒状部28に続くテーパー部29
と、中空円筒状の本体30とから成り、本体30
の外周には、粉粒体との接触面積を増すための翼
体31が放射的に連設されている。袋状隔膜12
の内部には粒径が1μ〜10mm程度,好ましくは0.05
〜3.0mm程度の多数の粉粒体32が堆積されてい
る。 粉粒体の材質は導電性を有し、電気めつき可能
なものであれば、いずれのものでもよく、例えば
銅粉、鉄粉、アルミニウム粉、新ちゆう粉等の金
属粉粒体、炭素粉等の導電性無機粉粒体、
Al2O3、SiO2等の非導電性無機粉粒体や樹脂粉粒
体を化学めつき法、真空蒸着法の適宜な導電化処
理法を用いて導電化したものなどが挙げられる。 これらの粉粒体を用いて電気めつきを行なう場
合は、必要によりその材質に応じた前処理を行な
うことができる。例えば、銅粉、鉄粉などにおい
ては脱脂、酸洗処理を施し、またアルミニウム粉
などにおいては公知の亜鉛置換処理を行ない、次
いで青化銅ストライクめつきを行なうなどの前処
理を採用することにより、良好な電気めつきを行
なうことができる。また、非導電性粉粒体の場合
には、パラジウム等の触媒金属付着処理を行なつ
た後、化学ニツケルめつき、化学銅めつき等の化
学めつきを施す公知の化学めつき法が好適に採用
され得、このようにして導電化された非導電性粉
粒体を金属粉粒体と同様にして電気めつきするこ
とができる。 本発明において、電気めつき液の種類は制限さ
れず、銅、ニツケル、クロム、錫、亜鉛、銀、白
金、金、ロジウム、パラジウム等の公知のめつき
液を用いることができる。この場合、めつき液は
酸性液でもアルカリ性液でも好適に使用すること
ができ、またニツケルめつき後銀めつきを行なう
など、多層めつきすることもできる。また、めつ
き条件に、電気めつき液の種類に応じ、適宜な条
件が採用される。 なお、本発明はにおいては、必要によりポンプ
を用いてめつき液を循環させ、めつき液を常時新
しいものと交換させながらめつきを行なうように
することができる。 33は、電解槽本体1の上部側面に連設された
陽極ガス及び陽極液取出口、34は、流動粒子逸
散防止塔18の大径部23側面に連設された陰極
液流出口、35は、蓋体25上面に連設された陰
極ガス取出口である。 上記構成から成る電解槽本体1に、めつき液を
溶液流入口3から供給する。供給された溶液は、
袋状隔膜12の細孔と溶液分散板17の流通孔1
6を通つて、陰極室内に導入される。この場合溶
液は、粉粒体32を浮遊状態に維持し、撹拌する
役割を果たす。溶液中の金属イオンは粉粒体32
上で電解還元され、金属原子となつて粉粒体32
上に析出するとともに副反応として、水が電解さ
れて水素が発生し、この水素は陰極ガス取出口3
5から取出される。めつき液の一部は、袋状隔膜
12を通つて陽極室に流入し、陽極8上で水が電
解されて酸素が発生し、この酸素は陽極ガス取出
口33又は陰極ガス取出口35から電解槽外へ取
出される。まためつき液中には通常シアンイオン
等他のイオンが含まれており、このシアンイオン
等が酸化されて生ずる窒素、アンモニア等も同様
に取出される。めつきされて金属イオン濃度が減
少しためつき液は、溶液流出口34からオーバー
フローして電解槽外に取出される。一方、粉粒体
32はめつき液とともに上昇するが、上部ほど断
面積が大きくなつた流動粒子逸散防止塔18にお
いて上昇にともなつて流速が低下し、めつき液と
ともに上昇した流動粒子はめつき液から分離され
るので、流動粒子逸散防止塔に設けためつき液の
取り出し口には流動粒子を分離するためのフイル
ター等を設ける必要はない。 この電解装置において、流動層内の粉粒体に効
率よく陰極電位をもたせて高電流効率,低電解電
圧で均一に陰極上に析出させるためには、次に挙
げる電解条件下でめつきを行なうことが望まし
い。 陰極電流密度:30A/dm2以下(好ましくは
10A/dm2以下) 陽極電流密度:20A/dm2以下(好ましくは
5A/dm2以下) 流動層内電流濃度:30A/−流動層以下(好
ましくは10A/−流動層以下) 流動層空間率:40〜90%(好ましくは60〜75
%)ここで、陰極密度が30A/dm2を越え、又、
陽極電流密度が20A/dm2を越えると電圧が高く
なり、さらに、流動層内電流濃度が30A/−流
動層を越えると電圧が上がるだけでなく、プラツ
キングが発生し、流動層空間率が90%を越えると
電圧が上がり、40%より下がるとめつき液流入口
付近でプラツギングが生ずるので、上記範囲内と
するのがよい。 又、この電解操作を引き続いて
行うと、金属の析出に伴つて陰極粒子の径が大き
くなるので、流動条件(流動層高、流動層空間
率、流動層圧力損失)が変化するので、本電解槽
の流動床部分は次のように設計することが好まし
い。すなわち流動層の高さは、初期流動層の1.2
倍以上、好ましくは1.4倍以上とし、流動粒子逸
散防止塔の断面積を、電解槽本体の断面積の1.5
倍以上、好ましくは2倍以上として粉粒体の逸散
を防止する。 又陰極して流動状態の粉粒体を使用しているた
め、陰極表面積が非常に大きくなつて電流密度を
下げてめつきできると共に、均一な層流中に浮遊
した陰極粒子が相互に衝突して電気二重層を不安
定としているので、電解電圧が低く電流効率の高
い状態で電解を行なうことができ、均一に電気め
つきできる。さらにめつき液中に析出金属以外の
他の不純物金属を含んでいても、両金属の電位差
を利用して不純物を含まない電気めつき膜を得る
ことができる。 このようにして得られた電気めつき膜被覆粉粒
体は、導電性インキ、触媒、塗料、接着剤、プラ
スチツク、電磁シールド材、接点等の材料として
好適に使用し得ものである。得に、電気銀めつき
を施すことによつて得られた銀被膜粉粒体は、銀
粉とほぼ同時の性能を有し、しかも銀粉よりも安
価に製造できるため、ペースト用銀粉の代替品と
して極めて有効なものである。 第3図は、本発明に係る電気めつき装置の第2
実施例を示す縦断面図である。この電気めつき装
置は、第1実施例の電気めつき装置の改良に係わ
るものであり、第1実施例の部材と同一部材には
同一符号を付して説明を省略する。 電解槽本体1′は、めつき液流入口3が連設さ
れた皿状の下部枠体36と、円筒状の陽極8′と
から成り、陽極8′の上下両端は、それぞれ外方
に向けて折曲されている。多孔性の隔膜は、円筒
状の上部隔膜12′と平面状の下部隔膜12″から
成り、上部隔膜12′の上下両端は、それぞれ外
方に向けて折曲されている。溶液分散板17′の
直径は、下部隔膜12″の直径とほぼ同一であり、
中央部にのみ流通孔16′が穿設されている。 上部隔膜12′の上端の折曲部は、ガスケツト
13,14を介して流動粒子逸散防止塔18の外
向きフランジ19と陽極8′上端の折曲部との間
に挾持され、ボルト20により締着されている。
溶液分散板17′の周縁部は、それぞれ1対のガ
スケツト37,38に挾持された上部隔膜12′
の下端折曲部と、下部隔膜12″との間に挾持さ
れ、ボルト39により締着されている。 この電解槽に溶液流入口3からめつき液を供給
すると、第1実施例の場合と同様に粉粒体32に
電気めつきがされる。 本実施例の電解槽では、見かけ上陽極室の厚さ
が零であるが、隔膜が陽極に密着することはな
く、実質的には隔膜と陽極との間に陽極室が存在
する。陽極表面で発生する電解ガスは、隔膜を通
つて陰極室に達し、陰極ガス取出口35から、陰
極ガスとともに取り出される。 本実施例の電解槽は、陽極により電解槽本体を
構成し、溶液分散板を電解槽本体に連結してある
などのため、第1実施例の電解槽より部材数が少
なく、構造がコンパクトになる。又、陽極が大気
に露出しているが、印加電圧が小さいため感電等
の危険はない。 なお、本発明においてめつき厚の均一性をます
ためにインペラー式撹拌機などの機械的撹拌を併
用して流動状態を阻害しない範囲で撹拌してもよ
い。また、陰極集電体27の本体30にらせん溝
を設けて均一な層状の渦流を発生するようにし
て、めつき液の流通経路を長くしてもよい。被め
つき物がめつき液より軽い場合は、本実施例の装
置は逆転する。 以下、実施例を示し、本発明を具体的に説明す
るが、本発明は下記の実施例に限定されるもので
はない。 実施例 1 銅粒子(平均粒径100μの球状粒子)に下記の
方法により金めつきを施した。 まず、銅粒子5Kgを脱脂し、次いで水洗、酸
洗、水洗を行なつて銅粒子表面の汚れ、酸化膜を
除去した。 次に、前処理を施した銅粒子につき、第1図に
示す如き装置を用い、堆積させた後下記条件によ
り電気金めつきを施した。 金めつき条件 めつき液:金8g/のオートロネクスC(日本
エレクトロプレーテイングエンジニヤーズ(株)製
酸性シアンメツキ液) 不純物:銅 40ppm めつき液量:50 電 流:45A 電 圧:4V めつき温度:50℃ めつき時間:60分 流 速:0.3cm/sec 銅粒子は約10分で全体が金色にかわつてきた。 金めつき後、めつき液を除き、よく水洗してか
ら濾過し、乾燥して銅粒子に金めつき膜が0.1μ被
膜した粒子(Au/Cu粒子)を得た。 上述した方法で得られたAu/Cu粒子につき、
SEM写真とX線マイクロアナライザーによる金
分布像を調べた結果、金が銅粒子に均一に電着し
ていることが認められた。また、不純物としての
銅はめつき後も40ppmであつた。 このようにしてえられたAu/Cu粒子は電気接
点用素材に利用できた。 実施例 2 平均粒径1mmのAl2O3粒子2を用い、下記方
法によりめつきを行なつた。 まず、Al2O3粒子を脱脂し、次いで水洗、酸
洗、水洗した後、下記工程に従つて化学ニツケル
めつきを行なつた。 センシタイジング:塩化第1錫溶液2 ↓ 水 洗 ↓ アクチベイシヨン:塩化パラジウム溶液2 ↓ 水 洗 ↓ 化学ニツケルめつき:上村工業(株)製BELニツケ
ル5(還元剤ジメチルボラザン) ↓ 水 洗 次に、このAl2O2粒子につき、第3図に示す如
き装置を用い、実施例1に準じて下記条件により
電気白金めつきを施した。 白金めつき条件 めつき液:塩化白金酸 10g/ 塩酸 0.3規定 めつき液量:50 電 流:200A 電 圧:20V めつき温度:20℃ めつき時間:60分 流 速:0.2cm/sec 上述した方法でえられたPt/Ni/Al2O3粒子
は、いずれも電気めつき膜が均一に電着している
ものであり、粒子が陰極であるめつき槽に確実に
接触し、均一な電着物を得ることができることを
知見した。 また、粒子が非電導性の場合、電気めつき側に
化学めつきを施す必要があるが、本発明において
は粒子に化学めつきを施す場合、その膜厚は電気
めつきが可能な程度のものでよく、化学めつき被
膜のみによつて高導電性粒子を得る場合に比較し
てその膜厚を薄くすることができ、コストを著し
く低下させることができた。 以上の如く、実施例1、2で得られた電気めつ
き膜を被覆した導電性材料は、蒸着や化学めつき
品と比較して被膜が強く密着性が良好で、不純物
を含まず品質的に安定であり、またコスト的にも
安価で、種々の用途に効果的に用いることができ
るものである。
The present invention relates to a method for electroplating powder and granular materials and an apparatus for electroplating. Electroplating is generally considered as a method for applying metal coating to electrically conductive powder, but in practice there are many very difficult problems. For example, small parts such as screws and nuts used in precision parts can be plated by using a small barrel, by using the netting method, or by using centrifugal force to bring the object to be plated into close contact with the inner wall of the plating tank. Electroplating can be carried out in various ways, such as by employing a method of. However, when attempting to uniformly plate a large number of articles, these methods are uneconomical because the equipment becomes large and an unnecessarily large amount of plating solution must be used. In addition, when electroplating powder or granular material, especially powder or granular material with a particle size of 500μ or less,
It is difficult to employ these methods, and it is especially difficult to employ the electroplating method for powder particles of about 0.5 to 50 μm. Furthermore, if a plating object, lead material, etc. dissolves into the plating solution, such impurities will be incorporated into the plating solution. Therefore, there is a method in which the powder is fluidized in an electroplating liquid under stirring action, the powder and the electroplating liquid form a slurry, and this slurry is brought into contact with the cathode to perform electroplating. Although this method has been proposed, since the plating liquid is not sent in a uniform laminar flow, there are problems with the uniformity of plating and the use of an unnecessary large amount of plating liquid. For this reason, the scientific plating method has conventionally been mainly used as a metal coating method for powder and granules.
This method has problems in terms of cost, and depending on the purpose of use, it may not always show satisfactory performance in terms of film strength, adhesion, quality safety, etc. In particular, we are trying to obtain conductive materials that can be added to paints, inks, adhesives, plastics, etc. as conductive powders to replace metal powders, and can be used for various purposes with performance comparable to that of metal powders. In this case, it is necessary to coat the base material powder with a metal plating film having a required thickness, uniformity, and good adhesion, and the manufacturing cost is also required to be low. When a scientific plating method is employed, it takes a considerable amount of time to form a thick plating film, and the plating solution itself is relatively expensive, resulting in high manufacturing costs. In view of the above circumstances, the present inventors have conducted intensive studies on a method and apparatus for uniformly and efficiently electroplating powder and granular materials. The stored powder and granules are electroplated in a fluidized state by the upward flow of the plating solution, and the velocity of the upward flow rising in the cathode chamber is reduced at the upper part of the cathode chamber to form an upward flow. A method for electroplating powder and granules, characterized in that accompanying powder and granules are prevented from flowing out to the outside with upward flow, and electroplating comprising a cylindrical anode and a cathode chamber having a powder and granule storage tank. The device has a plating liquid inlet at the bottom of the powder storage tank, and a fluidized particle dispersion prevention tower is installed at the top of the cathode chamber, the cross-sectional area of which gradually increases toward the top. It has been found that the above object can be achieved by an electroplating apparatus for powder and granular material, which is characterized in that an outlet for plating liquid is provided on the upper wall of the tower. That is, the inventors first used an open-type inclined barrel, used the barrel body itself as a cathode, put the powder inside, and inserted an anode through the open opening of the barrel body to control the rotation of the barrel. Electroplating was performed at various speeds in the range of 1 to 10 rpm, but uniform electroplating was not achieved, especially when using powder particles of 10 μm or less, even when the barrel rotation was made slow. The electrolyte was dispersed to a considerable extent in the plating solution, and the uniformity of the electrodeposit was very poor. In addition, a vibrating barrel was used instead of this type of rotating barrel to electroplate the powder and granules under vibration, but similarly good electroplating was not achieved. Powder was deposited on top, and the powder was electroplated while being stirred using ultrasonic waves, but in this case as well, only non-uniform electrodeposit was obtained. All of these are because the plating liquid does not form a uniform laminar flow, and the powder and granules are not fluidized. Therefore, as a result of further investigation, it was discovered that uniform and highly efficient electroplating can be obtained by electroplating in a fluidized state of the accumulated powder particles to be plated. That is, in the present invention, since the plating liquid has a laminar flow, the powder particles stick together and separate from each other in the plating liquid, forming a so-called porous state, and the inside of this porous state is plated. The liquid passes through. Therefore, when electroplating is performed, the entire porous state acts as a cathode, and the cathode surface area becomes extremely large, allowing efficient plating. In addition, the inlet side of the porous plating liquid has a higher concentration of the plating liquid than the outflow side and is plated thickly, but is stirred up by the water flow of the plating liquid. In this case, if the granules are too small, they will separate due to thermal vibrations in the plating solution, making it difficult to function as a cathode. The preferred range of the particle size of the powder and granules varies depending on the material, specific gravity, etc. of the powder and granules, and even relatively large particles can be used for those with low specific gravity such as carbonaceous powders. . The average particle diameter of the powder or granule is preferably 1 μm or more, and the powder or granule has a diameter of 10 μm or more.
If it exceeds mm, the required flow rate of the plating liquid will increase, making the device large, which is not preferable. In addition, in a fluidized state, the plating liquid flows inside the powder and the entire powder needs to act as a cathode, so the volume of the porous state during plating is the same as the original plating. volume of accumulated material
1.1 to 1.5 times is good for workability. Furthermore, in the apparatus of the present invention, the plating liquid outflow side is opened outward and the velocity of the plating liquid is weakened, so that the powder and granules do not flow out together with the plating liquid. In the powder storage tank, a fluid state is maintained due to uniform laminar flow, allowing uniform electroplating without impurities. Hereinafter, the present invention will be explained in more detail with reference to the drawings. FIG. 1 is a longitudinal sectional view showing an embodiment of the electroplating apparatus according to the present invention, and FIG. 2 is a -
FIG. The electrolytic cell body 1 consists of a cylindrical body with an open upper surface and an outward flange 2 connected to the upper end, and a downward plating liquid inlet 3 is provided in the center of the lower surface of the body 1. An anode supporting cylinder 4 is installed near the lower end of the inner wall of the main body 1.
A donut-shaped anode lower frame 7 in which a lattice-shaped support piece 6 is installed is mounted via the ring 5 . A porous cylindrical anode 8 is erected on the upper edge of the anode lower frame 7 by welding or the like. As the material of the anode, graphite, stainless steel, platinum, titanium coated with a noble metal oxide, ferrite, etc. can be used. The lower end of a short cylindrical anode upper frame 10 with an outwardly bent part 9 connected to the upper end is connected to the upper end of the anode 8 by welding or the like, and the outer end of the outwardly bent part 9 is , a gasket 11 is interposed between the outward bent portion 9 and the outward flange 2 and aligned with the outer end of the outward flange 2 . On the inner surface of the anode 8 and the anode upper frame 10 and on the lattice-like support piece 6, there are a large number of particles of about 0.1μ to 100μ made of a non-conductive organic compound or a non-conductive inorganic compound such as nylon, polyethylene, polypropylene, etc. A bag-shaped diaphragm 12 having pores is housed in the anode upper frame 10 , and the upper end of the diaphragm 12 is bent outward and held between a pair of gaskets 13 and 14 so as to face outward of the anode upper frame 10 . It is placed on the bending part 9. A recess 15 is provided on the central upper surface of the inner lower part of the bag-shaped diaphragm 12 at the portion that contacts the anode lower frame 7 via the diaphragm 12, and a vertical communication hole 1 is provided in the upper center surface.
A solution dispersion plate 17 made of vinyl chloride resin or the like with holes 6 is placed thereon. This dispersion plate 17 may be omitted. A gasket 14 is placed on the upper end of the bag-shaped diaphragm 12.
An outward facing flange 19 at the lower end of the fluidized particle diffusion prevention tower 18 is mounted through the flange 19 and fastened with bolts 20 . The fluidized particle diffusion prevention tower 18 includes, in order from the bottom, the lower end outward flange 19, the small diameter part 2
1. Consists of a tapered part 22, a large diameter part 23, and an upper end outward flange 24, and the outward flange 2
A disk-shaped lid 25 is fastened onto the top of the housing 4 with bolts 26. A cathode current collector 27 is vertically disposed on the lower center surface of the lid 25, and the lower end reaches near the recess 15. Part 29
and a hollow cylindrical main body 30, the main body 30
Wing bodies 31 are radially arranged on the outer periphery of the blade body 31 to increase the contact area with the granular material. Bag-like septum 12
The inside of the particle size is about 1μ to 10mm, preferably 0.05mm.
A large number of powder particles 32 of about 3.0 mm are deposited. The material of the powder may be any material as long as it has conductivity and can be electroplated, such as metal powder such as copper powder, iron powder, aluminum powder, new powder, carbon, etc. Conductive inorganic powder such as powder,
Examples include non-conductive inorganic powder such as Al 2 O 3 or SiO 2 or resin powder made conductive using an appropriate conductive treatment method such as chemical plating or vacuum evaporation. When electroplating is performed using these powders, pretreatment can be carried out depending on the material, if necessary. For example, copper powder, iron powder, etc. are subjected to degreasing and pickling treatment, and aluminum powder, etc., is subjected to a known zinc substitution treatment, followed by copper bronze strike plating. , good electroplating can be performed. In addition, in the case of non-conductive powder, known chemical plating methods such as chemical nickel plating, chemical copper plating, etc. are suitable after applying a catalytic metal such as palladium. The non-conductive powder particles made conductive in this way can be electroplated in the same manner as metal powder particles. In the present invention, the type of electroplating solution is not limited, and known plating solutions such as copper, nickel, chromium, tin, zinc, silver, platinum, gold, rhodium, and palladium can be used. In this case, either an acidic solution or an alkaline solution can be suitably used as the plating solution, and multilayer plating can also be performed, such as nickel plating followed by silver plating. Furthermore, appropriate plating conditions are adopted depending on the type of electroplating solution. In the present invention, if necessary, a pump may be used to circulate the plating liquid, and plating can be performed while constantly replacing the plating liquid with a new one. 33 is an anode gas and anolyte outlet connected to the upper side of the electrolytic cell body 1; 34 is a catholyte outlet connected to the side of the large diameter part 23 of the fluidized particle diffusion prevention tower 18; 35; is a cathode gas outlet connected to the top surface of the lid 25. A plating solution is supplied from the solution inlet 3 to the electrolytic cell main body 1 having the above structure. The supplied solution is
Pores of bag-like diaphragm 12 and communication holes 1 of solution distribution plate 17
6 into the cathode chamber. In this case, the solution plays the role of maintaining the powder 32 in a suspended state and stirring it. Metal ions in the solution are powder particles 32
It is electrolytically reduced above, becomes metal atoms, and becomes powder particles 32.
At the same time, as a side reaction, water is electrolyzed and hydrogen is generated, and this hydrogen is passed through the cathode gas outlet 3.
5. A part of the plating solution flows into the anode chamber through the bag-like diaphragm 12, and water is electrolyzed on the anode 8 to generate oxygen, which is then discharged from the anode gas outlet 33 or the cathode gas outlet 35. It is taken out of the electrolytic cell. Further, the plating solution usually contains other ions such as cyan ions, and nitrogen, ammonia, etc. produced by the oxidation of these cyan ions are also extracted. The plating solution whose metal ion concentration has been reduced overflows from the solution outlet 34 and is taken out of the electrolytic cell. On the other hand, the powder 32 rises together with the plating liquid, but the flow rate decreases as it rises in the fluidized particle scattering prevention tower 18 whose cross-sectional area becomes larger toward the upper part, and the fluidized particles that have risen together with the plating liquid do not cause plating. Since the particles are separated from the liquid, there is no need to provide a filter or the like at the outlet of the pampering liquid provided in the fluidized particle diffusion prevention tower to separate the fluidized particles. In this electrolyzer, in order to efficiently impart a cathode potential to the powder in the fluidized bed and deposit uniformly on the cathode with high current efficiency and low electrolytic voltage, plating must be performed under the following electrolytic conditions. This is desirable. Cathode current density: 30A/ dm2 or less (preferably
10A/dm 2 or less) Anode current density: 20A/dm 2 or less (preferably
5A/dm2 or less ) Current concentration in fluidized bed: 30A/- fluidized bed or less (preferably 10A/- fluidized bed or less) Fluidized bed void ratio: 40 to 90% (preferably 60 to 75
%) Here, the cathode density exceeds 30A/ dm2 , and
When the anode current density exceeds 20 A/ dm2 , the voltage increases, and furthermore, when the current concentration in the fluidized bed exceeds 30 A/dm2, not only does the voltage increase, but plugging occurs, and the fluidized bed void ratio decreases to 90. If it exceeds 40%, the voltage will rise, and if it falls below 40%, plugging will occur near the plating liquid inlet, so it is best to keep it within the above range. In addition, if this electrolytic operation is performed continuously, the diameter of the cathode particles increases as the metal is deposited, so the fluidization conditions (fluidized bed height, fluidized bed void ratio, fluidized bed pressure loss) change, so this electrolysis The fluidized bed section of the tank is preferably designed as follows. In other words, the height of the fluidized bed is 1.2 of the initial fluidized bed.
The cross-sectional area of the fluidized particle diffusion prevention tower should be at least 1.5 times the cross-sectional area of the electrolytic cell body.
At least twice that amount, preferably at least twice as much, to prevent the powder from escaping. In addition, since fluidized powder is used as the cathode, the surface area of the cathode is extremely large, allowing plating with a lower current density, and cathode particles suspended in a uniform laminar flow collide with each other. Since the electric double layer is made unstable, electrolysis can be carried out at low electrolytic voltage and high current efficiency, and uniform electroplating can be achieved. Furthermore, even if the plating solution contains impurity metals other than the precipitated metal, an electroplated film containing no impurities can be obtained by utilizing the potential difference between the two metals. The electroplated film-coated powder particles thus obtained can be suitably used as materials for conductive inks, catalysts, paints, adhesives, plastics, electromagnetic shielding materials, contacts, and the like. In particular, the silver-coated powder obtained by electrolytic silver plating has almost the same performance as silver powder, and can be produced at a lower cost than silver powder, so it can be used as a substitute for silver powder for pastes. It is extremely effective. FIG. 3 shows a second embodiment of the electroplating apparatus according to the present invention.
FIG. 3 is a longitudinal cross-sectional view showing an example. This electroplating apparatus is an improvement of the electroplating apparatus of the first embodiment, and the same members as those of the first embodiment are given the same reference numerals and explanations thereof will be omitted. The electrolytic cell body 1' consists of a dish-shaped lower frame 36 in which a plating liquid inlet 3 is connected, and a cylindrical anode 8', with both upper and lower ends of the anode 8' facing outward. It is bent. The porous diaphragm consists of a cylindrical upper diaphragm 12' and a flat lower diaphragm 12'', and both upper and lower ends of the upper diaphragm 12' are bent outward. Solution distribution plate 17' is approximately the same as the diameter of the lower diaphragm 12'',
A communication hole 16' is provided only in the center. The bent portion at the upper end of the upper diaphragm 12' is held between the outward flange 19 of the fluidized particle diffusion prevention tower 18 and the bent portion at the upper end of the anode 8' via gaskets 13 and 14, and is secured by bolts 20. It is fastened.
The peripheral edge of the solution distribution plate 17' is connected to the upper diaphragm 12' which is held between a pair of gaskets 37 and 38, respectively.
It is held between the bent portion at the lower end and the lower diaphragm 12'', and is fastened with bolts 39. When the plating solution is supplied to this electrolytic cell from the solution inlet 3, it is the same as in the case of the first embodiment. In the electrolytic cell of this example, the thickness of the anode chamber is apparently zero, but the diaphragm does not come into close contact with the anode, and the diaphragm and the diaphragm do not come into close contact. An anode chamber exists between the anode and the anode. Electrolytic gas generated on the surface of the anode reaches the cathode chamber through the diaphragm and is taken out together with the cathode gas from the cathode gas outlet 35. The electrolytic cell main body is composed of the anode, and the solution dispersion plate is connected to the electrolytic cell main body, so the number of parts is smaller than that of the electrolytic cell of the first embodiment, and the structure is compact.Also, the anode is not exposed to the atmosphere. Although it is exposed, there is no risk of electric shock because the applied voltage is small.In addition, in the present invention, in order to improve the uniformity of the plating thickness, mechanical stirring such as an impeller type stirrer is used in combination to inhibit the flow state. In addition, a spiral groove may be provided in the main body 30 of the cathode current collector 27 to generate a uniform laminar vortex flow to lengthen the flow path of the plating solution. When the object to be plated is lighter than the plating liquid, the apparatus of this embodiment is reversed.The present invention will be specifically explained below by referring to Examples, but the present invention is limited to the following Examples. Example 1 Copper particles (spherical particles with an average particle size of 100 μm) were plated with gold by the following method. First, 5 kg of copper particles were degreased, and then washed with water, pickled, and washed with water to remove copper. Dirt and oxide film on the surface of the particles were removed.Next, the pretreated copper particles were deposited using the apparatus shown in Figure 1, and then electroplated with gold under the following conditions. Plating conditions Plating liquid: Autoronex C (acidic cyan plating liquid manufactured by Nippon Electroplating Engineers Co., Ltd.) with 8 g of gold Impurities: Copper 40 ppm Plating liquid amount: 50 Current: 45 A Voltage: 4 V Plating temperature: 50℃ Plating time: 60 minutes Flow rate: 0.3 cm/sec The entire copper particle turned golden in about 10 minutes. After gold plating, remove the plating solution, wash thoroughly with water, filter, and dry. Particles (Au/Cu particles) were obtained in which copper particles were coated with a gold plating film of 0.1 μm. Regarding the Au/Cu particles obtained by the method described above,
As a result of examining the gold distribution image using SEM photographs and an X-ray microanalyzer, it was found that gold was uniformly electrodeposited on the copper particles. In addition, copper as an impurity remained at 40 ppm even after plating. The Au/Cu particles obtained in this way could be used as a material for electrical contacts. Example 2 Using Al 2 O 3 particles 2 with an average particle diameter of 1 mm, plating was performed by the following method. First, the Al 2 O 3 particles were degreased, then washed with water, pickled, and washed with water, and then chemically plated with nickel according to the following steps. Sensitizing: Stannous chloride solution 2 ↓ Water washing ↓ Activation: Palladium chloride solution 2 ↓ Water washing ↓ Chemical nickel plating: Uemura Kogyo Co., Ltd. BEL Nickel 5 (reducing agent dimethylborazane) ↓ Water washing Next, the Al 2 O 2 particles were subjected to electroplating using an apparatus as shown in FIG. 3 under the following conditions according to Example 1. Platinum plating conditions Plating solution: 10 g of chloroplatinic acid/0.3N hydrochloric acid Amount of plating solution: 50 Current: 200 A Voltage: 20 V Plating temperature: 20°C Plating time: 60 minutes Flow rate: 0.2 cm/sec As described above All of the Pt/Ni/Al 2 O 3 particles obtained by this method have a uniform electroplated film, and the particles reliably contact the plating bath, which is the cathode, to ensure uniform electroplating. It has been found that an electrodeposited material can be obtained. In addition, if the particles are non-conductive, it is necessary to apply chemical plating to the electroplating side, but in the present invention, when chemical plating is applied to the particles, the film thickness must be at a level that allows electroplating. Compared to the case where highly conductive particles are obtained only by chemical plating, the film thickness can be made thinner, and the cost can be significantly reduced. As described above, the conductive material coated with the electroplated film obtained in Examples 1 and 2 has a stronger film and better adhesion than vapor-deposited or chemically plated products, and does not contain impurities and has a good quality. It is stable, inexpensive, and can be effectively used for various purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る電気めつき装置の第1
実施例を示す一部破断正面図、第2図は第1図の
−線横断面図、第3図は本発明に係る電気め
つき装置の第2実施例を示す一部破断正面図であ
る。 1,1′……電解槽本体、3……めつき液流入
口、8,8′……陽極、27……陰極集電体、3
2……粉粒体、18……流動粒子逸散防止塔、2
2……テーパー部。
FIG. 1 shows the first part of the electroplating apparatus according to the present invention.
FIG. 2 is a partially cutaway front view showing an embodiment, FIG. 2 is a cross-sectional view taken along the line -- in FIG. 1, and FIG. 3 is a partially cutaway front view showing a second embodiment of the electroplating apparatus according to the present invention. . 1, 1'... Electrolytic cell body, 3... Plating liquid inlet, 8, 8'... Anode, 27... Cathode current collector, 3
2... Powder, 18... Fluidized particle diffusion prevention tower, 2
2... Taper part.

Claims (1)

【特許請求の範囲】 1 電解槽の陰極室において粉粒体を電気めつき
する方法において、陰極室の底部から供給される
めつき液の上昇流によつて粉粒体を流動状態とし
て電気めつきするとともに、陰極室の上部に設け
た断面積が上部ほど漸増する流動粒子逸散防止塔
によつて上昇流の流速を低下させて上昇流に随伴
する粉粒体を上昇流から分離し、粉粒体の外部へ
の流出を防止することを特徴とする粉粒体の電気
めつき方法。 2 被めつき物である粉粒体が平均粒径1ηm〜
10mmのものであることを特徴とする特許請求の範
囲第1項記載の粉粒体の電気めつき方法。 3 粉粒体の流動状態での高さが、流動しない状
態での高さの1.1〜1.5倍であることを特徴とする
特許請求の範囲第1項または第2項に記載の粉粒
体の電気めつき方法。 4 円筒形の陽極と粉粒体収容槽を有する陰極室
とからなる電気めつき装置において、粉粒体収容
槽の底部にめつき液流入口を有し、陰極室の上部
には断面積が上部ほど漸増する流動粒子逸散防止
塔が取り付けられており、流動粒子逸散防止塔の
上部の壁面にはめつき液の流出口を設けたことを
特徴とする電気めつき装置。
[Claims] 1. In a method of electroplating powder or granules in a cathode chamber of an electrolytic cell, the powder or granules are brought into a fluid state by an upward flow of a plating solution supplied from the bottom of the cathode chamber, and then electroplated by electroplating. At the same time, the flow velocity of the upward flow is reduced by a fluidized particle dispersion prevention tower provided at the upper part of the cathode chamber, the cross-sectional area of which gradually increases toward the upper part, and the powder accompanying the upward flow is separated from the upward flow. A method for electroplating powder and granular material, characterized by preventing the powder and granular material from flowing out. 2 The powder and granular material to be coated has an average particle size of 1ηm~
The method of electroplating a powder or granular material according to claim 1, wherein the powder is 10 mm. 3. The powder or granular material according to claim 1 or 2, wherein the height of the powder or granular material in a fluidized state is 1.1 to 1.5 times the height in a non-flowing state. Electroplating method. 4. In an electroplating device consisting of a cylindrical anode and a cathode chamber having a powder storage tank, a plating liquid inlet is provided at the bottom of the powder storage tank, and a cross-sectional area is provided at the top of the cathode chamber. An electroplating apparatus characterized in that a fluidized particle dispersion prevention tower is installed which increases gradually toward the top, and an outlet for plating liquid is provided on the upper wall of the fluidized particle dispersion prevention tower.
JP5453984A 1984-03-23 1984-03-23 Method and device for electroplating of granular material Granted JPS60200998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5453984A JPS60200998A (en) 1984-03-23 1984-03-23 Method and device for electroplating of granular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5453984A JPS60200998A (en) 1984-03-23 1984-03-23 Method and device for electroplating of granular material

Publications (2)

Publication Number Publication Date
JPS60200998A JPS60200998A (en) 1985-10-11
JPH0534435B2 true JPH0534435B2 (en) 1993-05-24

Family

ID=12973471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5453984A Granted JPS60200998A (en) 1984-03-23 1984-03-23 Method and device for electroplating of granular material

Country Status (1)

Country Link
JP (1) JPS60200998A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162897A (en) * 1986-12-25 1988-07-06 Nisso Kinzoku Kagaku Kk Device for electroplating particulate matter
JPS63162896A (en) * 1986-12-25 1988-07-06 Nisso Kinzoku Kagaku Kk Electroplating device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457152A (en) * 1964-11-30 1969-07-22 Monsanto Co Electrolytic apparatus and process for removing trace metals
JPS51117102A (en) * 1975-03-20 1976-10-15 Occidental Petroleum Corp Method of treating metallic ions
JPS5241751A (en) * 1975-09-30 1977-03-31 Kawaguchiko Seimitsu Kk Plastic material anti-vibration bearing
JPS5392302A (en) * 1977-01-25 1978-08-14 Nat Res Inst Metals Electrolytic refining of metal
US4212722A (en) * 1976-05-11 1980-07-15 Noranda Mines Limited Apparatus for electrowinning metal from metal bearing solutions
JPS56156793A (en) * 1980-05-08 1981-12-03 Nippon Mining Co Ltd Manufacture of composite powder by electroplating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457152A (en) * 1964-11-30 1969-07-22 Monsanto Co Electrolytic apparatus and process for removing trace metals
JPS51117102A (en) * 1975-03-20 1976-10-15 Occidental Petroleum Corp Method of treating metallic ions
JPS5241751A (en) * 1975-09-30 1977-03-31 Kawaguchiko Seimitsu Kk Plastic material anti-vibration bearing
US4212722A (en) * 1976-05-11 1980-07-15 Noranda Mines Limited Apparatus for electrowinning metal from metal bearing solutions
JPS5392302A (en) * 1977-01-25 1978-08-14 Nat Res Inst Metals Electrolytic refining of metal
JPS56156793A (en) * 1980-05-08 1981-12-03 Nippon Mining Co Ltd Manufacture of composite powder by electroplating

Also Published As

Publication number Publication date
JPS60200998A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
US4302322A (en) Low hydrogen overvoltage electrode
US4543265A (en) Method for production of a cathode for use in electrolysis
US4204918A (en) Electroplating procedure
US4647345A (en) Metallurgical structure control of electrodeposits using ultrasonic agitation
US6254757B1 (en) Method for electrochemical fluidized bed coating of powders
US4569729A (en) Electrolyzing method and electrolytic cell employing fluidized bed
EP0339464B1 (en) Electroplating of fine particles with metal
US4470893A (en) Method for water electrolysis
US4170536A (en) Electrolytic cathode and method for its production
Fan et al. Electrodeposition as a means of producing large-surface electrodes required in water electrolysis
JPH0534435B2 (en)
EP0318442A2 (en) Electrode structure
US4645580A (en) Process for galvanic deposition of a dispersion coating, application of said process and device for performing said process
EP0129231B1 (en) A low hydrogen overvoltage cathode and method for producing the same
KR890000710B1 (en) Cathode
JP4115575B2 (en) Activated cathode
JPS6140319B2 (en)
US3764497A (en) Decreasing cyanide content by an electrochemical technique
JPH0544083A (en) Elctroplating method for powder
JPS6125790B2 (en)
JPS6213440B2 (en)
US4916098A (en) Process and apparatus for manufacturing an electrocatalytic electrode
JP2660284B2 (en) Catalytic electrode and method for producing the same
KR840002272B1 (en) Method of electroplation a porous body
EP0032960B1 (en) Method of electroplating a porous body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term