JPH05343723A - Sealing method for planar element - Google Patents

Sealing method for planar element

Info

Publication number
JPH05343723A
JPH05343723A JP4150322A JP15032292A JPH05343723A JP H05343723 A JPH05343723 A JP H05343723A JP 4150322 A JP4150322 A JP 4150322A JP 15032292 A JP15032292 A JP 15032292A JP H05343723 A JPH05343723 A JP H05343723A
Authority
JP
Japan
Prior art keywords
metal foil
planar element
heating
substrate
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4150322A
Other languages
Japanese (ja)
Inventor
肇 ▲高▼田
Hajime Takada
Hideki Omori
英樹 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4150322A priority Critical patent/JPH05343723A/en
Publication of JPH05343723A publication Critical patent/JPH05343723A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:Not to deteriorate an element due to a heat at adhering when a metallic foil is adhered to a substrate with thermoplastic resin to protect the element formed in a center of the substrate from an outside. CONSTITUTION:A metallic foil 3 in the peripheral part of a substrate where an element is not formed is instantly heated and simultaneously pressurized by using a high frequency induction heat by coils having a specific shape, and thermoplastic resin 12 is melted between the substrate in the peripheral part and the metallic foil 3 and is gradually cooled to stiffen resin, whereby the element is sealed from an outside without heat-deteriorating the element in a center of the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池等の支持基板
上に平面状に形成された素子、及びホットカーペット等
の支持基板上に平面状に形成された回路等を外部より密
閉封止する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device such as a solar cell or the like formed in a plane on a support substrate, and a circuit formed on a support substrate such as a hot carpet in a plane form, which is hermetically sealed from outside. It is related to the technology.

【0002】[0002]

【従来の技術】近年、太陽電池の利用が急速に広まる
中、太陽電池の性能の向上、コストの低減が望まれてい
る。
2. Description of the Related Art In recent years, with the rapid spread of the use of solar cells, it is desired to improve the performance of the solar cells and reduce the cost.

【0003】従来、低コストの太陽電池を作成する方法
として、ガラス基板上に形成された太陽電池素子の上に
熱可塑性樹脂を裏面に接着させたアルミニウム箔を置
き、太陽電池素子の形成されていないガラス基板の周辺
部のみを加熱体により熱圧着し、熱可塑性樹脂を溶融さ
せ、その後徐冷することにより樹脂を硬化させてガラス
基板の周辺部とアルミニウム箔を接着する方法があった
(特開昭63−179号公報)。
Conventionally, as a method for producing a low-cost solar cell, a solar cell element is formed by placing an aluminum foil having a backside of a thermoplastic resin adhered on the solar cell element formed on a glass substrate. There is a method in which only the peripheral part of the glass substrate is thermocompression-bonded with a heating body, the thermoplastic resin is melted, and then the resin is cured by slow cooling to bond the peripheral part of the glass substrate to the aluminum foil (special feature). (Kaisho 63-179).

【0004】以下、図面を参照しながら従来の太陽電池
素子等の平面状素子の封止装置の説明を行う。図5は従
来の平面状素子の封止装置の一例である。図中、10は
太陽電池素子であり、6のガラス基板上に形成されてい
る、3はアルミニウム箔からなる裏面保護膜であり、1
2は熱可塑性樹脂による絶縁性樹脂層である。14は加
熱体であってシーズヒータ15を内蔵しており、16は
加圧体で、これは加熱体14に密着して取りつけられて
いる。
A conventional device for sealing a planar element such as a solar cell element will be described below with reference to the drawings. FIG. 5 shows an example of a conventional planar element sealing device. In the figure, 10 is a solar cell element, 6 is a glass substrate formed on a glass substrate, 3 is a back surface protective film made of aluminum foil, and 1 is a back surface protective film.
Reference numeral 2 is an insulating resin layer made of a thermoplastic resin. Reference numeral 14 is a heating body which incorporates a sheath heater 15, and 16 is a pressurizing body, which is attached in close contact with the heating body 14.

【0005】図6は加圧体16の上面図であり、太陽電
池素子10が直接加熱及び加圧されることにより劣化し
ないように、太陽電池素子10が形成されていないガラ
ス基板6の周辺部のみを加熱及び加圧する形状となって
いる。
FIG. 6 is a top view of the pressing body 16, and in order to prevent the solar cell element 10 from being deteriorated by being directly heated and pressed, the peripheral portion of the glass substrate 6 on which the solar cell element 10 is not formed. Only the heat and pressure is applied.

【0006】太陽電池素子を封止する際には15のシー
ズヒータにより14の加熱体を昇温させ、この熱を17
の加圧体に伝え、18のエアーシリンダーにより17の
加圧体を12の絶縁性樹脂層上の金属箔3に圧着し、ガ
ラス基板6の周辺余白部11の絶縁性樹脂層12を溶融
させ、その後18のエアーシリンダーにより17の加圧
体を上昇させて絶縁性樹脂層12を徐冷することにより
硬化させ、金属箔3とガラス基板6とを接着させて、太
陽電池素子10を封止するものである。
When the solar cell element is sealed, the heating element 14 is heated by 15 sheath heaters, and this heat 17
To the metal foil 3 on the insulating resin layer 12 by the air cylinder 18 to melt the insulating resin layer 12 in the peripheral margin 11 of the glass substrate 6. After that, the pressure body 17 is raised by an air cylinder 18 and the insulating resin layer 12 is gradually cooled to be cured, and the metal foil 3 and the glass substrate 6 are adhered to each other to seal the solar cell element 10. To do.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記の
封止装置ではガラス基板の熱容量が大きいため、絶縁性
樹脂層を溶融させるのに長時間を要し、このため基板中
央の太陽電池素子へも熱が伝わり、太陽電池素子の性能
を低下させることがあった。また加圧体自体の熱容量の
ために、加熱体を常に一定以上の温度に保持しておくた
めのエネルギーロスも大きく、更に太陽電池素子からガ
ラス基板の外部へリード線を引き出す場合、リード線の
太さ等の形状に合わせて加圧体の形状を変えねばならな
いという課題があった。
However, in the above-mentioned sealing device, since the glass substrate has a large heat capacity, it takes a long time to melt the insulating resin layer. Therefore, the solar cell element in the center of the substrate also needs to be melted. The heat may be transferred and the performance of the solar cell element may be degraded. Also, due to the heat capacity of the pressurizing body itself, there is a large energy loss to keep the heating body at a certain temperature or more at all times, and further, when the lead wire is pulled out from the solar cell element to the outside of the glass substrate, There has been a problem that the shape of the pressing body has to be changed according to the shape such as the thickness.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するため、支持基板上の中央に形成された平面状素子を
金属箔によって封止するに際し、前記支持基板と金属箔
との間に熱可塑性樹脂の薄膜を置き、これを高周波誘導
加熱により支持基板の周辺部のみの金属箔を加熱するこ
とにより、この部分に対応した前記熱可塑性樹脂の薄膜
を溶融させ、その後徐冷して硬化させることにより、前
記支持基板と前記金属箔とを接着させるものである。
In order to solve the above-mentioned problems, the present invention is to seal a planar element formed at the center of a supporting substrate with a metal foil, and to seal it between the supporting substrate and the metal foil. A thin film of thermoplastic resin is placed, and by heating the metal foil only on the peripheral part of the supporting substrate by high-frequency induction heating, the thin film of the thermoplastic resin corresponding to this part is melted and then slowly cooled and cured. By doing so, the supporting substrate and the metal foil are bonded to each other.

【0009】[0009]

【作用】本発明は上記したように、被加熱面である金属
箔の任意の部分のみを瞬時に加熱するためガラス基板や
加圧体の熱容量を考慮に入れる必要がなく、また加熱コ
イル巻線に通電した瞬時のみガラス基板の周辺部分の金
属箔を加熱するため基板中央の太陽電池素子への伝熱の
影響が少なくできる。
As described above, according to the present invention, it is not necessary to take into consideration the heat capacity of the glass substrate or the pressurizing body because only an arbitrary portion of the metal foil, which is the surface to be heated, is instantaneously heated. Since the metal foil in the peripheral portion of the glass substrate is heated only at the moment when the power is turned on, the influence of heat transfer to the solar cell element in the center of the substrate can be reduced.

【0010】[0010]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】本発明に用いた高周波誘導加熱法の原理を
図1に示す。加熱コイル巻線1に高周波電流を供給する
と、前記巻線1の周囲に磁束2が生じ、前記巻線上の金
属箔3に渦電流4が発生し、そのジュール熱により金属
箔3が加熱される。金属箔の温度を局部的に瞬時に上昇
させるためには、目的の部分の直下部にのみ加熱コイル
巻線を配置し、大きな高周波電流を流せばよい。
The principle of the high frequency induction heating method used in the present invention is shown in FIG. When a high frequency current is supplied to the heating coil winding 1, a magnetic flux 2 is generated around the winding 1, an eddy current 4 is generated in a metal foil 3 on the winding, and the metal foil 3 is heated by Joule heat thereof. .. In order to locally and instantly raise the temperature of the metal foil, it suffices to dispose the heating coil winding only just below the target portion and pass a large high-frequency current.

【0012】図2に本発明に用いたガラス基板の周辺
部、角部の金属箔を瞬時に昇温させるための加熱巻線形
状を示す。ガラス基板6の周辺部の金属箔3のみを瞬時
に加熱するために、前記巻線1の巻数を金属箔3の垂直
方向に増やし、磁束2を増やすことにより、周辺部のみ
大きな渦電流4が流れるようにし、かつガラス基板6の
角部では、前記巻線1を小さなループ状にし、更に小さ
なループの中に強磁性体であるフェライトコアを挿入す
ることにより更に磁束2を増加させて渦電流4を増大さ
せた。
FIG. 2 shows a heating winding shape for instantly raising the temperature of the metal foil at the peripheral portion and the corner portion of the glass substrate used in the present invention. In order to instantaneously heat only the metal foil 3 in the peripheral portion of the glass substrate 6, the number of turns of the winding 1 is increased in the vertical direction of the metal foil 3 and the magnetic flux 2 is increased, so that a large eddy current 4 is generated only in the peripheral portion. At the corners of the glass substrate 6, the winding 1 is formed into a small loop shape, and a ferrite core, which is a ferromagnetic material, is inserted into the smaller loop to further increase the magnetic flux 2 and to increase the eddy current. Increased by 4.

【0013】図3は本発明の実施例で用いた、ガラス基
板上の中央に形成させた太陽電池素子を封止するための
高周波誘導加熱による加熱治具の上面図である。図中1
は加熱コイル巻線であり、本発明では細い素線をよった
リッツ線を用い、この図3に対して垂直方向に複数回数
重ねて巻いてある。ガラス基板の4隅の角部及び太陽電
池素子からリード線を外部へ引き出す部分は、前記のリ
ッツ線をループ状に巻き、更にこのループの内側にフェ
ライトコア7を挿入した。8は前記加熱コイル巻線を固
定するための樹脂性の厚板である。
FIG. 3 is a top view of a heating jig for high frequency induction heating for sealing a solar cell element formed at the center of a glass substrate, which is used in the embodiment of the present invention. 1 in the figure
Is a heating coil winding, and in the present invention, a litz wire made of a thin element wire is used, and is wound plural times in the vertical direction with respect to FIG. At the four corners of the glass substrate and at the portion where the lead wire was pulled out from the solar cell element, the litz wire was wound into a loop, and the ferrite core 7 was inserted inside the loop. Reference numeral 8 denotes a resin thick plate for fixing the heating coil winding.

【0014】図4は前記加熱治具を用いてガラス基板上
の中央に形成された太陽電池素子を封止する装置の側面
略図である。図中9は図3で示した加熱治具であり、そ
の内部には冷却水が流れている。10は太陽電池素子、
6はガラス基板、11はガラス基板の周辺余白部、12
は熱可塑性の絶縁性樹脂層、3はアルミニウム製金属箔
の裏面保護膜、13は加圧装置、5は高周波電源であ
る。
FIG. 4 is a schematic side view of an apparatus for sealing a solar cell element formed at the center of a glass substrate using the heating jig. In the figure, 9 is the heating jig shown in FIG. 3, in which cooling water is flowing. 10 is a solar cell element,
6 is a glass substrate, 11 is a peripheral margin of the glass substrate, 12
Is a thermoplastic insulating resin layer, 3 is a back surface protective film of a metal foil made of aluminum, 13 is a pressure device, and 5 is a high frequency power source.

【0015】この図4の封止装置を用いて、ガラス基板
上の中央に形成された太陽電池素子を封止するには、ま
ず、13の加圧装置で4kg/cm2以上の圧力を加えて、
ガラス基板6、絶縁性樹脂層12、金属箔の裏面保護膜
3を重ねて加熱治具9に圧着後、5の高周波電源を動作
させ、加熱治具9により金属箔3を加熱し、ガラス基板
6の周辺余白部11直下の熱可塑性の絶縁性樹脂層12
を溶融させ、その後高周波電源5を停止させ、加熱治具
9の中を流れる冷却水により、絶縁性樹脂層12を硬化
させた後、加圧装置を停止させて、封止された太陽電池
素子をとりだした。
To seal the solar cell element formed in the center on the glass substrate using the sealing device of FIG. 4, first, apply a pressure of 4 kg / cm 2 or more with the pressure device of 13. hand,
The glass substrate 6, the insulating resin layer 12, and the back surface protective film 3 of the metal foil are stacked and pressure-bonded to the heating jig 9, and then the high frequency power source 5 is operated to heat the metal foil 3 by the heating jig 9 to form the glass substrate. 6, a thermoplastic insulating resin layer 12 immediately below the peripheral margin portion 11
And then the high frequency power source 5 is stopped, the insulating resin layer 12 is cured by the cooling water flowing in the heating jig 9, and then the pressure device is stopped to seal the solar cell element. Took out.

【0016】[0016]

【発明の効果】以上のように本発明は、支持基板上の中
央に形成された平面状素子を金属箔によって封止するに
際し、支持基板と金属箔との間に熱可塑性樹脂の薄膜を
置き、これを高周波誘導加熱により前記支持基板の周辺
部のみの金属箔を加熱することにより、熱可塑性樹脂の
薄膜を溶融させ、その後徐冷して硬化させることによ
り、支持基板と前記金属箔とを接着させることにより、
金属箔を直接に加熱できるため、支持基板の熱容量を考
慮する必要がなく、短時間で且つ少ない熱量で封止がで
き、また支持基板周辺部の加熱コイル巻線の巻数を支持
基板と垂直方向に増やすことにより、基板周辺部の金属
箔の昇温を速くできるため、支持基板内部の素子部分へ
の伝熱を抑えることができるため、素子の劣化が少な
い。更に支持基板の四隅、及び外部へのリード線の引き
出し部分等、局部的に熱量を多く必要とする場合はその
部分の直下の加熱コイル巻線の形状を小さなループ状に
し、かつこの小さなループの中に円柱状のフェライトコ
アを挿入することにより加熱能力を容易に向上すること
ができる。
As described above, according to the present invention, when the planar element formed at the center of the supporting substrate is sealed with the metal foil, the thin film of the thermoplastic resin is placed between the supporting substrate and the metal foil. By heating the metal foil only on the peripheral portion of the supporting substrate by high frequency induction heating, the thin film of the thermoplastic resin is melted, and then gradually cooled to be cured, whereby the supporting substrate and the metal foil are separated from each other. By bonding,
Since the metal foil can be heated directly, it is not necessary to consider the heat capacity of the supporting substrate, and it is possible to seal in a short time and with a small amount of heat. Also, the number of turns of the heating coil winding around the supporting substrate is perpendicular to the supporting substrate. By increasing the number of elements, the temperature of the metal foil in the peripheral portion of the substrate can be raised faster, and heat transfer to the element portion inside the support substrate can be suppressed, so that the element is less deteriorated. Furthermore, when a large amount of heat is required locally, such as at the four corners of the support substrate and the lead-out portion to the outside, the heating coil winding immediately below that portion is made into a small loop shape, and this small loop The heating capacity can be easily improved by inserting a cylindrical ferrite core therein.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いた高周波誘導加熱法の原理図FIG. 1 is a principle diagram of a high frequency induction heating method used in the present invention.

【図2】本発明の平面状素子の封止である基板周辺、及
び角部を局部的に高周波誘導加熱法で加熱する際の概念
FIG. 2 is a conceptual diagram when locally heating the periphery of the substrate, which is the sealing of the planar element of the present invention, and the corners by the high frequency induction heating method.

【図3】本発明で用いた平面状素子の封止装置の高周波
誘導加熱治具の上面図
FIG. 3 is a top view of the high frequency induction heating jig of the planar element sealing device used in the present invention.

【図4】本発明で用いた平面状素子の封止装置の一例を
示す側面略図
FIG. 4 is a schematic side view showing an example of a planar element sealing device used in the present invention.

【図5】従来用いられていた平面状素子の封止装置の一
例を示す側面略図
FIG. 5 is a schematic side view showing an example of a conventional planar element sealing device.

【図6】加圧体の上面図FIG. 6 is a top view of the pressure body.

【符号の説明】[Explanation of symbols]

3 金属箔 5 高周波電源 6 ガラス基板 9 加熱治具 10 太陽電池素子 11 ガラス基板上の周辺余白部 12 絶縁性樹脂層 13 加圧装置 3 Metal foil 5 High frequency power supply 6 Glass substrate 9 Heating jig 10 Solar cell element 11 Peripheral margin on glass substrate 12 Insulating resin layer 13 Pressurizing device

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】支持基板上の中央に形成された平面状素子
を金属箔によって封止するに際し、前記支持基板と前記
金属箔の間に熱可塑性樹脂の薄膜を置き、これを高周波
誘導加熱により前記支持基板の周辺部のみの金属箔を加
熱して前記熱可塑性樹脂の薄膜を溶融させ、その後徐冷
して樹脂を硬化させることにより、前記支持基板と前記
金属箔とを接着することを特徴とする平面状素子の封止
方法。
1. When a planar element formed in the center of a supporting substrate is sealed with a metal foil, a thin film of a thermoplastic resin is placed between the supporting substrate and the metal foil, and this is subjected to high frequency induction heating. The support substrate and the metal foil are bonded to each other by heating the metal foil only in the peripheral portion of the support substrate to melt the thin film of the thermoplastic resin, and then gradually cooling the resin to cure the resin. And a method for sealing a planar element.
【請求項2】高周波誘導加熱に用いる加熱コイルの巻線
形状が、支持基板の外形に沿った形状である請求項1記
載の平面状素子の封止方法。
2. The method for sealing a planar element according to claim 1, wherein the winding shape of the heating coil used for the high frequency induction heating is a shape along the outer shape of the support substrate.
【請求項3】高周波誘導加熱に用いる加熱コイルの巻線
が、前記の金属箔と垂直の方向にその巻数を増やして多
層に重ねられている請求項1記載の平面状素子の封止方
法。
3. The method for encapsulating a planar element according to claim 1, wherein windings of a heating coil used for high frequency induction heating are stacked in multiple layers by increasing the number of turns in a direction perpendicular to the metal foil.
【請求項4】高周波加熱に用いる加熱コイル巻線は、そ
の一部に小さなループを形成している請求項1記載の平
面状素子の封止方法。
4. The method for sealing a planar element according to claim 1, wherein the heating coil winding used for high frequency heating has a small loop formed in a part thereof.
【請求項5】支持基板が多角形であり、前記支持基板の
角の部分において、前記加熱コイル巻線が小さなループ
を形成している請求項1記載の平面状素子の封止方法。
5. The method of encapsulating a planar element according to claim 1, wherein the support substrate is polygonal, and the heating coil winding forms a small loop at a corner portion of the support substrate.
【請求項6】高周波誘導加熱に用いる加熱コイルの巻線
形状が、支持基板上の周辺部に平面状素子の端子を引き
出す部分に対応して小さなループを形成している請求項
1記載の平面状素子の封止方法。
6. The plane according to claim 1, wherein the winding shape of the heating coil used for high-frequency induction heating forms a small loop in the peripheral portion on the support substrate corresponding to the portion where the terminals of the planar element are drawn out. Method for sealing element.
【請求項7】小さなループがフェライトコアに巻かれた
ものであることを特徴とする請求項4,5,6のいずれ
かに記載の平面状素子の封止方法。
7. The method of sealing a planar element according to claim 4, wherein the small loop is wound around a ferrite core.
JP4150322A 1992-06-10 1992-06-10 Sealing method for planar element Pending JPH05343723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4150322A JPH05343723A (en) 1992-06-10 1992-06-10 Sealing method for planar element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4150322A JPH05343723A (en) 1992-06-10 1992-06-10 Sealing method for planar element

Publications (1)

Publication Number Publication Date
JPH05343723A true JPH05343723A (en) 1993-12-24

Family

ID=15494491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4150322A Pending JPH05343723A (en) 1992-06-10 1992-06-10 Sealing method for planar element

Country Status (1)

Country Link
JP (1) JPH05343723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005036130A1 (en) * 2005-07-26 2007-02-01 Ernst Knoll Feinmechanik Gmbh Method and device for producing a solar cell string
WO2016156061A1 (en) * 2015-04-01 2016-10-06 Bs2 Ag Method for producing a solar cell module and a solar cell module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005036130A1 (en) * 2005-07-26 2007-02-01 Ernst Knoll Feinmechanik Gmbh Method and device for producing a solar cell string
WO2016156061A1 (en) * 2015-04-01 2016-10-06 Bs2 Ag Method for producing a solar cell module and a solar cell module

Similar Documents

Publication Publication Date Title
JP4436501B2 (en) Laminated tile pole piece of MRI apparatus and method and apparatus for producing laminated tile
JPH11515120A (en) IC card module and method and apparatus for manufacturing IC card
JPH07298567A (en) Heating device for bonding lamination steel plate
JPH10503616A (en) Inductor and manufacturing method thereof
JP2010023485A (en) Laminator of solar cell module
JPH05343723A (en) Sealing method for planar element
JPH10261535A (en) Manufacture of core and flat rolled magnetic steel sheets and strip the method
JPH04139709A (en) Manufacture of planar winding and plane inductance element
JPH10223365A (en) Induction heating cooking device
JPH066960A (en) Binding method for laminated core
JPH07298566A (en) Heating device for bonding lamination steel plate
JPH11260625A (en) Superconducting magnet and its manufacture
JP3287032B2 (en) Method of forming coil
JPS6142312Y2 (en)
JP2021005645A (en) Laminated iron core and manufacturing method thereof, and electrical device using laminated iron core
WO1991015049A1 (en) Structure for cooling stator
JP3243741B2 (en) Electromagnetic induction heating method and apparatus for laminate
JP2003257761A (en) Method and apparatus for manufacturing laminate
JPH0567520A (en) Manufacture of magnet
JP7402761B2 (en) Manufacturing method of stator of rotating electric machine
JPH09238869A (en) Heating toilet stool seat unit
JPH04324605A (en) Manufacture of superconducting coil
JPS6142311Y2 (en)
JPH08187971A (en) Electromagnetic induction heating device
JPH0622956Y2 (en) Extrusion die heating device