JPH0534368B2 - - Google Patents

Info

Publication number
JPH0534368B2
JPH0534368B2 JP62112723A JP11272387A JPH0534368B2 JP H0534368 B2 JPH0534368 B2 JP H0534368B2 JP 62112723 A JP62112723 A JP 62112723A JP 11272387 A JP11272387 A JP 11272387A JP H0534368 B2 JPH0534368 B2 JP H0534368B2
Authority
JP
Japan
Prior art keywords
compound
formula
group
hydrogen atom
methyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62112723A
Other languages
Japanese (ja)
Other versions
JPS63277209A (en
Inventor
Haruo Tomita
Kazuhide Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP11272387A priority Critical patent/JPS63277209A/en
Publication of JPS63277209A publication Critical patent/JPS63277209A/en
Publication of JPH0534368B2 publication Critical patent/JPH0534368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-acryloylmorpholine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、耐熱性及び機械的強度に優れた熱硬
化性樹脂組成物に関するものである。 「従来技術と問題点」 従来、熱硬化性樹脂としては、フエノール樹
脂、エポキシ樹脂、不飽和ポリエステル樹脂等が
知られており、接着、塗料、成型材料、複合材料
の分野で広く使用されている。これらの熱硬化性
樹脂は一般に耐熱性の高いものは強度が低く、逆
に強度の高いものは耐熱性が低いという傾向があ
り、高い耐熱性と高い強度を両立させることは困
難であつた。一方、これらの熱硬化性樹脂を成型
材料、複合材料として用いる場合、耐熱性あるい
は強度が不足するため使用用途が限定されるとい
う問題があつた。 「問題点を解決するための手段」 本発明者らは、かかる問題点を解決すべく鋭意
検討した結果、特定の化合物を組み合わせた樹脂
組成物がこれらの問題点を解決し得ることを見出
し、本発明に到達した。 即ち、本発明は下記一般式() (式中、Ar1はグリシジルオキシ基を少なくと
も1個有する炭素数6〜20の芳香族炭化水素を、
Rは水素原子またはメチル基を表し、nは1〜4
の整数である)で表されるグリシジル化合物(A)
と、下記一般式() (式中、Ar2は水酸基を少なくとも1つ有する
炭素数6〜20の芳香族炭化水素基を、Rは水素原
子またはメチル基を表し、nは1〜4の整数であ
る)で表される化合物(B)を必須成分として含有
し、前記化合物(A)のエポキシ基と前記化合物(B)の
水酸基とのモル比が80:20〜20:80の範囲である
ことを特徴とする熱硬化性樹脂組成物を内容とす
るものである。下記一般式() (式中、Ar1はグリシジルオキシ基を少なくと
も1個有する炭素数6〜20の芳香族炭化水素を、
Rは水素原子またはメチル基を表し、nは1〜4
の整数である)で表される。かかる化合物(A)の製
造方法は、例えば特開昭60−130580に開示されて
いる。例えば2,6−キシレノールとN−メチロ
ール(メタ)アクリルアミドを縮合させたのち、
エピハロヒドリンでグリシジル化することによ
り、下記構造式() (式中、Rは水素原子またはメチル基である)
で表されるグリシジル化合物きを得ることができ
る。 本発明に用いることのできる化合物(B)は、下記
一般式() (式中、Ar2は水酸基を少なくとも1つ有する
炭素数6〜20の芳香族炭化水素基を、Rは水素原
子またはメチル基を表し、nは1〜4の整数であ
る)で表される化合物が本発明の目的に特に好適
である。かかる化合物(B)は例えばNeth.Pat.
Appln.No.6604304に開示されている方法により製
造することができる。例えば、2,6−キシレノ
ールとN−メチロール(メタ)アクリルアミドを
縮合させることにより下記構造式() (式中、Rは水素原子またはメチル基である)
で表される化合物を得ることができる。 本発明に用いる化合物(A)と化合物(B)の使用量
は、化合物(A)のエポキシ基と化合物(B)水酸基との
モル比が80:20〜20:80、更に好ましくは、60:
40〜40:60の範囲となるように調節されるべきで
ある。 通常、これらの化合物の混合物は加熱すること
により硬化するが、硬化を促進させるため、適当
な触媒を使用することが望ましい。使用できる触
媒としては、エポキシ樹脂の硬化に通常使用され
ている硬化促進剤及びラジカル重合開始剤が好適
であり、これらを併用して用いることが望まし
い。 エポキシ樹脂の硬化に使用されている硬化促進
剤としては、第3級アミン、第4級アンモニウム
塩、ホスフイン類、イミダゾール類、ウレア誘導
体等があるが、これらはいずれも本発明の組成物
の硬化促進剤として有効である。 ラジカル重合開始剤としては、一般にラジカル
重合の開始剤として知られているものが任意に使
用できるが、その中でも有機過酸化物が特に適し
ている。例示すれば、t−ブチルハイドロパーオ
キサイド、キユメンハイドロパーオキサイド、ジ
クミルパーオキサイド、t−ブチルパーベンゾエ
ート、ベンゾイルパーオキサイド等が挙げられ
る。 これら硬化促進剤及びラジカル重合開始剤の使
用量は、所望の硬化速度が得られるように設定す
べきであるが、通常ではそれぞれ化合物(A)と化合
物(B)の合計に対して0.01重量%〜10重量%、より
好ましくは0.1重量%〜3重量%の範囲で使用す
る。本発明の組成物には必要に応じて他の熱硬化
性樹脂例えば不飽和ポリエステル、エポキシ樹
脂、フエノール樹脂等を添加してもよい。またス
チレン、メチルメタクリレート、ブチルアクリレ
ート等の不飽和結合を有するモノマーを添加して
もよい。本発明の組成物は、また必要に応じて各
種の無機及び有機フイラーを添加してもよい。 「作用・硬化」 本発明の組成物からなる硬化物は高い耐熱性と
高い強度を兼ね備えているために各種の用途で使
用できる。例えば、炭素繊維、アラミド繊維、ガ
ラス繊維等のマトリツクス樹脂、電気用耐熱積層
板、耐熱構造用接着剤、高性能SMC等の用途で
使用できる。 「実施例」 以下、本発明を具体的に実施例により説明する
が、本発明はこれら実施例のみに限定されるもの
ではない。尚、以下において「部」は「重量部」
を表す。 実施例 1 N−(4−グリシジルオキシ−3,5−ジメチ
ルフエニルメチル)アクリルアミド(前記構造式
()でRが水素原子であるもの、以下これを化
合物A−1とする)56部及びN−(4−ヒドロキ
シ−3,5−ジメチルフエニルメチル)アクリル
アミド(前記構造式()でRが水素原子である
もの、以下これを化合物(B)−1とする)44部を加
熱し混合したものに、1−ベンジル−2−メチル
イミダゾール1.0部、ジクミルパーオキサイド1.0
部を混合し、ガラス板の間に流し込み、120℃で
2時間、その後160℃で2時間、更にその後200℃
で2時間加熱し硬化させ注型板を作成した。得ら
れた注型板について曲げ強度、引張り強度、加熱
変形温度、Tgの測定を行つた結果を表1に示す。 実施例 2 化合物A−1を65.5部及び化合物B−1を34.5
部とした他は実施例1と同様の方法により注型板
の作成を行つた。得られた注型板について曲げ強
度、引張り強度、加熱変形温度、Tgの測定を行
つた結果を表1に示す。 実施例 3 1−ベンジル−2−メチルイミダゾールの代わ
りに、トリフエニルホスフイン1.0部、ジクミル
パーオキサイドの代わりにt−ブチルハイドロパ
ーオキサイド1.0部を用いた他は実施例1と同様
の方法で注型板を作成した。得られた注型板につ
いて曲げ強度、引張り強度、加熱変形温度、Tg
の測定を行つた結果を表1に示す。 比較例 1 エピビス型エポキシ樹脂(商品名エピコート
828、油化シエル(株)製)100部、無水メチルナジツ
ク酸79.6部、N,N−ジメチルベンジルアミン
0.7部を混合しガラス板の間に流し込み、140℃で
1時間、その後150℃で15時間加熱し硬化させ注
型板を作成した。得られた注型板について曲げ強
度、引張り強度、加熱変形温度、Tgの測定を行
つた結果を表1に示す。 比較例 2 4,4′−ジアミノジフエニルメタンとエピクロ
ルヒドリンから得られる多官能エポキシ樹脂(商
品名アラルダイトMY720、チバガイギー社製)
100部、無水メチルナジツク酸126部を混合しガラ
ス板の間に流し込み、100℃で2時間、その後150
℃で2時間、更にその後200℃で2時間加熱し硬
化させ注型板を作成した。得られた注型板につい
て曲げ強度、引張り強度、加熱変形温度、Tgの
測定を行つた結果を表1に示す。
"Industrial Application Field" The present invention relates to a thermosetting resin composition having excellent heat resistance and mechanical strength. "Prior Art and Problems" Conventionally, known thermosetting resins include phenolic resin, epoxy resin, and unsaturated polyester resin, which are widely used in the fields of adhesives, paints, molding materials, and composite materials. . These thermosetting resins generally have a tendency that those with high heat resistance have low strength, and conversely, those with high strength tend to have low heat resistance, and it has been difficult to achieve both high heat resistance and high strength. On the other hand, when these thermosetting resins are used as molding materials or composite materials, there is a problem that their uses are limited due to insufficient heat resistance or strength. "Means for Solving the Problems" As a result of intensive study to solve these problems, the present inventors discovered that a resin composition combining specific compounds could solve these problems, We have arrived at the present invention. That is, the present invention is based on the following general formula () (In the formula, Ar 1 is an aromatic hydrocarbon having 6 to 20 carbon atoms having at least one glycidyloxy group,
R represents a hydrogen atom or a methyl group, and n is 1 to 4
glycidyl compound (A), which is an integer of
and the following general formula () (In the formula, Ar 2 is an aromatic hydrocarbon group having at least one hydroxyl group and having 6 to 20 carbon atoms, R is a hydrogen atom or a methyl group, and n is an integer of 1 to 4.) A thermosetting product containing a compound (B) as an essential component, wherein the molar ratio of the epoxy group of the compound (A) to the hydroxyl group of the compound (B) is in the range of 80:20 to 20:80. The content is a synthetic resin composition. General formula below () (In the formula, Ar 1 is an aromatic hydrocarbon having 6 to 20 carbon atoms having at least one glycidyloxy group,
R represents a hydrogen atom or a methyl group, and n is 1 to 4
is an integer). A method for producing such compound (A) is disclosed, for example, in JP-A-60-130580. For example, after condensing 2,6-xylenol and N-methylol (meth)acrylamide,
By glycidylation with epihalohydrin, the following structural formula () is obtained. (In the formula, R is a hydrogen atom or a methyl group)
A glycidyl compound represented by the formula can be obtained. Compound (B) that can be used in the present invention has the following general formula () (In the formula, Ar 2 is an aromatic hydrocarbon group having at least one hydroxyl group and having 6 to 20 carbon atoms, R is a hydrogen atom or a methyl group, and n is an integer of 1 to 4.) Compounds are particularly suitable for the purposes of the present invention. Such compounds (B) are described, for example, by Neth.Pat.
It can be manufactured by the method disclosed in Appln.No.6604304. For example, by condensing 2,6-xylenol and N-methylol (meth)acrylamide, the following structural formula () (In the formula, R is a hydrogen atom or a methyl group)
A compound represented by can be obtained. The amount of compound (A) and compound (B) used in the present invention is such that the molar ratio of the epoxy group of compound (A) to the hydroxyl group of compound (B) is 80:20 to 20:80, more preferably 60:
It should be adjusted to be in the range of 40-40:60. Usually, mixtures of these compounds are cured by heating, but it is desirable to use a suitable catalyst to accelerate the curing. As catalysts that can be used, curing accelerators and radical polymerization initiators that are commonly used for curing epoxy resins are suitable, and it is desirable to use these in combination. Curing accelerators used for curing epoxy resins include tertiary amines, quaternary ammonium salts, phosphines, imidazoles, and urea derivatives, all of which can be used to cure the composition of the present invention. Effective as a promoter. As the radical polymerization initiator, any one generally known as a radical polymerization initiator can be used, but among them, organic peroxides are particularly suitable. Examples include t-butyl hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl perbenzoate, and benzoyl peroxide. The amounts of these curing accelerators and radical polymerization initiators should be set so as to obtain the desired curing speed, but usually each is 0.01% by weight based on the total of compound (A) and compound (B). It is used in a range of 10% by weight, more preferably 0.1% by weight to 3% by weight. Other thermosetting resins such as unsaturated polyesters, epoxy resins, phenolic resins, etc. may be added to the composition of the present invention, if necessary. Furthermore, monomers having unsaturated bonds such as styrene, methyl methacrylate, and butyl acrylate may be added. The composition of the present invention may also contain various inorganic and organic fillers, if necessary. "Action/Curing" The cured product made from the composition of the present invention has both high heat resistance and high strength, so it can be used for various purposes. For example, it can be used for matrix resins such as carbon fibers, aramid fibers, and glass fibers, heat-resistant laminates for electrical use, adhesives for heat-resistant structures, and high-performance SMC. "Examples" Hereinafter, the present invention will be specifically explained using Examples, but the present invention is not limited only to these Examples. In addition, "parts" in the following are "parts by weight"
represents. Example 1 56 parts of N-(4-glycidyloxy-3,5-dimethylphenylmethyl)acrylamide (structural formula () in which R is a hydrogen atom, hereinafter referred to as compound A-1) and N -44 parts of (4-hydroxy-3,5-dimethylphenylmethyl)acrylamide (structural formula () above, in which R is a hydrogen atom, hereinafter referred to as compound (B)-1) were heated and mixed. Ingredients: 1.0 part of 1-benzyl-2-methylimidazole, 1.0 part of dicumyl peroxide.
Pour between glass plates and heat at 120°C for 2 hours, then at 160°C for 2 hours, then at 200°C.
The mixture was heated and cured for 2 hours to create a casting plate. Table 1 shows the results of measuring the bending strength, tensile strength, heat deformation temperature, and Tg of the obtained cast plate. Example 2 65.5 parts of compound A-1 and 34.5 parts of compound B-1
A casting plate was prepared in the same manner as in Example 1, except that the mold plate was made into a mold. Table 1 shows the results of measuring the bending strength, tensile strength, heat deformation temperature, and Tg of the obtained cast plate. Example 3 The same method as in Example 1 was used except that 1.0 part of triphenylphosphine was used instead of 1-benzyl-2-methylimidazole and 1.0 part of t-butyl hydroperoxide was used instead of dicumyl peroxide. A casting board was created. The bending strength, tensile strength, heating deformation temperature, Tg of the obtained cast plate
The results of the measurements are shown in Table 1. Comparative example 1 Epibis type epoxy resin (trade name Epicoat)
828, manufactured by Yuka Ciel Co., Ltd.) 100 parts, 79.6 parts of methylnadzic anhydride, N,N-dimethylbenzylamine
0.7 part of the mixture was mixed and poured between glass plates, and heated at 140°C for 1 hour and then at 150°C for 15 hours to harden and create a casting plate. Table 1 shows the results of measuring the bending strength, tensile strength, heat deformation temperature, and Tg of the obtained cast plate. Comparative Example 2 Multifunctional epoxy resin obtained from 4,4'-diaminodiphenylmethane and epichlorohydrin (trade name: Araldite MY720, manufactured by Ciba Geigy)
Mix 100 parts of methylnadzic anhydride and 126 parts of methylnadzic acid anhydride, pour between glass plates, heat at 100℃ for 2 hours, and then heat at 150℃.
The mixture was cured by heating at 200°C for 2 hours and then at 200°C for 2 hours to prepare a casting plate. Table 1 shows the results of measuring the bending strength, tensile strength, heat deformation temperature, and Tg of the obtained cast plate.

【表】 である。
[Table]

Claims (1)

【特許請求の範囲】 1 下記一般式() (式中、Ar1はグリシジルオキシ基を少なくと
も1個有する炭素数6〜20の芳香族炭化水素を、
Rは水素原子またはメチル基を表し、nは1〜4
の整数である)で表されるグリシジル化合物(A)
と、下記一般式() (式中、Ar2は水酸基を少なくとも1つ有する
炭素数6〜20の芳香族炭化水素基を、Rは水素原
子またはメチル基を表し、nは1〜4の整数であ
る)で表される化合物(B)を必須成分として含有
し、前記化合物(A)のエポキシ基と前記化合物(B)の
水酸基とのモル比が80:20〜20:80の範囲である
ことを特徴とする熱硬化性樹脂組成物。 2 化合物(A)が下記構造式() (式中、Rは水素原子またはメチル基である)
で表される特許請求の範囲第1項記載の組成物。 3 化合物(B)が下記一般式() (式中、Rは水素原子またはメチル基である)
で表される特許請求の範囲第1項記載の組成物。
[Claims] 1. The following general formula () (In the formula, Ar 1 is an aromatic hydrocarbon having 6 to 20 carbon atoms having at least one glycidyloxy group,
R represents a hydrogen atom or a methyl group, and n is 1 to 4
glycidyl compound (A), which is an integer of
and the following general formula () (In the formula, Ar 2 is an aromatic hydrocarbon group having at least one hydroxyl group and having 6 to 20 carbon atoms, R is a hydrogen atom or a methyl group, and n is an integer of 1 to 4.) A thermosetting product containing a compound (B) as an essential component, wherein the molar ratio of the epoxy group of the compound (A) to the hydroxyl group of the compound (B) is in the range of 80:20 to 20:80. resin composition. 2 Compound (A) has the following structural formula () (In the formula, R is a hydrogen atom or a methyl group)
The composition according to claim 1, which is represented by: 3 Compound (B) has the following general formula () (In the formula, R is a hydrogen atom or a methyl group)
The composition according to claim 1, which is represented by:
JP11272387A 1987-05-08 1987-05-08 Thermosetting resin composition Granted JPS63277209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11272387A JPS63277209A (en) 1987-05-08 1987-05-08 Thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11272387A JPS63277209A (en) 1987-05-08 1987-05-08 Thermosetting resin composition

Publications (2)

Publication Number Publication Date
JPS63277209A JPS63277209A (en) 1988-11-15
JPH0534368B2 true JPH0534368B2 (en) 1993-05-21

Family

ID=14593918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11272387A Granted JPS63277209A (en) 1987-05-08 1987-05-08 Thermosetting resin composition

Country Status (1)

Country Link
JP (1) JPS63277209A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69130664D1 (en) * 1990-04-28 1999-02-04 Kanegafuchi Chemical Ind MODIFIED OLEFIN POLYMER, METHOD FOR THE PRODUCTION AND RESIN COMPOSITION THAT CONTAINS THIS POLYMER

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136865A (en) * 1980-03-28 1981-10-26 Kanebo Ltd Adhesive composition for hard living tissue

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136865A (en) * 1980-03-28 1981-10-26 Kanebo Ltd Adhesive composition for hard living tissue

Also Published As

Publication number Publication date
JPS63277209A (en) 1988-11-15

Similar Documents

Publication Publication Date Title
AU561486B2 (en) Stable dispersions of organic polymers in polyepoxides and a process for preparing such dispersions
JPH01193318A (en) Curable epoxy resin composition
EP0182919B1 (en) Thermosetting resin composition
JPH0534368B2 (en)
US4385154A (en) Molding compositions comprised of polyimide/N-vinylpyrrolidone prepolymer and epoxy resin
USRE31310E (en) Impact resistant vinyl ester resin and process for making same
JPS62177016A (en) Epoxy resin composition
JPH0721042B2 (en) Thermosetting resin composition
JP2851414B2 (en) Heat resistant vinyl ester resin composition
JPS63225619A (en) Resin composition and reaction molding utilizing same
JPH03103446A (en) Prepreg
JPH0610244B2 (en) Reactive resin composition
JPH05306359A (en) Epoxy resin composition
JPS62109817A (en) Thermosetting resin composition
JP2856537B2 (en) Curable resin composition
JPH0129816B2 (en)
JPS648649B2 (en)
JPS61272227A (en) Thermosetting resin composition
JPH0739462B2 (en) Curable resin composition
JPS59215312A (en) Miscible mixture of elastomer in bisphenol a diglycidyl ether
JPH054969B2 (en)
KR860002038B1 (en) Stable dispersions of organic polymers in polyepoxides and a process for preparing such dispersions
JPH02289613A (en) Curable resin composition and cured products therefrom
JPH0786191B2 (en) Adhesive composition
JPS63314232A (en) Epoxy prepreg composition