JPH0534314A - Method and device for measuring oxidizing substance concentration - Google Patents

Method and device for measuring oxidizing substance concentration

Info

Publication number
JPH0534314A
JPH0534314A JP3110784A JP11078491A JPH0534314A JP H0534314 A JPH0534314 A JP H0534314A JP 3110784 A JP3110784 A JP 3110784A JP 11078491 A JP11078491 A JP 11078491A JP H0534314 A JPH0534314 A JP H0534314A
Authority
JP
Japan
Prior art keywords
electrode
concentration
counter electrode
halogen
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3110784A
Other languages
Japanese (ja)
Inventor
Kaname Kasama
要 笠間
Yoichi Ishikawa
陽一 石川
Mitsunori Kaneko
光範 金子
Akira Umezawa
彰 梅沢
Shuichi Suzuki
周一 鈴木
Shunichi Uchiyama
俊一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIBURU KK
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
EIBURU KK
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EIBURU KK, Nippon Steel Chemical Co Ltd filed Critical EIBURU KK
Priority to JP3110784A priority Critical patent/JPH0534314A/en
Publication of JPH0534314A publication Critical patent/JPH0534314A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To achieve low-concentration measurement of an oxidizing substance and a long-term concentration monitoring by using an electrolytic cell with three or more electrolytic electrodes including at least an operation electrode, an opposite electrode, and a reproduction electrode. CONSTITUTION:A container 9 where an electrolyte (potassium iodide aqueous solution) 7 is poured into a chamber which is partitioned into three portions by an ion-exchange film 3 is installed within a specimen gas 1 containing oxidizing gas so that permeability septum 2 contacts. An operation electrode 4 and an opposite electrode 5 are connected so that the operation electrode 4 becomes a cathode and the opposite electrode 5 becomes an anode. The opposite electrode 5 and a reproduction electrode 6 are connected so that opposite electrode 5 becomes the cathode and the reproduction electrode 6 becomes an anode by a lead wire 10. Also, an instrument 8 is provided between these, with which current which flows between the operation pole 4 and the opposite electrode 5 or between the opposite electrode 5 and the reproduction electrode 6 is measured. The current value is converted to ozone concentration, and then the concentration is displayed. By adding the reproduction electrode 6, halogen molecule which is conventionally accumulated by the operation electrode 4 and the opposite electrode 5 is accumulated within the electrolyte in the space where the reproduction electrode 6 is provided, thus preventing base current from being increased even in a continuous long-term measurement.

Description

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明方法の測定メカニズムを示す図で
ある。
FIG. 1 is a diagram showing a measurement mechanism of the method of the present invention.

【図2】図2は本発明の実施の一例を示す測定装置の模
式断面図である。
FIG. 2 is a schematic cross-sectional view of a measuring device showing an example of implementation of the present invention.

【図3】図3は従来型の測定装置と本発明の実施例によ
る測定装置における測定電流値の長期的な時間変化を示
すグラフ図である。
FIG. 3 is a graph showing a long-term change in measured current value with a conventional measuring device and a measuring device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:検体ガス、2:通気性隔膜、3:イオン交換膜、
4:作用極、5:対極、6:再生極、7:電解液、8:
計器、9:容器、10:リード線。
1: sample gas, 2: breathable diaphragm, 3: ion exchange membrane,
4: Working electrode, 5: Counter electrode, 6: Regeneration electrode, 7: Electrolyte, 8:
Instrument, 9: container, 10: lead wire.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅沢 彰 埼玉県新座市石神5丁目4番24号 (72)発明者 鈴木 周一 東京都豊島区巣鴨1丁目40番6号 (72)発明者 内山 俊一 埼玉県深谷市宿根1465番2号   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akira Umezawa             5-4-24 Ishigami, Niiza City, Saitama Prefecture (72) Inventor Shuichi Suzuki             1-40-6 Sugamo, Toshima-ku, Tokyo (72) Inventor Shunichi Uchiyama             1-265, Sukune, Fukaya City, Saitama Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも作用極、対極、再生極の3つ
以上の電解電極と、それぞれの電極間を仕切るイオン交
換膜と、ハロゲンイオンを含む電解液を有する電解セル
を用い、外部より加えられた酸化性物質を電解する時に
流れる電流、あるいはその時の全クーロン数を測定する
ことによって、外部より加えられた酸化性物質の濃度を
測定することを特徴とする酸化性物質濃度の測定方法。
1. An electrolytic cell having at least three or more electrolytic electrodes of a working electrode, a counter electrode and a regenerating electrode, an ion exchange membrane partitioning each electrode, and an electrolytic cell containing an electrolyte solution containing a halogen ion, and added from the outside. A method for measuring the concentration of an oxidizing substance, characterized in that the concentration of the oxidizing substance added from the outside is measured by measuring the current flowing when electrolyzing the oxidizing substance or the total Coulomb number at that time.
【請求項2】 酸化性物質が液体に溶解または分散して
おり、その溶液を作用極中に注入して電解を行う請求項
1記載の酸化性物質濃度の測定方法。
2. The method for measuring the concentration of an oxidizing substance according to claim 1, wherein the oxidizing substance is dissolved or dispersed in a liquid, and the solution is injected into the working electrode to perform electrolysis.
【請求項3】 酸化性物質が気体であり、その気体を通
気性隔膜を通して作用極中へ導入して電解を行う請求項
1記載の酸化性物質濃度の測定方法。
3. The method for measuring the concentration of an oxidant substance according to claim 1, wherein the oxidant substance is a gas, and the gas is introduced into the working electrode through a gas permeable diaphragm to perform electrolysis.
【請求項4】 少なくとも作用極、対極、再生極の3つ
以上の電解電極と、それぞれの電極間を仕切るイオン交
換膜と、ハロゲンイオンを含む電解液を有する電解セル
を有し、作用極で外部より加えられた酸化性物質を電解
する時に流れる電流あるいはその時の全クーロン数を測
定する測定機を有する酸化性物質の濃度の測定装置。
4. An electrolytic cell having at least three or more electrolytic electrodes of a working electrode, a counter electrode and a regenerating electrode, an ion exchange membrane partitioning the electrodes, and an electrolytic cell containing an electrolyte solution containing a halogen ion. A device for measuring the concentration of an oxidant, which has a measuring device for measuring a current flowing when electrolyzing an oxidant added from the outside or a total Coulomb number at that time.
【請求項5】 各電極が白金、金、銀又はカーボンによ
り形成される請求項4記載の酸化性物質濃度の測定装
置。
5. The oxidant concentration measuring device according to claim 4, wherein each electrode is formed of platinum, gold, silver or carbon.
【請求項6】 各電極の表面積が見かけの面積に比べて
10倍以上である電解電極を用いた請求項4記載の酸化
性物質濃度の測定装置。
6. The apparatus for measuring an oxidizing substance concentration according to claim 4, wherein an electrolytic electrode in which the surface area of each electrode is 10 times or more the apparent area is used.
【請求項7】 各電極がカーボンフェルト、カーボンペ
ーパー、ポーラスグラッシーカーボンで形成される請求
項4記載の酸化性物質濃度の測定装置。 【発明の詳細の説明】 【0001】 【産業上の利用分野】本発明は、溶液中又は気体中に存
在する酸化性物質の濃度を測定するための方法及びその
測定装置に関する。特に、現場において微量検体中の濃
度をスポット的に簡便迅速にかつ高精度で測定する方法
と長期的にモニターする方法及びそれらの測定装置に関
する。 【0002】本発明において、酸化性物質とは、中性ヨ
ウ化カリウム等のハロゲン化アルカリ金属の溶液と反応
し、ハロゲンイオンを酸化してハロゲン分子を遊離し得
る物質を示し、例えば硫黄酸化物(SOx )、窒素酸化
物(NOx )、オゾン(O3)等の酸化能の強い物質の
ことをいう。 【0003】 【従来の技術】従来、現場にてリアルタイムで連続的又
はスポット的に簡便かつ高精度で酸化性物質濃度を測定
する方法として、たとえば作用極と対極の2つの電解電
極と、電極間を分離するためのイオン交換膜と、ハロゲ
ンイオンを含む電解液を有する電解セルによる電解法を
用いた測定方法があるが、この2つの電解電極を用いた
電解法による電解セルの場合、作用極側で検体とハロゲ
ンイオンが反応して生成するハロゲン分子を還元する時
に、対極側ではハロゲンイオンが酸化されてハロゲン分
子が生成する。この対極側で生成したハロゲン分子は、
対極側の電解液中に徐々に蓄積し、その濃度が高くなっ
てくると、イオン交換膜によるハロゲン分子の移動の阻
止率が低下し、常に微量の電解反応が起こるために、電
解セルの残余電流が徐々に上昇するという問題点があ
り、特に低濃度の測定が困難であった。 【0004】従って、これらの2つの電解電極を用いた
電解セルの場合、現場において長期的に酸化性物質の濃
度をモニターするという目的に使用するには限界があっ
た。 【0005】 【発明が解決しようとする課題】そこで本発明の目的
は、上記問題点を解消した溶液中又は気体中の酸化性物
質濃度の測定方法及びその測定装置を提供することであ
る。 【0006】 【課題を解決するための手段】すなわち、本発明は、少
なくとも作用極、対極、再生極の3つ以上の電解電極を
有する電解セルを用い、検体が溶液中に存在しかつ溶存
する気体ではない場合は、その溶液を直接作用極中に注
入することによって、また検体が溶液中に溶存する気体
の場合は、その溶液を直接作用極中に注入するか、ある
いは通気性隔膜を通して作用極中に導入することによっ
て、更に検体が気体中に存在する気体である場合は、通
気性隔膜を通して作用極中に導入することによって、作
用極中で検体とハロゲンイオンを反応させてハロゲン分
子を生成し、そのハロゲン分子を還元する時に測定され
る電流又は全クーロン数により、上記検体中の酸化性物
質濃度を測定する測定方法である。 【0007】また、本発明は少なくとも作用極、対極、
再生極の3極以上の電解電極と、ハロゲンイオンを含む
電解液、各電極間を分離するためのイオン交換膜、及び
これらを固定するための容器で構成された電解セルを備
えた測定装置、及び上記電解セルに通気性隔膜を追加し
たセンサーを備えた測定装置である。 【0008】本発明で使用する電解電極は、作用極と対
極及び対極と再生極というように、電解電極間にそれぞ
れ別々の印加電圧をかけて使用する。 【0009】そして、まず作用極と対極間の電解反応に
ついて考えると、作用極は検体中の酸化性物質と電解液
中に含まれるハロゲンイオンとの反応により生成したハ
ロゲン分子を、元のハロゲンイオンに還元するととも
に、外部回路から電子を取り込む電極として作用し、対
極は電解液中に含まれるハロゲンイオンを酸化してハロ
ゲン分子を生成するとともに、外部回路に電子を供給す
る電極として作用する。 【0010】次に、対極と再生極間の電解反応について
考えると、対極では上記作用極と対極間の電解反応によ
り生成したハロゲン分子を、元のハロゲンイオンに還元
するとともに、外部回路から電子を取り込む電極として
作用し、再生極では電解液中に含まれるハロゲンイオン
を酸化してハロゲン分子を生成するとともに、外部回路
に電子を供給する電極として作用する。 【0011】ここで、作用極、対極、再生極を総合して
考えると、作用極において、外部より加えられた酸化性
物質と電解液中のハロゲンイオンとの反応により生成す
るハロゲン分子を元のハロゲンイオンに還元する時に、
電解電極が作用極と対極の2極の場合は、作用極と隣合
う対極でハロゲンイオンが酸化されて生成したハロゲン
分子が蓄積していたが、再生極を追加することによっ
て、作用極と隣合う対極で蓄積するはずのハロゲン分子
は、対極と再生極の間の電解反応によって、再生極の電
解液中に蓄積し、対極の電解液中にはほとんど蓄積しな
い。 【0012】従って、対極の電解液中のハロゲン分子
は、再生極からイオン交換膜を通して移動した分に限定
されるので、再生極が存在しなかった場合と比較して非
常に低い濃度に押さえることが可能である。それ故に、
対極から作用極へのイオン交換膜を通したハロゲン分子
の移動は実際上ほとんど無視できる程度であるので、作
用極に外部から酸化性物質を加えない限り、作用極と対
極の間には電流が流れないことになり、どんなに長期的
に連続測定を行って、再生極中にハロゲン分子が蓄積し
ても、センサーのベース電流が上昇することはなくな
り、このことによって2つの電解電極を有するセンサー
における問題点を防ぐことができる。 【0013】また、これらの電解電極としては、電極で
反応すべき物質を速やかに全量反応させる必要があるこ
とから電極面積の広い物が使用され、通常その表面積が
見かけの面積の10倍以上、好ましくは100倍以上の
物が良い。この条件を満たす電極材質として、カーボン
フェルト、カーボンペーパー、白金黒等を挙げることが
できる。 【0014】上記電解電極間には、−50mV〜−1,
000mV程度の直流電圧が印加され各電極反応を行う
が、作用極と対極間及び対極と再生極間の印加電圧は必
ずしも同じ印加電圧を印加する必要はない。また、印加
電圧の大きさの決定においては、必要以上の印加電圧を
印加すると、目的とする電解反応以外の反応が起こり、
測定値の誤差が大きくなる原因となるばかりでなく、そ
の目的反応以外の反応生成物により目的の電解反応が阻
害されて測定できなくなることもあるので、印加電圧の
決定には注意が必要である。 【0015】また、電解液におけるその溶質としては、
例えばヨウ化カリウム、ヨウ化ナトリウム、臭化カリウ
ム、臭化ナトリウム等のハロゲン化アルカリ、好ましく
はヨウ化カリウムを挙げることができ、また、その溶媒
としては、水、アルコール系溶媒、エステル系溶媒、エ
ーテル系溶媒等、それが検体中の測定対象物質と上記溶
質とを溶解可能な物であれば特に制限される物ではない
が、溶媒の揮発性が高いと、溶媒の揮発により測定中に
電解液の溶質濃度が変化したり、溶質が析出して測定に
不都合を与える場合があるので、好ましくは揮発性の低
い溶媒が良く、例えば水またはエチレングリコールを挙
げることができる。 【0016】この電解液中の溶質の濃度は、通常0.1
N以上、好ましくは1N前後である。0.1Nより低い
と、電流値が制限されることによって測定ができなくな
る場合が生じるので好ましくなく、逆に、飽和濃度に近
いと溶質の析出が起こる場合があり好ましくない。 【0017】また、本発明においては、イオンの移動に
よる電気的な導通を確保しつつ、隣合う電極の接触を防
ぎ、かつ、隣合う電極へのハロゲン分子の移動を防ぐた
めに、各電極間を分離する隔膜を設けることが必要であ
るが、この隔膜としては、イオン以外の低分子の物質の
透過を防ぐことから、イオン交換膜を用いるのが良く、
例えば、ナフィオン(デュポン社製、商品名)、フレミ
オン(旭硝子社製、商品名)等を挙げることができ、こ
れらのイオン交換膜を使用することにより長期的に安定
した連続測定が可能になる。 【0018】また、本発明において通気性隔膜を使用す
る場合、例えば多孔性又は微孔性の四フッ化エチレン樹
脂(PTFE)、四フッ化エチレン−六フッ化プロピレ
ン共重合樹脂(FEP)、四フッ化エチレン−パーフロ
ロアルキルビニルエーテル共重合樹脂(PFA)、四フ
ッ化エチレン−エチレン共重合樹脂(ETFE)等のフ
ッ素系の膜を挙げることができる。そして、この通気性
隔膜については、この通気性隔膜を透過するガスの速度
が、ガスの濃度及び膜の空隙率に比例し、膜厚に反比例
し、更にガスの種類や膜の材質によっても異なるので、
好ましくは測定対象ガスの種類及びその濃度に応じて、
膜の材質、膜厚、膜の空隙率を適宣選択するのが良く、
例えば透過性の低いガスやガス濃度が極端に低い時は多
孔性のPTFE膜で膜厚が100μm程度の物が良く、
逆に透過性の高いガスやガス濃度が極端に高い時は微孔
性のPTFE膜やFEP膜で膜厚が25μm程度の物が
好ましい。 【0019】更に、本発明方法を実施するための測定装
置としては、好ましくは、そのセンサー部として、上記
したハロゲンイオンを含む電解液と、電解液を収容する
容器と、容器内を少なくとも3つ以上の部屋に分離する
イオン交換膜と、それぞれ分離された部屋内に位置し作
用極、対極、再生極、となる各電解電極とで構成された
電解セルを用いるのが良く、通気性隔膜を使用する場合
は、その通気性隔膜は容器の作用極側の側壁に設置する
必要があり、その際通気性隔膜を透過したガスと電解液
中のハロゲンイオンとの反応により生成するハロゲン分
子が電解液中に拡散することを防ぐために、作用極は通
気性隔膜のすぐ近いところに設置するのが望ましい。 【0020】 【実施例】以下、実施例に基づいて、本発明を具体的に
説明する。図1は、作用極4、対極5、再生極6の3極
を使用し、かつ通気性隔膜2を使用した場合の本発明に
よる測定装置の測定メカニズムを示した図である。 【0021】酸化性ガスを含む検体ガス1が、通気性隔
膜2に接すると、この検体ガス1中の酸化性ガスはこの
通気性隔膜2を透過して、センサー内部の作用極4の電
解液7中に溶解し、電解液7中に含まれるハロゲンイオ
ン例えばヨウ素イオンと反応して、自らはその還元体と
なりハロゲンイオンはハロゲン分子に酸化される。 【0022】こうして生成したハロゲン分子は、作用極
4と対極5の間に所定の電圧が印加されているため、陰
極となる作用極4で速やかに元のハロゲンイオンに還元
され、また、同時に陽極となる対極5では電解液7中の
ハロゲンイオンの酸化反応が行われて、ハロゲン分子が
生成するが、この時作用極4と対極5の間には電極反応
の量に応じた電流が流れる。 【0023】一方、対極5と再生極6の間に注目する
と、こちらにも電圧が印加されているため、この2極間
では陰極となる対極5では、上記した作用極4と対極5
の電極反応により生成したハロゲン分子が還元されて、
元のハロゲンイオンに速やかに戻り、陽極となる再生極
6において電解液7中のハロゲンイオンの酸化反応が行
われてハロゲン分子が生成するが、この時も対極5と再
生極6の間には電極反応の量に応じた電流が流れる。 【0024】以上の電極反応が起こる時に、作用極4と
対極5の間及び対極5と再生極6の間に流れる電流値は
等しく、かつ検体ガス1中に含まれる酸化性ガスの濃度
と比例関係にあるので、検体ガス1中から電解液7中に
溶解した酸化性ガスの濃度は、作用極4と対極5の間に
流れた電流値か、または対極5と再生極6の間に流れた
電流値を、電流計等の計器8により測定し、既知の濃度
又は予め同じガスを用いて従来法で測定した濃度と、本
発明方法で測定した電流値とを相関させ、酸化性ガスの
濃度に換算することにより、簡便迅速かつ高精度で測定
することができる。 【0025】図2は、本発明方法を実施するための測定
装置の一例として、検体ガス1中のオゾン濃度を測定す
る測定装置を示す模式断面図である。電解液7を収容す
る容器9は、オゾンに対して耐性のある材質、例えばガ
ラス、ポリプロピレン、ポリエチレン、フッ素系樹脂等
で形成されており、この容器9内に設置される電解電極
(作用極4、対極5、再生極6)はそれぞれカーボンフ
ェルトで形成され、できれば上記容器9内の大半を占め
る大きさであることが望ましい。 【0026】また、容器9の作用極4側の一側面に形成
される開口部には、通気性隔膜2として微孔性のPTF
E膜が取り付けられており、更に、容器9内はイオン交
換膜3(ナフィオン膜)により作用極室、対極室、再生
極室の3つの部屋に分離されている。電解液7としては
3極とも1Nのヨウ化カリウム水溶液(pH9)が入れ
られている。 【0027】そして、上記容器9は、酸化性ガスを含む
検体ガス1中に通気性隔膜2が接触するように設置され
る。その際気体に流れがある場合には、その流れをでき
るだけ乱さないように設置される。 【0028】次に、作用極4と対極5の間には、作用極
4が陰極となり対極5が陽極となるように、また、対極
5と再生極6の間には、対極5が陰極となり再生極6が
陽極となるように、作用極4と対極5、及び対極5と再
生極6との間をリード線10で接続し、また、これら作
用極4と対極5の間及び対極5と再生極6の間に電圧及
び電流を測定するための計器8を設け、作用極4と対極
5の間または対極5と再生極6の間に流れる電流を測定
し、測定される電流値をオゾン濃度に換算して表示する
ようにした。 【0029】図3は、作用極4と対極5の間及び対極5
と再生極6の間にそれぞれ−200mVの電圧を印加し
た上記オゾン濃度測定装置、及び比較として作用極4と
対極5の2電極式の従来型の電解セルを用いたオゾン濃
度測定装置を使用し、検体1として一定濃度のオゾンを
含むガスを使用し、連続的に両測定装置において測定さ
れる電流値をモニターした時の、両測定装置の測定電流
値の変化を示した図である。 【0030】この図より、従来の2電極式の電解セルを
用いた測定装置の場合は、長期的に測定を行っているう
ちに測定電流値が徐々に上昇していくが、本発明による
測定装置の一例である、3電極式の電解セルを用いた測
定装置の場合は、ほとんど測定電流値が変化していない
ことが分かる。 【0031】更に、1ヶ月後、検体1としてオゾンを含
まないガスを使用し、各オゾン濃度測定装置のベース電
流値を確認したところ、従来式の測定装置のベース電流
値が当初の電流値よりもかなり上昇しているのに対し
て、本発明による測定装置のベース電流値はほぼ当初の
電流値まで戻っていることにより、本発明による3電極
式の電解セルを用いた測定装置は、オゾンを含む検体1
を連続して長期的に測定を行った場合にも、ベース電流
値の変化が起こらず精度良く測定できることが分かる。 【0032】更に、本発明の測定装置を用いて、検体1
中のオゾン濃度を変えて測定するとともに、比較例とし
て全く同じ検体1を用いて、JIS−B−7957に示
された紫外線吸収法により測定を行った結果を下記に示
す。 O3 濃度測定値(ppb) 測定No. 実施例 比較例 1 4.2 測定不可 2 67.5 66.4 3 513.7 515.0 この結果より、本発明方法は紫外線吸収法と比較して
も、高精度にかつ極めて低濃度のオゾン濃度まで測定が
可能であることが判明した。
7. The oxidant concentration measuring device according to claim 4, wherein each electrode is formed of carbon felt, carbon paper, or porous glassy carbon. Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the concentration of an oxidant present in a solution or in a gas, and a measuring device therefor. In particular, the present invention relates to a method for spot-concentrating a concentration in a trace amount of a sample simply, quickly and with high accuracy, a method for long-term monitoring, and a measuring device for these methods. In the present invention, the oxidizing substance means a substance capable of reacting with a solution of an alkali metal halide such as neutral potassium iodide to oxidize a halogen ion to release a halogen molecule, for example, a sulfur oxide. (SO x ), nitrogen oxide (NO x ), ozone (O 3 ), and other substances having a strong oxidizing ability. 2. Description of the Related Art Conventionally, as a method for measuring the concentration of an oxidant substance in real time continuously or spot-wise in real time in a simple and highly accurate manner, for example, two electrolytic electrodes, a working electrode and a counter electrode, and an interelectrode electrode are used. There is a measurement method using an electrolysis method with an ion exchange membrane for separating water and an electrolytic solution containing a halogen ion, and in the case of an electrolysis cell with an electrolysis method using these two electrolytic electrodes, a working electrode is used. When reducing the halogen molecules generated by the reaction of the analyte with the halogen ions on the side, the halogen ions are oxidized on the counter electrode side to generate the halogen molecules. The halogen molecules generated on the opposite side are
When the electrolyte gradually accumulates in the electrolyte on the counter electrode side and its concentration rises, the rate of inhibition of halogen molecule migration by the ion exchange membrane decreases, and a slight amount of electrolytic reaction always occurs. There was a problem that the current gradually increased, and it was difficult to measure particularly low concentrations. Therefore, the electrolytic cell using these two electrolytic electrodes has a limit in use for the purpose of long-term monitoring of the concentration of the oxidizing substance in the field. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for measuring the concentration of an oxidizing substance in a solution or gas and a measuring apparatus therefor, which solves the above problems. [0006] That is, the present invention uses an electrolytic cell having at least three electrolytic electrodes of a working electrode, a counter electrode, and a regenerating electrode, and a sample is present and dissolved in a solution. If it is not a gas, inject the solution directly into the working electrode, and if the analyte is a gas dissolved in the solution, inject the solution directly into the working electrode or act through a breathable septum. When the sample is a gas that is present in the gas by introducing it into the electrode, by introducing it into the working electrode through a gas permeable membrane, the sample reacts with the halogen ion in the working electrode to form halogen molecules. It is a measuring method in which the concentration of an oxidizing substance in the sample is measured by the current or the total Coulomb number measured when the halogen molecules are produced and reduced. The present invention also includes at least a working electrode, a counter electrode,
A measuring device equipped with an electrolytic cell composed of three or more electrolytic electrodes of a regenerating electrode, an electrolytic solution containing halogen ions, an ion exchange membrane for separating each electrode, and a container for fixing these. And a measuring device equipped with a sensor in which a breathable diaphragm is added to the electrolytic cell. The electrolytic electrode used in the present invention is used by applying different applied voltages between the electrolytic electrodes, such as a working electrode and a counter electrode and a counter electrode and a reproducing electrode. Considering first the electrolytic reaction between the working electrode and the counter electrode, the working electrode converts the halogen molecule generated by the reaction between the oxidizing substance in the sample and the halogen ion contained in the electrolytic solution into the original halogen ion. And acts as an electrode that takes in electrons from the external circuit, and the counter electrode acts as an electrode that supplies electrons to the external circuit while oxidizing halogen ions contained in the electrolytic solution to generate halogen molecules. Next, considering the electrolytic reaction between the counter electrode and the regenerating electrode, at the counter electrode, the halogen molecules produced by the electrolytic reaction between the working electrode and the counter electrode are reduced to the original halogen ions, and electrons are emitted from the external circuit. It acts as an electrode for taking in, and at the regeneration electrode, it acts as an electrode that oxidizes halogen ions contained in the electrolytic solution to generate halogen molecules and also supplies electrons to an external circuit. Here, considering the working electrode, the counter electrode, and the regenerating electrode as a whole, the halogen molecules produced by the reaction between the oxidizing substance added from the outside and the halogen ion in the electrolytic solution are originally generated in the working electrode. When reducing to halogen ions,
When the electrolytic electrode had two electrodes, the working electrode and the counter electrode, halogen molecules were generated by oxidation of halogen ions at the counter electrode adjacent to the working electrode. Halogen molecules, which are supposed to be accumulated in the matching counter electrode, are accumulated in the electrolyte solution of the regeneration electrode and hardly accumulated in the electrolyte solution of the counter electrode due to the electrolytic reaction between the counter electrode and the regeneration electrode. Therefore, the halogen molecules in the electrolytic solution of the counter electrode are limited to the amount that has moved from the regeneration electrode through the ion exchange membrane, so that the concentration should be kept extremely low compared to the case where the regeneration electrode was not present. Is possible. Therefore,
Since the migration of halogen molecules from the counter electrode to the working electrode through the ion exchange membrane is practically negligible, current does not flow between the working electrode and the counter electrode unless an oxidizing substance is externally added to the working electrode. No longer flowing, no matter how long a continuous measurement is made and halogen molecules accumulate in the regenerating electrode, the base current of the sensor does not rise, which allows the sensor to have two electrolytic electrodes. You can prevent problems. Also, as these electrolytic electrodes, those having a large electrode area are used because it is necessary to rapidly react all the substances to be reacted at the electrodes, and the surface area thereof is usually 10 times or more of the apparent area, It is preferably 100 times or more. Examples of the electrode material that satisfies this condition include carbon felt, carbon paper, platinum black, and the like. Between the electrolytic electrodes, -50 mV to -1,
Although a DC voltage of about 000 mV is applied to each electrode reaction, it is not always necessary to apply the same applied voltage between the working electrode and the counter electrode and between the counter electrode and the reproducing electrode. Further, in determining the magnitude of the applied voltage, if an applied voltage more than necessary is applied, a reaction other than the intended electrolytic reaction occurs,
Not only will this cause a large error in the measured value, but reaction products other than the target reaction may interfere with the target electrolytic reaction, making it impossible to make measurements, so care must be taken in determining the applied voltage. . As the solute in the electrolytic solution,
For example, potassium iodide, sodium iodide, potassium bromide, alkali halides such as sodium bromide, preferably potassium iodide can be mentioned, and as the solvent, water, alcohol solvent, ester solvent, There is no particular limitation as long as it is a substance capable of dissolving the substance to be measured in the sample and the above-mentioned solute, such as an ether solvent, but if the solvent is highly volatile, the solvent volatilizes to cause electrolysis during measurement. Since the solute concentration of the liquid may change or the solute may be deposited to cause inconvenience to the measurement, a solvent having low volatility is preferable, and water or ethylene glycol can be exemplified. The solute concentration in this electrolyte is usually 0.1.
It is N or more, preferably around 1N. If it is lower than 0.1 N, it may not be possible to perform the measurement due to the limited current value. On the contrary, if the concentration is close to the saturation concentration, solute precipitation may occur, which is not preferable. Further, in the present invention, in order to prevent contact between adjacent electrodes and to prevent migration of halogen molecules to the adjacent electrodes while ensuring electrical conduction due to movement of ions, the distance between the electrodes is increased. It is necessary to provide a separating membrane, but as this diaphragm, it is preferable to use an ion exchange membrane because it prevents the permeation of low-molecular substances other than ions.
For example, Nafion (manufactured by DuPont, trade name), Flemion (manufactured by Asahi Glass Co., Ltd.), and the like can be mentioned. By using these ion exchange membranes, stable continuous measurement can be performed for a long term. When a breathable diaphragm is used in the present invention, for example, porous or microporous tetrafluoroethylene resin (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP), Fluorine-based films such as fluorinated ethylene-perfluoroalkyl vinyl ether copolymer resin (PFA) and tetrafluoroethylene-ethylene copolymer resin (ETFE) can be mentioned. Regarding this breathable membrane, the velocity of the gas that permeates the breathable membrane is proportional to the gas concentration and the porosity of the membrane, inversely proportional to the film thickness, and further varies depending on the type of gas and the material of the film. So
Preferably, depending on the type and concentration of the gas to be measured,
It is good to properly select the material of the film, the film thickness, and the porosity of the film,
For example, when the gas having low permeability or the gas concentration is extremely low, a porous PTFE film having a film thickness of about 100 μm is preferable.
On the contrary, when the gas having high permeability or the gas concentration is extremely high, a microporous PTFE film or FEP film having a film thickness of about 25 μm is preferable. Further, as a measuring device for carrying out the method of the present invention, preferably, as its sensor part, an electrolyte solution containing the above-mentioned halogen ion, a container for containing the electrolyte solution, and at least three insides of the container. It is preferable to use an electrolytic cell composed of an ion exchange membrane that separates into the above chambers and a working electrode, a counter electrode, and a regenerating electrode that are located in the respective separated chambers. When used, the breathable membrane must be installed on the side wall of the container on the working electrode side, and the halogen molecules generated by the reaction between the gas that has permeated the breathable membrane and the halogen ions in the electrolyte are electrolyzed. In order to prevent diffusion into the liquid, it is desirable to place the working electrode in the immediate vicinity of the breathable diaphragm. The present invention will be specifically described below based on examples. FIG. 1 is a diagram showing a measuring mechanism of a measuring device according to the present invention when three electrodes, a working electrode 4, a counter electrode 5, and a regenerating electrode 6, are used and a breathable diaphragm 2 is used. When the sample gas 1 containing an oxidizing gas comes into contact with the gas permeable diaphragm 2, the oxidizing gas in the sample gas 1 passes through the gas permeable diaphragm 2 and the electrolytic solution of the working electrode 4 inside the sensor. It dissolves in 7 and reacts with a halogen ion contained in the electrolytic solution 7, for example, an iodine ion, and itself becomes its reduced body, and the halogen ion is oxidized into a halogen molecule. Since a predetermined voltage is applied between the working electrode 4 and the counter electrode 5, the halogen molecule thus generated is quickly reduced to the original halogen ion at the working electrode 4 serving as the cathode, and at the same time, the anode In the counter electrode 5 which becomes the above, the halogen ion in the electrolytic solution 7 is oxidized and halogen molecules are generated. At this time, a current corresponding to the amount of the electrode reaction flows between the working electrode 4 and the counter electrode 5. On the other hand, paying attention to between the counter electrode 5 and the reproducing electrode 6, a voltage is also applied to the counter electrode 5, so that in the counter electrode 5 which is a cathode between these two electrodes, the working electrode 4 and the counter electrode 5 described above are used.
The halogen molecules generated by the electrode reaction of are reduced,
It quickly returns to the original halogen ion, and the halogen ion in the electrolytic solution 7 is oxidized in the regeneration electrode 6 serving as the anode to generate a halogen molecule. At this time, the halogen molecule is generated between the counter electrode 5 and the regeneration electrode 6. An electric current flows according to the amount of electrode reaction. When the above electrode reactions occur, the current values flowing between the working electrode 4 and the counter electrode 5 and between the counter electrode 5 and the regeneration electrode 6 are equal and proportional to the concentration of the oxidizing gas contained in the sample gas 1. Because of the relationship, the concentration of the oxidizing gas dissolved in the electrolyte solution 7 from the sample gas 1 is the current value flowing between the working electrode 4 and the counter electrode 5, or the concentration between the counter electrode 5 and the regenerating electrode 6. The measured current value is measured by a meter 8 such as an ammeter, and the known concentration or the concentration measured by the conventional method using the same gas in advance and the current value measured by the method of the present invention are correlated to each other. By converting the concentration, it is possible to measure easily, quickly and with high accuracy. FIG. 2 is a schematic sectional view showing a measuring device for measuring the ozone concentration in the sample gas 1 as an example of the measuring device for carrying out the method of the present invention. The container 9 for containing the electrolytic solution 7 is made of a material resistant to ozone, for example, glass, polypropylene, polyethylene, fluororesin, or the like, and the electrolytic electrode (working electrode 4) installed in the container 9 is used. The counter electrode 5 and the reproducing electrode 6) are each formed of carbon felt, and preferably have a size that occupies most of the inside of the container 9. Further, in the opening formed on one side surface of the container 9 on the side of the working electrode 4, a microporous PTF as the breathable diaphragm 2 is provided.
An E membrane is attached, and the inside of the container 9 is separated by an ion exchange membrane 3 (Nafion membrane) into three chambers, a working electrode chamber, a counter electrode chamber, and a regeneration electrode chamber. As the electrolytic solution 7, a 1N potassium iodide aqueous solution (pH 9) is put in all three electrodes. The container 9 is installed so that the breathable diaphragm 2 comes into contact with the sample gas 1 containing the oxidizing gas. In that case, if there is a flow of gas, it is installed so that the flow is not disturbed as much as possible. Next, between the working electrode 4 and the counter electrode 5, the working electrode 4 becomes the cathode and the counter electrode 5 becomes the anode, and between the counter electrode 5 and the reproducing electrode 6, the counter electrode 5 becomes the cathode. The working electrode 4 and the counter electrode 5 and the counter electrode 5 and the reproducing electrode 6 are connected by a lead wire 10 so that the reproducing electrode 6 serves as an anode, and the working electrode 4 and the counter electrode 5 and the counter electrode 5 are connected. An instrument 8 for measuring a voltage and a current is provided between the regeneration electrode 6, the current flowing between the working electrode 4 and the counter electrode 5 or between the counter electrode 5 and the regeneration electrode 6 is measured, and the measured current value is ozone. It was converted into the concentration and displayed. FIG. 3 shows between the working electrode 4 and the counter electrode 5 and the counter electrode 5.
The above-mentioned ozone concentration measuring device in which a voltage of -200 mV is applied between the regenerating electrode 6 and the regenerating electrode 6 and the ozone concentration measuring device using a two-electrode type conventional electrolytic cell of the working electrode 4 and the counter electrode 5 are used for comparison. FIG. 3 is a diagram showing changes in measured current values of both measuring devices when a gas containing a constant concentration of ozone is used as the sample 1 and the current values measured by both measuring devices are continuously monitored. From this figure, in the case of the conventional measuring device using the two-electrode type electrolysis cell, the measured current value gradually increases during the long-term measurement. In the case of a measuring device using a three-electrode type electrolysis cell, which is an example of the device, it can be seen that the measured current value hardly changes. After one month, a gas containing no ozone was used as the sample 1, and the base current value of each ozone concentration measuring device was confirmed. The base current value of the conventional measuring device was found to be lower than the initial current value. Although the base current value of the measuring device according to the present invention has returned to almost the original current value, the measuring device using the three-electrode type electrolytic cell according to the present invention is Sample 1 containing
It can be seen that even when the measurement is continuously performed for a long time, the base current value does not change and the measurement can be performed accurately. Further, using the measuring apparatus of the present invention, the sample 1
The following shows the results of measurement by changing the ozone concentration in the sample and using the same sample 1 as a comparative example by the ultraviolet absorption method shown in JIS-B-7957. O 3 concentration measurement value (ppb) Measurement No. Example Comparative Example 1 4.2 Not measurable 2 67.5 66.4 3 513.7 515.0 From these results, the method of the present invention is highly accurate and has extremely low concentration of ozone even when compared with the ultraviolet absorption method. It was found that it is possible to measure up to the concentration.
JP3110784A 1991-04-17 1991-04-17 Method and device for measuring oxidizing substance concentration Withdrawn JPH0534314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3110784A JPH0534314A (en) 1991-04-17 1991-04-17 Method and device for measuring oxidizing substance concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3110784A JPH0534314A (en) 1991-04-17 1991-04-17 Method and device for measuring oxidizing substance concentration

Publications (1)

Publication Number Publication Date
JPH0534314A true JPH0534314A (en) 1993-02-09

Family

ID=14544539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3110784A Withdrawn JPH0534314A (en) 1991-04-17 1991-04-17 Method and device for measuring oxidizing substance concentration

Country Status (1)

Country Link
JP (1) JPH0534314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624933A (en) * 2021-08-13 2021-11-09 辽宁科技学院 Distributed nitrogen and phosphorus monitoring system and use method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624933A (en) * 2021-08-13 2021-11-09 辽宁科技学院 Distributed nitrogen and phosphorus monitoring system and use method thereof

Similar Documents

Publication Publication Date Title
JPS59211853A (en) Electroanalytic method for measuring hydrogen and sensor
US4265714A (en) Gas sensing and measuring device and process using catalytic graphite sensing electrode
US4171253A (en) Self-humidifying potentiostated, three-electrode hydrated solid polymer electrolyte (SPE) gas sensor
US4227984A (en) Potentiostated, three-electrode, solid polymer electrolyte (SPE) gas sensor having highly invariant background current characteristics with temperature during zero-air operation
US5078854A (en) Polarographic chemical sensor with external reference electrode
US4522690A (en) Electrochemical sensing of carbon monoxide
US8840775B2 (en) Regenerative gas sensor
US4176032A (en) Chlorine dioxide analyzer
US4083765A (en) Polymeric electrolytic hygrometer
US4377446A (en) Carbon dioxide measurement
US5004532A (en) Amperometric cell
US5906726A (en) Electrochemical sensor approximating dose-response behavior and method of use thereof
WO1998011426A1 (en) Analytic cell
US20070227908A1 (en) Electrochemical cell sensor
EP0205399A2 (en) Amperometric cell and method
JP3881540B2 (en) Constant potential electrolysis gas sensor and gas detector
JPH0534314A (en) Method and device for measuring oxidizing substance concentration
EP0230289A2 (en) Electrochemical determination of formaldehyde
US20060163088A1 (en) Amperometric sensor with counter electrode isolated from fill solution
JP3307827B2 (en) Potentiometric electrolytic ammonia gas detector
Hrnčı́řová et al. Effect of gas humidity on the potential of pseudoreference Pt/air electrode in amperometric solid-state gas sensors
CA1114021A (en) Potentiostated, three-electrode, solid polymer electrolyte (spe) gas sensor having highly invariant background current characteristics with temperature during zero-air operation
JPH05113425A (en) Polarographic ozone sensor
JP3650919B2 (en) Electrochemical sensor
GB1597413A (en) Gas sensors

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711